Important: This guide is no longer being updated. For information on the latest updates to
DataDirect XQuery, refer to the Fixes.txt and Readme.txt files in your installation directory.

Data DiFect

TECHNOLOGIES

DataDirect XQuery®

User’s Guide and

Reference

Release 5.0
October 2009

© 2009 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by
Progress Software Corporation. The information in these materials is subject to change without notice,
and Progress Software Corporation assumes no responsibility for any errors that may appear therein.
The references in these materials to specific platforms supported are subject to change.

Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design), Artix,
Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64,
DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, IntelliStream, IONA, IONA (and design),
Making Software Work Together, Mindreef, Neon, Neon New Era of Networks, ObjectStore,
OpenEdge, Orbix, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results,
Progress Software Developers Network, Progress Sonic, ProVision, PS Select, SequelLink, Shadow,
SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software (and
design), SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and
design), and Your Software, Our Technology-Experience the Connection are registered trademarks of
Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries.
AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event
Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, DataDirect Spy, DataDirect SupportLink, FUSE, FUSE Mediation Router, FUSE
Message Broker, FUSE Services Framework, Future Proof, GVAC, High Performance Integration,
ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress Event Engine, Progress
RFID, Progress Software Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow
z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability
Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server, StormGlass, The Brains
Behind BAM, WebClient, Who Makes Progress, and Your World. Your SOA. are trademarks or service
marks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and other
countries. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. MySQL and MySQL Enterprise are registered trademarks of MySQL
AB in the United States, the European Union and other countries. Any other trademarks or service
marks contained herein are the property of their respective owners.

Third Party Acknowledgments:

DataDirect products for the Microsoft SQL Server database:
These products contain a licensed implementation of the Microsoft TDS Protocol.

Stylus Studio includes:
Xerces c++ developed by the Apache Software Foundation (http:// www.apache.org/). Copyright ©

1999-2006 the Apache Software Foundation. All rights reserved.

Xerces) developed by the Apache Software Foundation (http:// www.apache.org/). Copyright ©
1999-2006 the Apache Software Foundation. All rights reserved.

FOP developed by the Apache Software Foundation (http:// www.apache.org/). Copyright © 1999-2006
the Apache Software Foundation. All rights reserved.

Axis developed by the Apache Software Foundation (http:// www.apache.org/). Copyright © 1999-2006
the Apache Software Foundation. All rights reserved.

The names "Xalan", "FOP", and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation. For written permission, please contact
apache@apache.org.

Files that are subject to the DSTC Public License (DPL) Version 1.1 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at http://
www.dstc.com. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License. The Original Code is xs3p. The Initial Developer of
the Original Code is DSTC. Portions created by DSTC are Copyright © 2002. All rights reserved.

Pathan developed by DecisionSoft Limited. Copyright © 2001 DecisionSoft Limited. All rights reserved.

Software developed by Thai Open Source Software Center Ltd. Copyright © 2001-2003, Thai Open
Source Software Center Ltd. All rights reserved.

IBM ICU developed by IBM. Copyright © 1995-2003 International Business Machines Corporation and
others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
provided that the above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

Software developed by Kevin Atkinson. Copyright © 2000-2004, by Kevin Atkinson. All rights reserved.

Aspell 0.60.2, from the Free Software Foundation, Inc. (http://www.fsf.org/), which is subject to the GNU
Lesser General Public License Version 2.1 (http://www.gnu.org/licenses/Igpl.html). Software distributed
under this license is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
or implied. See the license for the specific language governing rights and limitations under the license.

Software developed by xqDoc.org. Copyright © 2005 Elsevier, Inc. All rights reserved.

Software developed by Info-ZIP. Copyright © 1990-2004 Info-ZIP. All rights reserved. For the purposes of
this copyright and license, "Info-ZIP" is defined as the following set of individuals: Mark Adler, John
Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly, Hunter Goatley, lan Gorman,
Chris Herborth, Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David
Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith
Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler,
Antoine Verheijen, Paul von Behren, Rich Wales, Mike White. Info-ZIP software is provided "as is",
without warranty of any kind, express or implied. In no event shall Info-ZIP or its contributors be held
liable for any direct, indirect, incidental, special or consequential damages arising out of the use of or
inability to use this software.

Software developed by Tim Bray and Sun Microsystems and is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. Copyright © 2004 Tim Bray and Sun Microsystems.
All rights reserved.

Software developed by Saxonica Limited and is distributed on an "AS IS" basis WITHOUT WARRANTY
OF ANY KIND, either express or implied. Copyright © 2005 Saxonica Limited. All rights reserved.

Software developed by The Anti-Grain Geometry Project. Copyright © 2002-2005 Maxim Shemanarev
(McSeem). This software is provided "as is" without express or implied warranty, and with no claim as
to its suitability for any purpose.

DataDirect XML Converters. Copyright 2004 - 2009 Progress Software Corporation and/or its subsidiaries
or affiliates. All rights reserved.

DataDirect XQuery. Copyright 2004 - 2009 Progress Software Corporation and/or its subsidiaries or
affiliates. All rights reserved.

DataDirect XML Converters includes:

Software developed by World Wide Web Consortium. Copyright (c) 1998-2003 World Wide Web
Consortium (Massachusetts Institute of Technology, European Research Consortium for Informatics and
Mathematics, Keio University). All Rights Reserved.

Software developed by World Wide Web Consortium. Copyright (c) 1998-2000 World Wide Web
Consortium (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et
en Automatique, Keio University). All Rights Reserved.

Software developed by JSON.org. Copyright (c) 2002 JSON.org. All rights reserved.

DataDirect XQuery includes:

XQJ 225 XQuery API for Java 1.0 Reference Implementation. Copyright (c) 2003 -2007 Oracle. THIS
SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED, IMPLIED OR STATUTORY WARRANTIES,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL ORACLE OR
ITS LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMTED TO LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ORACLE IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

September 2009

Table of Contents

Listof Tables i, 19
Preface ... 25
What Is DataDirect XQuery®?t 25
Using ThisBook 26
About the Product Documentation 29
HTML Version. e 29
PDF Version e 30
Typographical Conventions. 31
Contacting Technical Support. 33
1 QuickStart.ci ittt ettt 35
Getting Started with DataDirect XQuery................. 35
Using the Command Line Utility. 40
Additional Resources. i 45
2 Introduction............ ..ot 47
What Is DataDirect XQuery®?t 47
What Is XQuery? e e 48
The XQuery Standard, 49
What Is XQJ? ..o e 53
DataDirect XQuery® Architecture....................... 55
Using DataDirect XML Converters™ 56
Using Stylus Studio® 57

DataDirect XQuery User’s Guide and Reference

Table of Contents

3 Tutorial: Using DataDirect XQuery®............. 59
Specifying the XQuery Version 60
Where to Specify Version. 60
When to Specify Version 60
How to Specify Version 61
Configuring Connections. i, 61
Specifying Connection Information 62
Executing Queries. 62
Querying Data from XML Files or DOM Trees 65
Queryingan XMLFile........ ..o i 65
QueryingaDOM 66
QueryingaDirectory 67
Joining Data from XML and Relational Sources. 67
Returning Results with Java XML APIs 69
DOM .. 70
SAX 71
StAX . 71
Preparing XQuery Statements., 72
Updating Data in Relational Databases 74
4 Tutorial: Using XQueryc.oviiinnnn. 75
Finding XML Nodes: Path Expressions. 76
Path Expressions for XML Sources. 76
Path Expressions for Relational Sources 81
DataDirect XQuery SpeaksSQL 82
Creating XML: XML Constructors 83
Literal XML constructors 83
Enclosed Expressionsc.oiiiiinennn. 83
Restructuring Data: FLWOR Expressions. 84
XML Reporting for Relational Sources 86
Processing XML and Relational Together............. 91

DataDirect XQuery User’s Guide and Reference

Table of Contents

GroupingData. 92
What Is Grouping. 93
Thewindow Clause 93
Example: Tumbling Windows 94
Example: Positional Grouping. 97
Example: Sliding Windows 98

SUMMANY .. 100

Tutorial: The XQuery Update Facility............ 101

Support Overview e 102
XUF EXPressions . ..o oo i eee e 102

XUF EXamples.o e e e e e 103
Sample Files 103

Storing QueryResults i i 104
Example 105

Replacing Node Values 105
Example e 105

InsertingaNewNode 106
Example e 107

RenamingaNode 108
Example e 108
Example —Using XQJ 108

Transforming Query Results 109
Example — Replacinga Node Value 110
Example —InsertingaNode 111

UpdatingDataSources it .. 112
Enabling AutomaticUpdate........................ 112
How Updates are Performed 113
Example e 113

DataDirect XQuery User’s Guide and Reference

7

8

Table of Contents

6 Understanding Data Sources and Connections. ... 115

Using Data Sourcesin Queries. 115
XML Data Sources.ot e 116
Relational DataSources. 118

Choosing a Connection Method 123

Configuring Connections Explicitly 123

Configuring Connections Using JNDI 127

DDXQDataSource and DDXQJDBCConnection Properties. .. 128
DDXQDataSource Properties.o..... 128
DDXQJDBCConnection Properties. 136

Specifying ConnectionURIs. 141
Connection URIs for Built-In Drivers 141
Connection URIs for Third-Party Drivers.............. 143

Securing Data Source Connections 145

About Authentication o L 145

Using Kerberos Authentication........................ 147
Configuring Kerberos Authentication 149
Specifying User Credentials with Kerberos Authentication156
Obtaining a Kerberos Ticket Granting Ticket.......... 158

Using NTLM Authentication 159
Configuring NTLM Authentication.................. 160

Data Encryption Across the Network 163
Supported Encryption Methods. 164
Database-Specific Data Encryption 165
SSLENcryption 166
Configuring SSLforDB2 i, 170
Configuring SSLforOracle 171
Configuring SSL for Microsoft SQL Server............. 172
Configuring SSL for Sybase 175

DataDirect XQuery User’s Guide and Reference

8

Table of Contents

Improving Performance 177
Querying Large XML Documents 177
What is Streaming XML?. oL 178
Enabling Streaming XML. 178
Data Sources. e 180
UsingPlan Explain........... 181
Taking Advantage of Streaming XML 182
Streaming XML Examples, 185
Using CompariSONSot 189
Understanding Compensation 191
Using Query Pooling i 192
Using Connection Pooling.o it 193

Configuring a Connection Through the JDBC Driver Manager
194

Configuring a Connection Through a Data Source...... 195
Configuring Connection Pooling 196
Example of Servlet Using Connection Pooling.......... 197
Building a Web Service....................... 201
XQueryWebService Framework Overview 201
Third Party Dependencies. 202
Web Service Interfaces 202
XQueryWebService Framework Architecture 204
Example XQuery 206
The Web Service Description Language (WSDL) 206
Example — Employee Lookup, 211
Other Examples i .. 211
Before YouBegin. i 211
Setting Up ... 212
Next Steps. 213
Specifying a Database Connection...................... 213
Specifying a Single Connection...................... 214

DataDirect XQuery User’s Guide and Reference

10 Table of Contents

Database Connection Pooling...................... 214
NextSteps. i e 216
Choosing an Interface for Web Service Access............ 216
Sample XQUeryot e 217
Next Stepso 219
Tools for Testing Web Service Operations 219
The HTML Test Interface, 220
Next Stepso 220
Generating WSDL. e 221
NextSteps. 222
Using WSDL Service References. 223
Augmenting WSDL with External XML Schema........ 226

10 Building a Web Service Client.................. 229
OVeIVIBW . . ottt e e e e 229
Choosinga FunctionType 230
DataDirect HTTP Functions 231
Function Overview 231
Connection Authentication........................ 233
Managing Connections and Sockets................. 235
Data Streaming. 237
Response Encoding. i 238
Managing Cookies 242
Specifying HTTP Client-Server Options 244
Example: Web Service Client Comparison. 244
Using HTTP Functions. 245
Using ddtek:wscall i 246
HTTP Function Request and Response XML Schemas 247
Request XML Schema............ oviu... 247
Response XML Schema. 249

DataDirect XQuery User’s Guide and Reference

1"

12

Table of Contents

Support for Relational Databases 251
Querying RelationalData 251
XML and SQL Data Structures.ccuivun... 253
Simplifying Generated SQL. 253
Usingan OrderBy Clause 257
Using a SQL EXISTS Subclause inDB2................. 259
Using BINARY_DOUBLE and BINARY_FLOAT Data Types
(Oracle 10g and higher) 260
Using DataDirect XQuery SQL Generation Algorithms. . . 260
Querying XML TypeDatacco ... 263
Supported Databases. 265
Evaluating QueriesinMemory 265
Updating RelationalData............................. 267
ddtek:sqgl-insert 268
ddtek:sql-update 269
ddtek:sgl-delete. 270
Understanding the Transactional Behavior of DataDirect XQuery
Updates 270
Transactions oottt e 271
Transaction Isolation Levels. 271
Distributed Transactions, 274
Using Advanced Features 275
Using Option Declarations and Extension Expressions.. 275
Option Declarations. 275
Using Extension Expressions 285
Querying Multiple Filesin a Directory 288
XMLFiles 288
Non-XMLFiles 290
Querying ZIP, JAR, and MS Office Files. 292
Creating and Updating ZIPFiles 294
Using URIResolvers i 294
Document URIResolvers, 295

DataDirect XQuery User’s Guide and Reference

1

12

Table of Contents

Library Module URIResolvers 296
Collection URIResolvers. ..., 298
Analyzing EDI to XML Conversions. 299
OVeIVIBW . . e e e 300
Built-in EDI Analysis and Conversion Functions 302
Examples. ... e 304
Generating XQuery ExecutionPlans. 307
Format of an XQuery ExecutionPlan 307
Enabling Plan Explain. 310
Example of an XQuery ExecutionPlan 311
Specifying Collations 312
Using External Functions 315
Supported External Functions 315
Using Java Functions 317
Using SQL Functions. i 329
XQuery Support.cciii it e 339
Terminologyt 339
In This Appendix 340
2 BaSiCS . e 341
Expression Context.o, 342
ProcessingModel i 345
ErrorHandling 345
Concepts . ..ot 346
TP - oo e 346
Comments. o 347
B EXPressioNs. . ..o e 347
Primary EXpressionsuuiennninnnn... 348
Path Expressions. i 349
Sequence EXpressions. 350
Arithmetic Expressions. 350
Comparison EXpressions.ot 351
Logical Expressions. i 351

DataDirect XQuery User’s Guide and Reference

Table of Contents 13

Constructors.o 352
FLWOR EXPressionsvuutiiiieieeeeeeennnn. 353
Ordered and Unordered Expressions 353
Conditional Expressions. 354
Quantified Expressionsc. ... 354
Expressions on SequenceTypescovvnnnn. 355
Validate Expressions 356
Extension Expressions 356
4 Modulesand Prologsc i 357
5Conformance 358
Optional Features 358
Data Model Conformance. 359
Namespaces 360
Predefined Namespaces (Not Reserved)............... 360
B Functionsand Operators. 361
2 ACCESSOLS & ittt 362
BErrorFunction. e 363
4Trace Function. 363
5 Constructor Functions. 364
6 Functions and Operators on Numerics 367
7 Functionson Strings.. 369
8 Functions and Operators foranyURI................ 372
9 Functions and Operators on Boolean Values 373
10 Functions and Operators on Durations, Dates, and Times
374
11 Functions RelatedtoQNames 381
12 Operators on base64Binary and hexBinary.......... 382
13 Functions and Operators on NOTATION 383
14 Functions and Operatorson Nodes. 383
15 Functions and Operators on Sequences 384
16 Context Functions. 387
17 Casting. . .o e 388

DataDirect XQuery User’s Guide and Reference

14 Table of Contents

C Built-in Functions and Options. 389
DataDirect XQuery Built-In Functions. 389
ddtek:analyze-edi-from-string. 390
ddtek:analyze-edi-from-url, 391
ddtek:convert-to-xml, 393
ddtek:decimal. 394
ddtek:edi-to-xml-from-string. 394
ddtek:edi-to-xml-from-url 396
ddtek:format-date 397
ddtek:format-date-time............. 401
ddtek:format-number 402
ddtek:format-time 405
ddtek:http-delete. 407
ddtek:http-get 408
ddtek:http-head L. 409
ddtek:http-options. 410
ddtek:http-post 411
ddtek:http-put L 412
ddtek:http-trace. 414
ddtek:iinfo....... ... i 415
ddtek:isValid. 416
ddtek:javaCast ... 416
ddtek:ltrim, ddtek:rtrim, and ddtek:trim 417
ddtek:iparse.......... 418
ddtek:serialize 419
ddtek:serialize-to-url 420
ddtek:sgl-delete 421
ddtek:sgl-insert. 422
ddtek:sql-update 423
ddtek:validate. 424
ddtek:validate-and-report........... 427
ddtek:iwscall 430
HTTP Functions <request> Element 433
DataDirect XQuery Options. 437

DataDirect XQuery User’s Guide and Reference

Table of Contents

Namespaceso e 437
Predefined Namespaces (Not Reserved)............... 437
Predefined Namespaces and Prefixes (Reserved)........ 438

Serialization Support. 439

OV IV W & ottt e e e e e e e e e e 439

Serialization Methods 439
Using Standard Supporto ... 440
Using the DataDirect XML Converters™ 442

Database Support o .. 445

Supported Databases 445

Data Type Mappings it 447
DB . e e e 448
INformixo o 449
MySQL. . .. e 451
Oracle. ... e 452
PostgreSQL 454
Microsoft SQLServer.c.c i 455
Sybase. 457

Supported XQuery AtomicTypeso vin i, 459

Database Connection Properties 460
DB . e e e 460
INformixo o 466
Microsoft SQLServer. i 467
MySQL Enterprise.o e 470
Oracle 471
PostgreSQL. e 480
Sybase. 481

Database-Specific Query Functions 483
Querying XMLonDB2. i 484
QueryingXMLonOracle............. 490
Querying XML on Microsoft SQL Server 2005 497

DataDirect XQuery User’s Guide and Reference

15

16

Table of Contents

F XUFSupport..........ciiiiiiiiii i iannnnnns

2 Extensionsto XQuery 1.0
2.1 Extensions to the Processing Model

2.2 ExtensionstotheProlog
2.3 Extensions to the StaticContext
2.4 New Kinds of Expressions
2.5 Extensions to Existing Expressions.

2.6 Extensions to Built-in Function Library

S5Conformance. e
5.2 Optional Features.

G XQJSupport.ciiiiii it i

Java Package Name i
XQConnection Interface
XQDataFactory
XQDataSource Interface
XQDynamicContext Interface
XQExpressionInterface
XQltem Interface
XQltemAccessor Interface L
XQltemType Interfacec i,
XQMetaData Interface. i
XQPreparedExpression Interface.
XQResultltem Interface L
XQResultSequence Interface
XQSequence Interface i i
XQSequenceTypelinterface i,
XQStaticContext Interface.
Exception Handling L.

DataDirect XQuery User’s Guide and Reference

Table of Contents 17

Multi-Threading Support 530
Accessing XML Results. i 530
DOM . . e 531
SAX e 531

St AX L 531
TeXt . oo e e 532
Support of Deferred Binding 532
XQuery Types Supported by XQJ get Methods 533
Retrieving and Binding XQuery Data Model Instances. 534
H Examples ...ttt i i 539
Required Software. 539
Database. 539
DataDIreCt XQuery® ... 539
Configuring Your Environment to Run the Examples. 540
About the Examples i 541
Connect ... e 543
CustomDocumentURIResolver 544
ExternalFunctions 545
ExternalVariables. 546
JNDIDataSource 546
RDBMSUpdate e 547
ResultRetrieval i 548
UpdateFacility 549
XMLQUEIY . o 550
XQJEXecute. e 551

I Troubleshooting. 553
Logging XQJ Calls with DataDirect Spy™ for XQJ 553
Enabling DataDirect Spy™ Logging. 554
Generating a DataDirect Spy“Log................... 559
Java logging e 562

DataDirect XQuery User’s Guide and Reference

18 Table of Contents

Resolving fn:collection Errors 564
Guidelines for Resolving Errors 564
Qualifying Table Names. 565
Using Catalog and Schema Names 565
Using JDBC Connection Names 566
Escaping Special Characters. 568
Verifying Connections, 569
Checklist 570
Querying XML Files in a Directory. 572

Resolving Static Type Errors. i, 573
Types for External Variables. 574
Types for Initial Context ltems. 576
Union Types. . . oo e 576
Types forSorting. 577
Static Typing Extensions. 579

Index ... e e 581

DataDirect XQuery User’s Guide and Reference

19

List of Tables

Table 1-1.
Table 6-1.
Table 6-2.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.

Table 7-5.
173

Table 10-1.
Table 10-2.
Table 11-1.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.

Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.

Command Line Utility Options. 41
DDXQDataSource Propertiesoiiii i 128
DDXQJDBCConnection Properties 136
Authentication Methods Supported by DataDirect XQuery 146
Kerberos Authentication Requirements 148
NTLM Authentication Requirements. 159
Data Encryption Methods Supported by DataDirect XQuery 164

EncryptionMethod Property and Microsoft SQL Server Configurations

Recognized Mime Types and Associated Encodings. 241
<request> Element cookie-policy Parameters. 243
Isolation Level Support. 273
Global Option Declarations 276
Relational Option Declarations 279
Database-Specific Option Declarations. 283
Extension EXPressionst e 287
Mapping Types Between Java and XQuery..................... 320
XQuery Expression Context 342
XQuery ProcessingModel. 345
Error Handling. e 345
XQuery Documents. e 346
XQUETIY TYPOS o oo ittt et e e e 346
Comments e e 347

DataDirect XQuery User’s Guide and Reference

20

List of Tables

Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.
Table A-17.
Table A-18.
Table A-19.
Table A-20.
Table A-21.
Table A-22.
Table A-23.

Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.

XQuery Primary EXpressions 348
XQuery Path EXpressions. 349
XQuery Sequence EXpressions. 350
XQuery Arithmetic Expressions. 350
XQuery Comparison EXpressions.cuuiiiiinnnnnnn.. 351
XQuery Logical EXpressions.t 351
XQuery Constructorsot e 352
XQuery FLWOR EXPressionsouun i 353
XQuery Ordered and Unordered Expressions 353
XQuery Conditional EXpressions., 354
XQuery Quantified Expressions, 354
XQuery Expressions on Sequence Types.ovviunnne... 355
XQuery Validate Expressionsc .. 356
XQuery Extension EXpressionsc..iiirinenninea... 356
XQuery Modulesand Prologs 357
XQuery Optional Features 358
Predefined Namespaceso .. 360
XQuery Accessor Functions 362
XQuery Error Function. e 363
XQuery Trace Function i 363
XQuery Constructor Functions for XML Schema Built-In Types 364
A Special Constructor Function for xs:dateTime 366
XQuery Operators on NumericValues. 367
XQuery Comparison Operators on Numeric Values 368
XQuery Functions on NumericValues 368
XQuery Functions to Assemble and Disassemble Strings 369

DataDirect XQuery User’s Guide and Reference

Table B-10.
Table B-11.
Table B-12.
Table B-13.
Table B-14.
Table B-15.
Table B-16.
Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.

379

Table B-23.

and time

Table B-24.
Table B-25.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.

cept

Table B-32.
Table B-33.
Table B-34.

List of Tables

XQuery Functions for Equality and Comparison of Strings 369
XQuery Functionson StringValues............ 370
XQuery Functions Based on Substring Matching 371
String Functions That Use Pattern Matching 372
XQuery anyURIFunctions. 372
XQuery Boolean Constructor Functions 373
XQuery Operators on Boolean Values. 373
XQuery Functionson BooleanValues 374
Functions on Duration, Date, and Time Data Types. 374
XQuery Comparisons of Duration, Date, and Time Values 375
XQuery Component Extraction Functions. 377
XQuery Arithmetic Operators on Durations 378

Functions for Timezone Adjustment on dateTime, date, and time Values

Operators for Adding and Subtracting Durations from dateTime, date,

.. 379
Constructor Functions for QNames 381
XQuery Operators and Functions Related to QNames............ 381
XQuery Comparisons of base64Binary and hexBinary Values 382
XQuery Operators on NOTATION 383
XQuery Functions and Operatorson Nodes 383
XQuery General Functions and Operators on Sequences. 384
XQuery Functions that Test Cardinality on Sequences............ 385
XQuery Functions and Operators on Equals, Union, Intersection, and Ex-
.. 385
XQuery Aggregate Functions. 386
XQuery Functions and Operators That Generate Sequences. 386
XQuery Context Functions 387

DataDirect XQuery User’s Guide and Reference

21

22

List of Tables

Table 12-6. Common Picture String Specifiers. 399
Table 12-7. ddtek:format-number Function Parameters 403
Table 12-8. Function Request Parameters............. 433
Table C-1. Predefined Namespaces, 437
Table D-1. Serialization Parameters 440
Table D-2. Formats Supported by the DataDirect XML Converters 442
Table 12-9. DataDirect XQuery Relational Database Support............... 445
Table E-1. DB2 Data TypesS ... v ii ettt et et 448
Table E-2. Informix Data Types. . . . oo v it e e 449
Table E-3. MySQL Enterprise Data Types.t 451
Table E-4. Oracle Data Typeso vttt et e e 452
Table E-5. PostgreSQL Data Typeso it 454
Table E-6. Microsoft SQL Server Data Types, 455
Table E-7. Sybase Data Typeso vt it i e 457
Table E-8. Predefined XQuery Atomic Types.ot 459
Table E-9. DB2 Connection Properties. 461
Table E-10. Informix Connection Properties 466
Table E-11. Microsoft SQL Server Connection Properties................... 468
Table E-12. MySQL Enterprise Connection Properties 470
Table E-13. Oracle Connection Properties. i, 472
Table E-14. Oracle Connection Property Mappings to tnsnames.ora Connect Descrip-
tor Parameters e 478
Table E-15. Sybase Connection Properties.c i, 481
Table 12-10. Ways to Query XML DataonDB2........... 484
Table F-1. Extensions to the Processing Model 502
Table F-2. ExtensionstotheProlog........... 503
Table F-3. Extensions to the StaticContext. 503

DataDirect XQuery User’s Guide and Reference

Table F-4.
Table F-5.
Table F-6.
Table G-1.
Table G-2.
Table G-3.
Table G-4.
Table G-5.
Table G-6.
Table G-7.
Table G-8.
Table G-9.

Table G-10.
Table G-11.
Table G-12.
Table G-13.
Table G-14.
Table G-15.
Table G-16.
Table G-17.
Table G-18.

Table I-1.

List of Tables

New Kinds of EXpressions., 504
Extensions to Built-in Function Library 505
Extensions to Built-in Function Library 505
XQConnection Method Summary 508
XQDataFactory Method Summary............. 510
XQDataSource Method Summary 513
XQDynamicContext Method Summary 514
XQExpression Method Summary 516
XQltem Method Summary 517
XQltemAccessor Method Summary 517
XQltemType Method Summary 519
XQMetaData Method Summary 521
XQPreparedExpression Method Summary 522
XQResultltem Method Summary 523
XQResultSequence Method Summary......................... 524
XQSequence Method Summary........... 524
XQSequenceType Method Summary........... 526
XQStaticContext Method Summary. 527
XQuery Types Supported for XQJ get Methods 533

XQJ bind Methods and Resulting XQuery Data Model Instances . . .534
Mapping XQuery Data Model Instances to Java Objects 536
DataDirect Spy Attributes. 557

DataDirect XQuery User’s Guide and Reference

23

24 List of Tables

DataDirect XQuery User’s Guide and Reference

25

Preface

This book is your guide and reference to DataDirect XQuery®
from DataDirect Technologies and describes how to use
DataDirect XQuery to access and update both XML and
relational sources, and to return XML results. This book provides
information about the following topics:

m Using DataDirect XQuery to query both XML and relational
sources, and return XML results

m Using DataDirect XQuery to update relational sources

m DataDirect XQuery support for XQuery and the XQuery API
for Java™ (XQJ)

m Examples and tutorials that show how you can use
DataDirect XQuery in your environment

m Using DataDirect Spy™ for XQJ, a tracing and logging utility for
troubleshooting

What Is DataDirect XQuery®?

DataDirect XQuery is an XQuery processor that enables
developers to access and query XML, relational data, SOAP
messages, EDI, or a combination of data sources, and, in
addition, provides full update support for relational data.
DataDirect XQuery supports the XQuery API for Java (XQJ) API,
and is easily embeddable into any Java program; it does not
require any other product or application server, and has no
server of its own. It is recommended for developers who need to
combine and efficiently process XML, relational, and legacy data
formats in application scenarios such as data integration,

DataDirect XQuery User’s Guide and Reference

26

Preface

XML-based data exchange, XML-driven web sites, and XML
publishing. DataDirect XQuery vastly simplifies and enhances the
performance of combining and processing different types of data
(relational, XML, EDI, and more) in heterogeneous environments
and, thus, enables developers to build and deploy
high-performance applications quickly and efficiently.

Using This Book

This book assumes that you are familiar with your operating
system and its commands; the concept of directories; the
management of user accounts and security access; and your
network configuration.

This book contains the following chapters:

m Chapter 1 “Quick Start” on page 35 provides basic
information for getting started with DataDirect XQuery
immediately after installation.

m Chapter 2 “Introduction” on page 47 introduces DataDirect
XQuery, XQuery, XQJ, and development tools. In addition, it
provides examples of XQuery and a Java application that uses
XQJ to execute a query.

m Chapter 3 “Tutorial: Using DataDirect XQuery®" on page 59
shows how to use DataDirect XQuery and XQJ in your Java
application to perform tasks that allow you to process queries
that access XML and relational data sources, and return XML
results.

m Chapter 4 “Tutorial: Using XQuery” on page 75 focuses on the
three major capabilities of XQuery that make it distinctive,
and which are fundamental to processing and creating XML:
path expressions, XML constructors, and FLWOR expressions.

DataDirect XQuery User’s Guide and Reference

Using This Book

Chapter 5 “Tutorial: The XQuery Update Facility” on
page 101 describes the XQuery Update Facility (XUF), an
extension of the XQuery language that allows making
changes to data that are manipulated inside the XQuery.

Chapter 6 “Understanding Data Sources and

Connections” on page 115 provides conceptual information
about DataDirect XQuery data sources and connections, and
instructions for configuring them.

Chapter 7 “Securing Data Source Connections” on page 145
describes how to implement supported authentication and
data encryption securing methods.

Chapter 8 “Improving Performance” on page 177 describes
information about performance that you should consider
when working with DataDirect XQuery.

Chapter 9 “Building a Web Service” on page 201 describes
how to expose your XQuery as a Web service.

Chapter 10 “Building a Web Service Client” on page 229
describes how to use DataDirect XQuery built-in HTTP
functions to build a Web service client.

Chapter 11 “Support for Relational Databases” on page 251

explains DataDirect XQuery's support of relational databases.
Specifically, it describes support of XML-typed data and how
DataDirect XQuery generates SQL.

Chapter 12 “Using Advanced Features” on page 275 provides
information about the following advanced features: option
declarations, extension expressions, URI resolvers, and
collations.

Appendix A “XQuery Support” on page 339 describes how
DataDirect XQuery supports XQuery 1.0 and 1.1 expressions.

Appendix B “Functions and Operators” on page 361
describes how DataDirect XQuery supports XQuery functions
and operators.

DataDirect XQuery User’s Guide and Reference

27

28

Preface

m Appendix C “Built-in Functions and Options” on page 389
describes built-in DataDirect XQuery functions and options
and how to use them to process XQuery results.

m Appendix E “Database Support” on page 445 describes the
relational databases that DataDirect XQuery supports,
including XML type mappings for relational data and
supported connection properties.

m Appendix F, “XUF Support” on page 501 describes how
DataDirect XQuery supports the XQuery Update Facility (XUF)
expressions, functions, optional feature. It also describes
built-in DataDirect XQuery functions that support XUF.

m Appendix G “XQJ Support” on page 507 describes how
DataDirect XQuery supports XQJ classes, interfaces, and
methods. It also describes serialization, multi-threading,
accessing XML results, and mapping data types.

m Appendix H “Examples” on page 539 explains the example
Java applications that are shipped with DataDirect XQuery
and provides instructions for setting up and running them.

m Appendix | “Troubleshooting” on page 553 provides valuable
DataDirect XQuery troubleshooting information, including
how to use DataDirect Spy, a development tool for tracking
XQJ calls.

NOTE: This book refers the reader to Web pages for more
information about specific topics, including Web pages that are
not maintained by DataDirect Technologies. Because it is the
nature of Web content to change frequently, DataDirect
Technologies can guarantee only that the URLs referenced in this
book were correct at the time the book was produced.

DataDirect XQuery User’s Guide and Reference

About the Product Documentation 29

About the Product Documentation

The DataDirect XQuery library consists of the following books:

m DataDirect XQuery Installation Guide describes the
requirements and procedures for installing DataDirect
XQuery.

m DataDirect XQuery User’s Guide and Reference provides
information about using DataDirect XQuery to access both
XML and relational sources.

Both of these books are available in HTML and PDF format. By
default, the HTML version is installed during a normal
installation of DataDirect XQuery. The PDF version is an optional
installation. If you choose to install the PDF version, the books
are installed in the books/ddxquery subdirectory of the
DataDirect XQuery installation directory.

HTML Version

Both of the DataDirect XQuery books are placed on your system
as HTML-based online Help during a normal installation of the
product. The Help system is located in the /help subdirectory of
the product installation directory. To use the Help, you must
have one of the following browsers installed:

m Internet Explorer 5.x or higher
m Netscape 4.x, 6.1, or higher
m FireFox 1.0 or higher

You can access the Help system by navigating to the /help
subdirectory of the product installation directory and opening
the following file from within your browser:

install _dir/hel p/hel p.htm

DataDirect XQuery User’s Guide and Reference

30

Preface

whereinstall _dir is the path to your product installation
directory.

After the browser opens, the left pane displays the Table of
Contents, Index, and Search tabs for the entire documentation
library. When you have opened the main screen of the Help
system in your browser, you can bookmark it in the browser for
quick access later.

NOTE: Security features set in your browser can prevent the Help
system from launching. In this case, a security warning message is
displayed. Often, the warning message provides instructions for
unblocking the Help system for the current session. To allow the
Help system to launch without encountering a security warning
message, you can modify the security settings in your browser.
Check with your system administrator before disabling any
security features.

PDF Version

DataDirect product documentation is also provided in PDF
format, which allows you to view it, perform text searches, and
print it. You can view the PDF documentation using Adobe
Reader. The PDF documentation is available on the product CD, as
a product installation component, and also on the DataDirect
Technologies Web site:

http://www.datadirect.com/techres/xqueryproddoc/index.ssp

You can download the entire DataDirect XQuery library as a
compressed file. When you uncompress the file, the library
appears in the correct directory structure.

DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xqueryproddoc/index.ssp

Typographical Conventions 31

If you want to copy the documentation library from the product
CD, you must maintain the directory structure that is on the CD.

m To copy all product books, copy the entire \books directory to
your local or network drive.

m To copy a specific set of books, copy that book set’s directory
structure (beneath the \books directory) to your local or
network drive. For example, in the case of:

\ books\ product _name

you would copy the entire \product _nane directory.

Maintaining the correct directory structure allows cross-book
text searches and cross-references. If you download or copy the
books individually outside of their normal directory structure,
their cross-book search indexes and hyperlinked cross-references
to other books will not work. You can view a book individually,
but it will not automatically open other books to which it has
cross-references.

To help you navigate the library, a file named books.pdf is
provided. This file lists each online book provided for the
product. We recommend that you open this file first and, from
this file, open the book you want to view.

Typographical Conventions

This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms with which you may not be
familiar, and is used occasionally for emphasis.

bold Emphasizes important information. Also indicates
button, menu, and icon names on which you can
act. For example, click Next.

DataDirect XQuery User’s Guide and Reference

32

Preface

Convention
UPPERCASE

nmonospace

monospaced
italics

forward slash /

vertical rule |

brackets []

braces {}

ellipsis . . .

[r1

Explanation

Indicates the name of a file. For operating
environments that use case-sensitive file names, the
correct capitalization is used in information specific
to those environments.

Also indicates keys or key combinations that you
can use. For example, press the ENTER key.

Indicates syntax examples, values that you specify,
or results that you receive.

Indicates names that are placeholders for values
that you specify. For example, fi | enane.

Separates menus and their associated commands.
For example, Select File / Copy means that you
should select Copy from the File menu.

The slash also separates directory levels when
specifying locations under UNIX and Linux.

Indicates an "OR" separator used to delineate
items.

Indicates optional items. For example, in the
following statement: SELECT [DISTINCT], DISTINCT
is an optional keyword.

Also indicates sections of the Windows Registry.

Indicates that you must select one item. For
example, {yes | no} means that you must specify
either yes or no.

Indicates that the immediately preceding item can
be repeated any number of times in succession. An
ellipsis following a closing bracket indicates that all
information in that unit can be repeated.

Identifies a feature or functionality that is
supported only for XQuery 1.1.

DataDirect XQuery User’s Guide and Reference

Contacting Technical Support

Contacting Technical Support

DataDirect Technologies offers a variety of options to meet your
technical support needs. Please visit our Web site for more
details and for contact information:

http://support.datadirect.com

The DataDirect Technologies Web site provides the latest
support information through our global service network. The
SupportLink program provides access to support contact details,
tools, patches, and valuable information, including a list of FAQs
for each product. In addition, you can search our
Knowledgebase for technical bulletins and other information.

To obtain technical support for an evaluation copy of the
product, go to:

http://www.datadirect.com/support/eval_help/index.ssp
or contact your sales representative.

When you contact us for assistance, please provide the following
information:

m The serial number that corresponds to the product for which
you are seeking support, or a case number if you have been
provided one for your issue. If you do not have a SupportLink
contract, the SupportLink representative assisting you will
connect you with our Sales team.

= Your name, phone number, email address, and organization.
For a first-time call, you may be asked for full customer
information, including location.

m The DataDirect product and the version that you are using.

m The type and version of the operating system where you
have installed your DataDirect product.

DataDirect XQuery User’s Guide and Reference

33

http://support.datadirect.com
http://www.datadirect.com/support/eval_help/index.ssp

34

Preface

Any database, database version, third-party software, or
other environment information required to understand the
problem.

A brief description of the problem, including, but not limited
to, any error messages you have received, what steps you
followed prior to the initial occurrence of the problem, any
trace logs capturing the issue, and so on. Depending on the
complexity of the problem, you may be asked to submit an
example or reproducible application so that the issue can be
recreated.

A description of what you have attempted to resolve the
issue. If you have researched your issue on Web search
engines, our Knowledgebase, or have tested additional
configurations, applications, or other vendor products, you
will want to carefully note everything you have already
attempted.

A simple assessment of how the severity of the issue is
impacting your organization.

DataDirect XQuery User’s Guide and Reference

1 Quick Start

This quick start provides basic information for getting started
with DataDirect XQuery immediately after installation. It covers
the following topics:

m "Getting Started with DataDirect XQuery"
m "Using the Command Line Utility"

m "Additional Resources"

Getting Started with DataDirect XQuery

This section shows you how to get up and running with
DataDirect XQuery. It covers the following topics:

"1. Setting the CLASSPATH"
"2. Configuring Connections"
"3. Developing a Java Application that Executes a Query"

1. Setting the CLASSPATH

The CLASSPATH is the search string your Java Virtual Machine
(JVM) uses to locate DataDirect XQuery on your computer. Only
one DataDirect XQuery jar file, ddxq.jar, must be defined in your
CLASSPATH. If ddxg.jar is not defined in your CLASSPATH, you
receive a O assNot FoundExcepti on exception when trying to use
DataDirect XQuery.

DataDirect XQuery User’s Guide and Reference

36

Chapter 1 Quick Start

Set your CLASSPATH to include:
install _dir/lib/ddxq.jar

whereinstal |l _dir is the path to your DataDirect XQuery
installation directory.

NOTE: If you are connecting to PostgreSQL, you must also add the
PostgreSQL JDBC driver jar file to the CLASSPATH. Refer to your
PostgreSQL JDBC driver documentation for the name of the jar
file.

2. Configuring Connections

DataDirect XQuery provides multiple ways to configure
connections to XML data sources and relational data sources (see
“Choosing a Connection Method” on page 123). This section
shows how to use XQJ to create a DDXQDataSource instance in
your Java application explicitly.

XML Data Source Connections

If your Java application contains queries that access an XML file,
you can directly access the file as shown in the following XQJ
code example, where the location and name of the XML file is
specified as a parameter of fn:doc(), an XQuery function.

DDXQDat aSour ce ds = new DDXQDat aSour ce();
XQConnection conn = ds. get Connecti on();
conn. cr eat eExpressi on() . execut eQuery("doc(' path_and filenane')");

Relational Data Source Connections

How you configure connection information for relational
databases using XQJ depends on whether you are accessing a
single database or multiple databases. This section shows how to
configure connection information to access a single database.

DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start

(For information about accessing multiple databases, see
“Configuring Connections Explicitly” on page 123.)

To configure a single relational data source connection, use the
DDXQDataSource class as shown in the following XQJ code
example. This example specifies a connection URI (represented
by "URL") for the relational data source that you want to access
and the user ID and password required to access the relational
data source.

DDXQDat aSour ce ds = new DDXQDat aSour ce();
ds. set JdbcUr! (" URL");
XQConnection conn = ds. get Connecti on("nyuserid","nmypswd");

The format of the connection URL depends on whether you are
using a built-in JDBC driver or a third-party driver, and the
database you are connecting to. See “Specifying Connection
URIs"” on page 141 for details.

See “Sample Connection URIs” on page 37 for examples of the
minimum information, including any required connection
properties, that you must specify in a connection URL.

Sample Connection URIs

The following URIs are examples of the minimum information
that must be specified in a connection URI.

DB2 for Linux/UNIX/Windows
j dbc: xquery: db2: // server_name: 50000; dat abaseName=your _dat abase

DB2 for z/OS and iSeries

j dbc: xquery: db2: //server _name: 446; | ocat i onName=db2_| ocati on

Informix

j dbc: xquery:informx://server_nane; 1526; | nf or ni xSer ver =dbser ver _nane

DataDirect XQuery User’s Guide and Reference

38

Chapter 1 Quick Start

j dbc

j dbc

j dbc

j dbc

j dbc

Microsoft SQL Server
:xquery: sql server://server_name: 1433
MySQL Enterprise
»xquery: nysql://server_nanme
Oracle
:xquery: oracl e://server_nane: 1521
PostgreSQL
. postgresql : your _dat abase

Sybase

:Xquery: sybase:// server _nane: 5000

3. Developing a Java Application that
Executes a Query

Using DataDirect XQuery, a Java application uses XQJ to execute
a query. The Java package name of the XQJ classes is:

javax.xml.xquery

The Java class name of the DataDirect XQuery implementation of
the XQJ standard interface, XQDataSource, is:

com.ddtek.xquery.xqj.DDXQDataSource

The following sample Java code illustrates the basic steps that an
application would perform to execute an XQuery expression
using DataDirect XQuery. This example accesses a Microsoft

SQL Server data source. To simplify the example, this code does
not include error handling.

DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start

Il inmport the XQ classes
inport javax.xm .xquery.*;
i nport com ddt ek. xquery. xqj . DDXQDat aSour ce;

/1 establish a connection to a relational data source

/1 specify the URL and the user |ID and password

DDXQDat aSour ce ds = new DDXQDat aSour ce();

ds. set JdbcUr I ("j dbc: xquery: sql server://server1: 1433; dat abaseName=st ocks");
XQConnection conn = ds. get Connection("nyuserid", "mypswd");

Il create an expression object that is used to execute a query

XQExpressi on xgExpression = conn. creat eExpressi on();

/1 the query

String es = "for $h in collection('holdings')/holdings " +
"where $h/stockticker="AMEN " +
"return $h";

Il execute the query
XQResul t Sequence result = xqExpressi on. execut eQuery(es);
result.witeSequence(Systemout, null);

Il free all resources
result.close();
X(Expr essi on. cl ose();
conn. cl ose();

NOTE: XQJ examples are shipped with the product and are
located in the /examples subdirectory in the DataDirect XQuery
installation directory.

DataDirect XQuery User’s Guide and Reference

39

40 Chapter 1 Quick Start

Using the Command Line Utility

The DataDirect XQuery command line utility allows you to
quickly run and test XQueries through a console window.

To invoke this utility, enter the following command at a prompt
from the /lib subdirectory of your DataDirect XQuery installation
directory (for example, ddxqg/lib):

java -jar ddxg.jar

Alternatively, you can specify the path to the lib directory in the
command line, for example:

java -jar ddxg/lib/ddxqg.jar

NOTE: If your XQuery needs to locate classes other than the
DataDirect XQuery classes — if you are specifying a custom URI
resolver, for example — you must perform one of the following
actions:

m Set your CLASSPATH to include the path to the jar files or
directories for these classes and invoke the utility using the
following command:

java com ddt ek. xquery. Query

NOTE: If you are connecting to PostgreSQL, you must add the
PostgreSQL JDBC driver jar file to the CLASSPATH in addition
to ddxq.jar. Refer to your PostgreSQL JDBC driver
documentation for the name of the jar file.

m Add the class path to the command line:
java -cp c:\nyC asses com ddt ek. xquery. Query
See Example 8.

NOTE: If you are connecting to PostgreSQL, you must add the
PostgreSQL JDBC driver jar file to the CLASSPATH in addition

DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start

to ddxq.jar. Refer to your PostgreSQL JDBC driver
documentation for the name of the jar file.

The following table lists the options available for the utility.

Table 1-1. Command Line Utility Options

Option
-cr classnane

-e [xhtm | xm]

-jdbc jdbcurl

-nt cl assnane

- noext
-0 filename

Description

Specifies the CollectionURIResolver class to
use. See “Collection URI Resolvers” on
page 298. See the NOTE on page 40 about
setting your CLASSPATH for custom URI
resolvers.

Generates an XQuery execution plan and,
optionally, specifies the format of the plan.
If a format is not specified, XHTML is
generated. See “Generating XQuery
Execution Plans” on page 307 for an
explanation of execution plans.

Specifies a connection URI. See “Relational
Data Source Connections” on page 36.

NOTE: On UNIX and Linux, the value for
this option must be enclosed with double
qguotes, for example:

java -jar ddxg.jar -jdbc
"jdbc: xquery: sql server://1ocal host: 1433
; dat abaseName=pubs; user =sa"

Specifies the ModuleURIResolver class to
use. See “Library Module URI Resolvers” on
page 296. See the NOTE on page 40 about
setting your CLASSPATH for custom URI
resolvers.

Disallows calls to Java methods.
Sends results (output) to specified file.

DataDirect XQuery User’s Guide and Reference

41

Chapter 1 Quick Start

Table 1-1. Command Line Utility Options

Option

-option
property=val ue

-prop
property=val ue

-p

-r cl assnane

-s file|l URI
-1

-u
-version
-?

par ameval ue

#par amrval ue

Description

Specifies XQuery or JDBC global options.
See “Using Option Declarations and
Extension Expressions” on page 275 for
more information.

Specifies data source and connection
options. See “DDXQDataSource and
DDXQJDBCConnection Properties” on
page 128 for more information.

Displays a stack trace in case of an
exception.

Specifies the URIResolver class to use. See
“Document URI Resolvers” on page 295.
See the NOTE on page 40 about setting
your CLASSPATH for custom URI resolvers.

Specifies an initial context item in the form
of a file name or a URI.

Displays version and timing information.

Enables automatic updating of sources.
See “Updating Data Sources” on page 112
for more information.

Display version information.

Displays the help for the command-line
utility.

Specifies a query string parameter and its
value.

Specifies a query number parameter and
its value. On UNIX and Linux, the value for
this option must be enclosed with double
quotes, for example:

java -jar ddxg.jar q.xq "#i=2"

DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start

Table 1-1. Command Line Utility Options

Option Description

+par amrval ue Specifies a query document parameter and
its value.

'option=val ue Specifies a serialization option and its

value. See “Serialization Support” on
page 439 for a list of serialization options.

Example 1: Executes a Simple XQuery

This example executes the simple query {2+5}.

java -jar ddxq.jar {2+5}

Example 2: Retrieves Values from an Initial Context Item

This example retrieves all values for Userld from the initial
context item users.xml.

java -jar ddxg.jar -s ..\..\exanpl es\xm \users. xm
{/1users/ Userld}

Example 3: Retrieves Values and Writes Them to a File

This example retrieves all values for Userld and writes the results
to a file named out.xml.

java -jar ddxg.jar -o out.xm
{doc("'..\..\exanpl es\ xm \users.xm ")/ users/ Userld}

Example 4: Executes an XQuery in a File

This example executes the XQuery contained in the file
myXQuery.xq using the initial context item input.xml.

java -jar ddxg.jar -s input.xm nyXQuery.xq

DataDirect XQuery User’s Guide and Reference

43

44

Chapter 1 Quick Start

Example 5: Binds a Query Document Parameter

This example executes the XQuery contained in the file
myXQuery.xq binding the query document parameter inputDoc
to the input.xml document.

java -jar ddxq.jar myXQuery.xq +i nput Doc=i nput.xm
Example 6: Binds a Query String Parameter and Sets an Option

This example executes the XQuery contained in the file
myXQuery.xq binding the query string parameter param1 to the
character string Jonathan and setting the serialization option
indent to yes so that results are indented.

java -jar ddxqg.jar nmyXQuery.xq parani=Jonathan !indent=yes
Example 7: Accesses a Relational Data Source

This example executes the XQuery contained in the file
myXQuery2.xq that accesses a relational data source. See the
NOTE about specifying connection URLs.

java -jar ddxg.jar -jdbc
"jdbc: xquery: sql server://1ocal host: 1433; dat abaseNane=pubs;
user=sa" nyXQuery2.xq

Example 8: Specifies a Document URI

This example retrieves all values for Userld, specifies a document
URI, and writes the results to a file named out.xml.

java -cp c:\nyd asses com ddt ek. xquery. Query
-r nyURI Resol ver -0 out.xm {doc('users.xm")/users/Userld}

DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start

Additional Resources

In addition to this quick start, you might find these resources
useful:

For complete information about the many DataDirect
XQuery features, read the other chapterstopics in this
bookhelp.

For information about product requirements, refer to
"System and Product Requirements" in the DataDirect
XQuery Installation Guide.

For information about getting started with the examples
shipped with DataDirect XQuery, see Appendix H “Examples
on page 539.

"

For information about using the DataDirect XML Converters
and Stylus Studio, refer to:
http://www.datadirect.com/products/data-integration/index.s

sp

DataDirect XQuery User’s Guide and Reference

45

http://www.datadirect.com/products/data-integration/index.ssp

46 Chapter 1 Quick Start

DataDirect XQuery User’s Guide and Reference

47

2 Introduction

This chapter introduces DataDirect XQuery, XQuery, XQJ, and
associated development tools. In addition, it provides examples
of queries and a Java application that uses XQJ to execute a

query.

What Is DataDirect XQuery®?

DataDirect XQuery® is an XQuery processor that enables
developers to access and query XML, relational data, SOAP
messages, EDI, or a combination of data sources, and, in
addition, provides full update support for relational data.
DataDirect XQuery supports the XQuery for Java™ (XQJ) API, and
is easily embeddable into any Java program; it does not require
any other product or application server, and has no server of its
own. It is recommended for developers who need to combine
and efficiently process XML, relational, and legacy data formats
in application scenarios such as data integration, XML-based
data exchange, XML-driven web sites, and XML publishing.
DataDirect XQuery vastly simplifies and enhances the
performance of combining and processing different types of
data (relational, XML, legacy, EDI, and more) in heterogeneous
environments and, thus, enables developers to build and deploy
high-performance applications quickly and efficiently.

See Chapter 3 “Tutorial: Using DataDirect XQuery®" on page 59
for a tutorial that shows how to use DataDirect XQuery and XQJ
in your Java application. This tutorial explains tasks that allow
you to process queries that access XML and relational data
sources, and return XML results.

DataDirect XQuery User’s Guide and Reference

48

Chapter 2 Introduction

What Is XQuery?

XQuery is a query language for XML. In the same way that SQL is
used to query relational tables, XQuery is used to query XML or
anything for which a logical XML view can be defined. Typically,
SQL queries create tables to represent the result of a query, and
XQuery queries create XML to represent the result of a query. The
resulting XML can be as complex as necessary. For example, the
result of a query may be a complex document such as an
inventory report, a document with dynamic content, or a SOAP
message. The result of an XQuery can also be as simple as a single
integer; for example, a query might count the number of items
that satisfy a condition. In this book, we use the term XML results
to refer to the results of any XQuery query.’

XQuery goes beyond the functionality of relational query
languages, and includes support for many features not found in
the SQL language. Just as SQL is a relational query language and
Java is an object-oriented language, XQuery is often thought of
as a native XML programming language. In XQuery, the only
complex data structure is XML, and the operations that are
regularly needed for processing XML are directly supported in a
convenient manner.

XQuery can easily search any XML structure with path
expressions, create any XML structure using constructors, and
transform XML structures using FLWOR expressions. In addition,
XQuery simplifies the tasks encountered when working with
namespaces or data types.

Because XML is used to represent and transfer data from a wide
variety of sources, XQuery is also widely used for data
integration. Even when data is not physically stored as XML,
XQuery can be used with any product that provides a processor
that creates a logical view of the data as XML. For instance, SOAP

1. In XQuery terminology, the results of a query is an instance of the
XQuery data model. We use the term "XML result" for simplicity.

DataDirect XQuery User’s Guide and Reference

What Is XQuery?

may be used to acquire data from a variety of sources, and
XQuery may be used to query the resulting SOAP messages (in
XML) together with data found in a relational database (using
an XML view).

The XQuery Standard

The XQuery standard is developed by the W3C®, a standards
body for the World Wide Web. You can learn more about their
work on XQuery here:

http://www.w3.org/XML/Query.html

As of January 2007, XQuery 1.0 is the recommended
specification of the W3C:

http://www.w3.org/TR/xquery/

In December 2008, the W3C published a working draft for the
next XQuery version, XQuery 1.1:

http://www.w3.org/TR/xquery-11/
Additional information about XQuery can be found at:

http://www.datadirect.com/products/data-integration/index.ssp
Support for the XQuery Standard

DataDirect XQuery supports both XQuery 1.0 and XQuery 1.1 as
described in Appendix A “XQuery Support” on page 339.

DataDirect XQuery User’s Guide and Reference

49

http://www.w3.org/XML/Query.html
http://www.datadirect.com/products/data-integration/index.ssp
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-11/

50

Chapter 2 Introduction

XQuery Examples

This section provides examples of queries — from simple to more
complex — to help you become familiar with XQuery.

NOTE: The XQuery examples shown in this section use the
database tables and XML files provided with the product in the
/examples subdirectory in your DataDirect XQuery installation
directory.

Example 1: Query Using a FLWOR Expression

The following simple query uses a FLWOR (For each, Let, Where,
Order by, Return) expression to return only the rows of the
holdings database table that contain a value of AMZN in the
stockticker column. In this query, col | ection(' hol di ngs') refers
to the holdings table in a relational database.

for $h in collection('holdings')/holdings
where $h/stockticker="AVZN
return $h

Result

The query returns $h directly, so it returns a sequence containing
an XML representation of each row.

<hol di ngs>
<useri d>Jonat han</ useri d>
<st ockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>

</ hol di ngs>

<hol di ngs>
<useri d>M nol | o</ useri d>
<st ockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>

</ hol di ngs>

See “Data Model Representation of Relational Tables” on
page 120 for more information about XML views of tables.

DataDirect XQuery User’s Guide and Reference

What Is XQuery?

Example 2: Creating a Specific XML Structure

In this example, the query returns the same data as Example 1,
but it uses an element constructor to create a different XML
structure.

for $h in collection('holdings')/holdings
where $h/stockticker="AVZN
return
<Amazon Cient="{$h/userid}" Shares="{$h/shares}" />

Result

The return clause creates an element named Amazon. It creates
two attributes, Client and Shares, which have the values of the
userid and shares columns from the relational table.

<Amazon dient="Jonat han" Shares="3000" />
<Amazon dient="Mnollo" Shares="3000" />

Example 3: Combining Data From XML and Relational Sources

Web messages, such as SOAP requests, are XML documents, and
they can parameterize or provide data for a query. The following
example joins an XML document named request.xml to two
relational database tables named holdings and statistical. The
request.xml file is joined to the holdings table by the Userld
element in the XML file and the userid column of the holdings
table. The two tables are joined by the ticker column of the
statistical table and the stockticker column of the holdings table.

et $request := doc('request.xm")/request
for $user in $request/performance/ Userld
return
<portfolio Userld="{$user}">
{$request}
{
for $st in collection('holdings')/holdings,
$stats in collection('statistical')/statistical
where $st/userid = $user
and $stats/ticker = $st/stockticker

DataDirect XQuery User’s Guide and Reference

51

52 Chapter 2 Introduction

return
<st ock>
{$st at s/ conpanynane}
{$st/stockticker}
{$st/ shares}
{$st at s/ annual r evenues}
</ st ock>

}

</portfolio>
Result

The result of this query is an element named portfolio. The first
child of this element contains the original request from
request.xml. Subsequently, the query provides the stock
information for a given user, obtained from two tables:

<portfolio Userld="Jonat han">
<request >
<per f or mance>
<User | d>Jonat han</ User | d>
<start>2003-01-01</start>
<end>2004- 06- 01</ end>
</ performance>
</request >
<st ock>
<conpanynanme>Anazon. com | nc. </ conpanynanme>
<stockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>
<annual r evenues>7780</ annual r evenues>
</ st ock>
<st ock>
<conpanyname>eBay | nc. </ conpanynane>
<stockti cker >EBAY</ st ockt i cker >
<shar es>4000</ shar es>
<annual r evenues>22600</ annual r evenues>
<[st ock>
<st ock>
<conpanyname>I nt'| Busi ness Machi nes C</ conpanyname>
<stockti cker >l BVk/ st ockt i cker >

DataDirect XQuery User’s Guide and Reference

What Is XQJ? 53

<shar es>2500</ shar es>
<annual r evenues>128200</ annual r evenues>

<[st ock>

<st ock>
<conpanyname>Pr ogr ess Sof t war e</ conpanynane>
<st ockti cker >PRGS</ st ockt i cker >
<shar es>23</ shar es>
<annual r evenues>493. 4</ annual r evenues>

<[st ock>

</portfolio>

Where to Learn More

See Chapter 4 “Tutorial: Using XQuery" on page 75 for a tutorial
that focuses on the following major capabilities of XQuery that
are fundamental to creating and processing XML:

m Path expressions, which can locate anything in an XML
document

m XML constructors, which can create XML documents

m FLWOR expressions (pronounced “flower expressions” and
means "for let where order by return"), which allow data to
be combined to create new XML structures

What Is XQJ?

The XQuery API for Java (XQJ) is a Java-based API that enables a
Java application to submit XQuery queries to an XML data
source and process the results. XQJ is designed to support the
XQuery language, just as the JDBC API supports the SQL query
language. The XQJ standard (JSR 225) is being developed under
the Java Community Process. For more information, refer to:
http://www.jcp.org/en/jsr/detail?id=225

DataDirect XQuery User’s Guide and Reference

http://www.jcp.org/en/jsr/detail?id=225

54

Chapter 2 Introduction

Java Example

The following example illustrates the basic steps that an
application performs to execute a query using DataDirect XQuery
and XQJ. To simplify the example, the code does not include error
handling. Multiple Java examples showing how to use XQJ are
shipped with the product and are located in the /examples
subdirectory in your DataDirect XQuery installation directory.

In this example, the application establishes a connection to a
relational database using a DDXQDataSource instance. See
“Configuring Connections Explicitly” on page 123 for more
information about using XQJ to specify connection information
for XML and relational data sources.

Example: Executing a Query

Il inmport the XQ classes
inport javax.xm .xquery.*;
i nport com ddt ek. xquery. xqj . DDXQDat aSour ce;

/1 establish a connection to a data source

DDXQat aSour ce ds = new DDXQDat aSour ce();

ds. setJdbcUr I ("j dbc: xquery: sql server://server1: 1433; dat abaseNane=st ocks") ;
XQConnection conn = ds. get Connecti on("nyuserid", "nypswd");

Il create an expression object that is used to execute a query
XQExpressi on expr = conn. creat eExpression();

/1 the query

String es = "for $h in collection('holdings')/holdings " +
"where $h/stockticker="AMZN " +
“return $h";

Il execute the query

XQResul t Sequence result = expr.executeQuery(es);
Systemout. println(result.getSequenceAsString(null));

DataDirect XQuery User’s Guide and Reference

DataDirect XQuery® Architecture

Il free all resources
result.close();

expr. close();
conn. cl ose();

DataDirect XQuery® Architecture

The following illustration provides a high-level architectural
overview of DataDirect XQuery.

Jvllnln Wab Sorvicn
Application Client Application
mr e -
XQuery l Il XML Resulis

DataDirect XQuery™

|
Aluary

When you execute a query using DataDirect XQuery, DataDirect
XQuery might processes the query in the following fashion:

1 A Java application passes a query to the DataDirect XQuery
implementation of XQJ.

2 The XQuery Engine analyzes the query and divides it into one
or multiple XQuery expressions to be processed by the
adaptors.

DataDirect XQuery User’s Guide and Reference

55

56

Chapter 2 Introduction

3 The XQuery Engine sends the query to the SQL adaptor or the
Streaming XML adaptor based on its analysis:

e |f a relational source is queried, the XQuery Engine sends
the query to the SQL Adaptor. The SQL Adaptor translates
the query into SQL, which is used to query the database.
The SQL Adaptor receives the results and maps them into
XML.

e |f an XML source is queried, the XQuery Engine sends the
query to the Streaming XML Adaptor, which executes the
query and returns XML results.

e |f aflat or EDI file is queried, the XQuery Engine sends the
qguery to the Streaming XML Adaptor, which relies on the
DataDirect XML Converters™ to retrieve an XML
representation of the flat or EDI file.

4 The adaptors send the XML results to the XQuery Engine. If
the XML results are obtained from more than one source, the
XQuery Engine combines the results.

5 The Java application receives results as XML, using XQJ.

Using DataDirect XML Converters™

DataDirect XML Converters are high-performance Java™ and
.NET components that provide bi-directional, programmatic
access to virtually any non-XML file including EDI, flat files, and
other legacy formats. DataDirect XQuery includes several built-in
functions that take advantage of the DataDirect XML Converters
engine to allow you to access as XML data stored in many
non-XML formats, including EDI messages, tab-delimited and
comma-separated text files, dBASE files, RTF files, and many
more.

DataDirect XQuery User’s Guide and Reference

Using Stylus Studio®

DataDirect XML Converters are installed along with
DataDirect XQuery and Stylus Studio as part of the
DataDirect Data Integration Suite. You can also download
the DataDirect XML Converters, including the
documentation and examples, here:
http://www.datadirect.com/products/data-integration/index.s

sp

Using Stylus Studio®

Stylus Studio® is an advanced XML Integrated Development
Environment (XML IDE) consisting of hundreds of powerful XML
tools in one all-inclusive suite. Among others, Stylus Studio
includes for working with XQuery, XSLT, Web services, XML
Pipelines, and XML reports.

The Stylus Studio XQuery editor and XQuery mapper provide
integrated support for developing XQuery applications that
are powered by DataDirect XQuery. The integration is
seamless— simply write your code using Stylus Studio's
productive XQuery tools as you would normally do. To learn
more about Stylus Studio, refer to:
http://www.datadirect.com/products/data-integration/index.s

sp

DataDirect XQuery User’s Guide and Reference

57

http://www.datadirect.com/products/data-integration/index.ssp
http://www.datadirect.com/products/data-integration/index.ssp

58 Chapter 2 Introduction

DataDirect XQuery User’s Guide and Reference

3 Tutorial: Using DataDirect
XQuery®

This tutorial shows how to use DataDirect XQuery and XQJ in
your Java application to perform tasks that allow you to process
queries that access XML and relational data sources, and return
XML results. Topics covered in this tutorial include:

m Specifying the XQuery Version

m Configuring Connections

m Executing Queries

m Querying Data from XML Files or DOM Trees

m Joining Data from XML and Relational Sources
m Returning Results with Java XML APIs

m Preparing XQuery Statements

m Updating Data in Relational Databases

This tutorial uses the database tables and XML files provided
with the product in the /examples subdirectory in the DataDirect
XQuery installation directory.

In addition to this tutorial, DataDirect XQuery is shipped with
examples that demonstrate other methods of coding the
functionality shown in this tutorial and other DataDirect XQuery
functionality. These examples are located in the /examples
subdirectory in the DataDirect XQuery installation directory and
explanation of the examples can be found in Appendix H
“Examples” on page 539.

DataDirect XQuery User’s Guide and Reference

60 Chapter 3 Tutorial: Using DataDirect XQuery®

Specifying the XQuery Version

DataDirect XQuery supports both XQuery 1.0 and XQuery 1.1.
You can use a version declaration to indicate whether you want
your XQuery code processed using DataDirect’s XQuery 1.0 or
XQuery 1.1 processing engine. Unless a version is specified
explicitly, XQuery code is processed using the XQuery 1.1
processing engine.

Where to Specify Version

You can specify the XQuery version in two places:

m In the main query, using query prolog. Setting the XQuery
version in the query prolog affects processing for the entire
query, unless a different version has been set for an individual
module.

m In one or more modules. Each module can have its own
version setting. A module retains its version setting when it is
imported.

When to Specify Version

Generally speaking, there is no need to specify the XQuery
version because XQuery 1.1 is backwards-compatible with
XQuery 1.0.

However, if you write modules that use XQuery 1.1 functionality —
to use FLWOR expressions for grouping, for example — consider
specifying the version explicitly within that module. Knowing the
XQuery version associated with a module can be useful to others
who import modules into their XQuery code.

DataDirect XQuery User’s Guide and Reference

Configuring Connections

If DataDirect XQuery encounters a module with an XQuery 1.0
declaration in the context of a main module whose version is
declared (explicitly or not) as 1.1, DataDirect XQuery uses its
XQuery 1.0 processor for that module and then reverts to using
the 1.1 XQuery processor for the remainder of the query.

How to Specify Version

The syntax for the version declaration is:

xquery version "[1.0 | 1.1]";

Configuring Connections

DataDirect XQuery uses fn:collection() to access relational data.
DataDirect XQuery uses XQJ to specify the required database
connections and associate the names specified by fn:collection()
with the database tables.

Using XQJ, you create a connection from an XQDataSource
instance. The fully qualified class name of the DataDirect XQuery
XQDataSource implementation is:

com.ddtek.xquery.xqj.DDXQDataSource

The following class provides additional properties for
configuring connections to multiple databases:

com.ddtek.xquery.xqj.DDXQJDBCConnection

DataDirect XQuery User’s Guide and Reference

61

62

Chapter 3 Tutorial: Using DataDirect XQuery®

Specifying Connection Information

You can specify connection information to relational data sources
using either of the methods shown in the following examples.

Example 1: Using a DDXQDataSource Instance to Specify
Connection Information Explicitly

DDXQDat aSour ce ds = new DDXQDat aSour ce();
ds. set JdbcUr | ("] dbc: xquery: sql server://server1: 1433; dat abaseName=st ocks");

Example 2: Using the Java Naming and Directory Interface (JNDI)

Context ctx = new Initial Context();
DDXQDat aSour ce ds = (DDXQDat aSour ce) ct x. | ookup("hol di ngs_ds");
XQConnection conn = ds. get Connection("nyuserid", "mypswd");

See the JNDIDataSource example for a complete code sample of
how to save and load a DataDirect XQuery DDXQDataSource
using a JNDI provider.

After specifying connection information using with either
DDXQDataSource or JNDI, the getConnection() method can be
invoked to return an XQJ connection to the database and,
optionally, specify the user name and password for the
connection:

XQConnection conn = ds. get Connecti on("nyuserid", "nmypswd");

Executing Queries

Next, we create an XQExpression object, which executes an
XQuery expression that is read from a file and returns a sequence
of results.

First, here is the XQuery expression, flwor.xq:

for $u in fn:collection('users')/users

DataDirect XQuery User’s Guide and Reference

Executing Queries

return
<user >
<name>{
$u/ firstname
$u/ | ast name
} </ name>
{
for $h in collection('holdings')/holdings
where $h/userid = $u/userid
return
<st ock>{
$h/ st ockt i cker
$h/ shares
} <l st ock>
} <l user>

An XQConnection can create an XQExpression:

XQExpr essi on xqExpression = conn. creat eExpression();
Fi | eReader fil eReader = new Fil eReader ("flwor.xq");
XQ@equence xqSequence = xgExpressi on. execut eQuery(fil eReader);

Now that the query results are in a sequence, you can serialize
this sequence using the getSequenceAsString() method.
(Serializing is just one way to handle an XQuery result.)

System out . println(xgSequence. get SequenceAsString());

The following result sequence contains a single node, the user
element (whitespace has been modified for readability).

<user >

<name>
<firstname>Jonat han</firstnane>
<| ast nane>Robi e</ | ast name>

</ name>

<st ock>
<stockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>

<[st ock>

<st ock>
<st ockti cker >EBAY</ st ockt i cker >

DataDirect XQuery User’s Guide and Reference

63

64 Chapter 3 Tutorial: Using DataDirect XQuery®

<shar es>4000</ shar es>

</ st ock>

<st ock>
<stockti cker >l BVk/ st ockt i cker >
<shar es>2500</ shar es>

<[st ock>

</ user >

Other similar examples can be found in the XQJExecute example.

DataDirect XQuery User’s Guide and Reference

Querying Data from XML Files or DOM Trees

Querying Data from XML Files or DOM Trees

In the previous section, we queried data in a relational database.
Now let's query an XML file.

Querying an XML File

Suppose you want to query holdings for a specific customer
identified by the userid element in a file named holdings.xml,
which looks like this:

<hol di ngs>
<r ow>
<useri d>Jonat han</ useri d>
<st ockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>
</ row>
<r ow>
<useri d>M nol | o</ useri d>
<stockti cker >EBAY</ st ockt i cker >
<shar es>4000</ shar es>
</row>
</ hol di ngs>

Here's an XQuery expression that returns holdings for a
customer named Jonathan:

doc("hol di ngs. xm ")/ hol di ngs/row useri d="Jonat han"]

Suppose we wanted to return holdings for other customers. If
you write an XQuery with an external variable that provides the
name of the customer whose holdings you require, the Java
application can specify the name of the customer before it
executes the query. If you use another external variable to

DataDirect XQuery User’s Guide and Reference

65

66

Chapter 3 Tutorial: Using DataDirect XQuery®

represent the document, the Java application can pass any
document to the query at runtime. For example:

declare variable $u as xs:string external;
declare variable $d as docunent-node(el enent (*, xs:untyped)) external;
$d/ hol di ngs/ r owf useri d=3$u]

Querying a DOM

Now, let's write Java code to create a DOM tree and bind it to the
variable $d. Use the following code to create a DOM tree.

Docunent Bui | der Factory factory = Document Bui | der Fact ory. newl nst ance();
factory. set NamespaceAwar e(true);

Documnent Bui | der parser = factory. newDocument Bui | der ();
File xmFile = new File("holdings.xm");
Document document = parser.parse(xmFile);

Once you create a DOM tree, you can use XQJ to bind the DOM
tree to a variable and query it. First, you create an expression
object, and then bind the document to the variable $d for this
expression.

XQConnection conn = ds. get Connecti on();
XQExpr essi on xqExpression = conn. creat eExpression();
XqExpr essi on. bi ndNode(new QName("d"), document);

Now, execute the expression and output the result:

Fi | eReader fil eReader = new Fil eReader ("flwor.xq");

XQ@equence xqSequence = xgExpressi on. execut eQuery(fil eReader);
System out . println(xgSequence. get SequenceAsString());

Other similar examples can be found in the ExternalVariables
example.

DataDirect XQuery User’s Guide and Reference

Joining Data from XML and Relational Sources

Querying a Directory

You can also query XML files in a directory. See “Querying
Multiple Files in a Directory” on page 288 for information about
this feature. An example can be found in the XMLQuery
example.

Joining Data from XML and Relational Sources

<request >

<per f or mance>

This tutorial has already explored how XQJ allows XQuery to
operate on relational and XML file data stores. Now let's
leverage that functionality to query both types of data stores at
the same time using a single query.

In this example, we use a Web Service request to provide
parameters for the query, and then query a database to create
the Web Service response. The Web Service request looks like
this:

<User | d>Jonat han</ User | d>
<start>2003-01-01</start>
<end>2003- 01- 01</ end>

</ performance>

</ request >

This request contains only the SOAP message payload. (To
simplify the example, the envelope has been omitted.) This
request asks for performance data on a user's portfolio within a
specific date range.

Now we can compose a query that uses the parameters from the
request to create a performance report, which will report the
performance of each stock held by each user during the given
range.

DataDirect XQuery User’s Guide and Reference

67

Chapter 3 Tutorial: Using DataDirect XQuery®

et $request := doc("request.xm ")/request
for $user in $request/performance
return

<portfolio UserlD="{$user/ Userld}">
{ $request }
{

for $h in collection("holdings")/holdings
where $h/userid = $user/Userld
return

<st ock>

{
$h/ st ockt i cker,

$h/ shar es
}

</ st ock>

}

</portfolio>
First, establish a connection to the data source.
XQConnection conn = ds. get Connection();

Create an XQExpression object that executes the XQuery
expression and returns a sequence of results.

Fi | eReader fileReader = new Fil eReader ("flwor.xq");
XQExpr essi on xgExpression = conn. creat eExpression();
X@equence xgSequence = xgExpressi on. executeQuery(fil eReader);

With the query results in a sequence, serialize this sequence using
the getSequenceAsString() method.

System out . println(xgSequence. get SequenceAsString());

The result looks like this (whitespace has been modified for
readability):

<portfolio UserlD="Jonat han">
<request >
<perf or nance>
<User | d>Jonat han</ User | d>
<start>2003-01-01</start>

DataDirect XQuery User’s Guide and Reference

Returning Results with Java XML APIs 69

<end>2004- 06- 01</ end>

</ per f or mance>

</request >

<stock>
<stockti cker >PRGS</ st ockt i cker >
<shar es>23</ shar es>

</ st ock>

<st ock>
<stockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>

<[st ock>

<st ock>
<st ockti cker >EBAY</ st ockt i cker >
<shar es>4000</ shar es>

<[st ock>

<stock>
<stockti cker >l BVk/ st ockti cker >
<shar es>2500</ shar es>
<shar es>2500</ shar es>

</ st ock>

</portfolio>

Other similar examples can be found in the XQJExecute example.

Returning Results with Java XML APIs

Often, applications need to retrieve XQuery results as DOM,
SAX, or StAX. XQSequence, as shown previously in this tutorial,
allows access to the result as a direct mapping of the XQuery
sequence. Within an XQSequence, XQltem objects represent
each item in an XQuery sequence.

NOTE: Instantiating each item in an XQltem object affects
performance because it requires the processing to create
multiple objects. Use XQltem object judiciously.

DataDirect XQuery User’s Guide and Reference

70

Chapter 3 Tutorial: Using DataDirect XQuery®

Next, we'll show you how to process an XQuery sequence and
return the output as DOM, SAX, or StAX.

First, create an XQExpression object that executes the XQuery
expression and returns a sequence of results:

DDXQDat aSour ce ds = new DDXQDat aSour ce();

XQConnection conn = ds. get Connection("nyuserid", "nmypswd");

Fi | eReader fileReader = new Fil eReader ("flwor.xq");

XQExpr essi on xgExpression = conn. creat eExpressi on();
XQ@equence xqSequence = xgExpressi on. execut eQuery(fil eReader);

DOM

To return the output from a result sequence as a DOM tree, we
iterate over each DOM node in the XQuery sequence to extract
the DOM content and print the DOM node to the standard
System.out. For example, if you have J2SE 1.4.x, use the following
code, which assumes all items in the result sequence are node
items:

whi | e(xgSequence. next ()){
Node domNode = xqgSequence. get Node();
System out . print| n(donNode) ;

}

If you have J2SE 1.5 and higher, the method is different; it is
shown in the ResultRetrieval example.

DataDirect XQuery User’s Guide and Reference

Returning Results with Java XML APIs

SAX

To return the output from a result sequence as a SAX event
stream rather than a string, create a SAX event handler (hamed
SimpleSAXEventHandler, in this case) that sends the results to
the standard System.out as shown in the following code:

Si npl eSAXEvent Handl er anEvent Handl er = new Si npl eSAXEvent Handl er (Syst em out) ;
xgSequence. wr i t eSequenceToSAX(anEvent Handl er);

The complete application can be found in the ResultRetrieval
example.

StAX

To return the output from a result sequence as a StAX event
stream rather than as a string, create a StAX reader as shown in
the following code:

XM_St reanReader reader = xgSequence. get SequenceAsStrean();

You can use this StAX reader functionality like any other StAX
stream reader. For example, the following code reads one event
at a time and prints the event type together with the associated
event names.

private static void format Qut put (XM.StreanReader reader) throws
XMLSt reanException {

whil e(true){
int event
i f(event

return;

reader. next();
XM_St r eanConst ant s. END_DOCUMENT) {

switch (event) {
case XM.StreantConstants. START_ELEVMENT:
Systemout.println("Start tag: ");
print Nanes(reader);

break;

case XM.StreanConstants. END _ELEMENT:

DataDirect XQuery User’s Guide and Reference

71

72 Chapter 3 Tutorial: Using DataDirect XQuery®

Systemout. println("End tag");
print Names(reader);
br eak;

case XM.StreanConst ant s. CHARACTERS:
Systemout.println("Text");

print Chars(reader);

break;

Other similar examples can be found in the ResultRetrieval
example.

Preparing XQuery Statements

Typically, when a query is executed, the query is parsed and
optimized before it is run. To avoid incurring this overhead each
time the query is used, you can prepare the same query once and
execute it multiple times.

The following is the code for creating a prepared query. Only the
last line differs from the code used to create a query in our
example in “Querying Data from XML Files or DOM Trees” on
page 65.

DDXQat aSour ce ds = new DDXQDat aSour ce();
XQConnection conn = ds. get Connecti on();

Fi | eReader fileReader = new Fil eReader ("flwor.xq");

XQPr epar edExpr essi on preparedExpressi on = conn. prepar eExpressi on(fil eReader);

DataDirect XQuery User’s Guide and Reference

Preparing XQuery Statements

Once the query is prepared, use an executeQuery() call to
execute it.

XQ@equence xgSequence = preparedExpressi on. execut eQuery();
System out . print | n(xqSequence. get SequenceAsString(null));

Queries can accept parameters that can be changed between
executions. For example, you may want to prepare a query that
selects holdings based on a particular customer. In the following
guery, the value of userid changes each time this XQuery is run.
(Each userid is associated with a specific customer.)

declare variable $l as xs:string external;
col I ection("hol di ngs")/hol di ngs[useri d=$I]

The value of $l is set using XQJ. Let's run this twice, each time for
different users.

prepar edExpressi on. bi ndString(new QName("1 "), "Jonathan");
xgSequence xqgSequence = prepar edExpressi on. execut eQuery();
Systemout. println("\n\nHol di ngs for Jonathan:\n\n");
System out . println(xgSequence. get SequenceAsString(null));

prepar edExpr essi on. bi ndString(new Name("1 "), "Mnollo");
xgSequence xqgSequence = prepar edExpressi on. execut eQuery();
Systemout. println("\n\nHol dings for Mnollo:\n\n");
System out . println(xgSequence. get SequenceAsString(null));

Other similar examples can be found in the ResultRetrieval
example.

DataDirect XQuery User’s Guide and Reference

73

Chapter 3 Tutorial: Using DataDirect XQuery®

Updating Data in Relational Databases

You can execute updating expressions using either XQExpression
or XQPreparedExpression objects. The result of an updating
query is always an empty sequence.

The following example executes an updating expression in XQJ
using an XQExpression object. The updating expression inserts
data into the holdings database table.

Il inport the XQ classes
inport javax.xm .xquery.*;
i nport com ddt ek. xquery. xqj . DDXQDat aSour ce;

Il establish a connection to a relational data source

Il specify the URL and the user ID and password

DDXQDat aSour ce ds = new DDXQDat aSour ce();

ds. set JdbcUr | ("j dbc: xquery: sql server://server1: 1433; dat abaseNanme=st ocks");
XQConnection conn = ds. get Connection("nyuserid", "nmypswd");

Il create an expression object that is used to execute a query

XQExpr essi on xgExpression = conn. creat eExpression();

Il the query
String es = "ddtek:sql-insert('holdings'," +
"userid ,"Mnollo',"stockticker','TIVO,'shares', 200)";

Il execute the query
XQResul t Sequence result = xqExpressi on. execut eQuery(es);

Il free all resources
result.close();
X(Expr essi on. cl ose();
conn. cl ose();

Other examples can be found in the RDBMSUpdate example.

See “Updating Relational Data” on page 267 for more
information about updating data in relational databases.

DataDirect XQuery User’s Guide and Reference

75

4 Tutorial: Using XQuery

W3C defines the XML Query (XQuery) language for querying
XML and combining data from documents, databases, Web
pages, and other sources. Some common use cases for XQuery
involve XML publishing to create XML for Web messages,
dynamic web sites, and publishing applications. The source for
guery data might be found in XML files, relational databases,
legacy files such as EDI, or from multiple combined sources.

Some of the queries in this tutorial operate on XML stored in
files, some on an XML view of a relational database, and some
work on both. All of the examples in this tutorial have been
tested with DataDirect XQuery. Because not all XQuery
implementations access relational data in the same way, this
tutorial uses fn:collection(), which DataDirect XQuery uses to
access relational tables.

Most XQuery functionality, such as arithmetic operators,
comparisons, function calls, and functions, is familiar to most
programmers. This tutorial focuses on the three major
capabilities that distinguish XQuery, each of which is
fundamental to processing and creating XML:

m Path expressions, which can locate anything in an XML
document.

m XML constructors, which can create any XML document.

m FLWOR expressions (pronounced “flower expressions”),
which allow data to be combined to create new XML
structures. They are similar to SQL Select statements that
have From and Where clauses, but are adapted for XML
processing.

DataDirect XQuery User’s Guide and Reference

76

Chapter 4 Tutorial: Using XQuery

Together, these capabilities make XQuery easier to use than other
languages when processing and creating XML using data from
XML or relational sources.

This chapter covers the following subjects:

m Finding XML Nodes: Path Expressions

Creating XML: XML Constructors

Restructuring Data: FLWOR Expressions

Grouping Data

= Summary

Finding XML Nodes: Path Expressions

Just as SQL needs to be able to access any row or column in a
relational table, XQuery needs to be able to access any node in an
XML document. XML structures have both hierarchy and
sequence, and can be quite complex. Path expressions directly
support XML hierarchy and sequence, and allow you to navigate
any XML structure.

In this section, we discuss path expressions using an XML
document, and then show path expressions used on an XML view
of a relational table.

Path Expressions for XML Sources

Let's explore path expressions using the following XML
document, portfolio.xml, which consists of a portfolio element
with name and stocks subelements.

<?xm version="1.0"?>
<portfolio id="Jonathan">

DataDirect XQuery User’s Guide and Reference

Finding XML Nodes: Path Expressions 77

<nane>
<first>Jonathan</first>
<l ast >Robi e</| ast >
</ name>
<st ocks>
<st ock>
<ticker>AMZN</ ti cker>
<shar es>3000</ shar es>
<[st ock>

DataDirect XQuery User’s Guide and Reference

78 Chapter 4 Tutorial: Using XQuery

<st ock>
<ticker>EBAY</ti cker>
<shar es>4000</ shar es>
<[st ock>
<stock>
<ticker>I B\W/ticker>
<shar es>2500</ shar es>
</ st ock>
<st ock>
<ticker>PRGS</ticker>
<shar es>23</ shar es>
<[st ock>
</ st ocks>
</portfolio>

fn:doc() returns a document. The following example shows how
to use fn:doc() with an absolute URI.

doc("file:///c:/data/xm /portfolio.xm")

The following example shows how to use fn:doc() with a relative
URL.

doc("portfolio. xm™")

By setting the Base URI, you can set the directory that is used to
resolve relative URIs.

decl are base-uri "file:///c:/data/xm/";
doc("portfolio. xm™")

A path expression consists of a series of one or more “steps”,
separated by a slash (/) or double slash (/). Every step evaluates
to a sequence of nodes. For example, consider the expression:

doc("portfolio.xm")/portfoliolnanme

The first step, doc("portfolio.xm"), returns a document node
that represents the portfolio document.

DataDirect XQuery User’s Guide and Reference

Finding XML Nodes: Path Expressions

The second step, portfolio, isa name test that specifies the
name of an element; it returns the portfolio element at the top
of the document, which is a child of the document node.

The third step, nang, returns the element named “name”, which
is a child of the portfolio element.

Result of the Query Expression

<nane>
<first>Jonat han</first>
<| ast >Robi e</ | ast >

</ name>

If a name test is preceded by the @ character, the name test
matches an attribute rather than an element. For example, the
expression doc("portfolio.xm")/portfolio/ @d returns the id
attribute of the portfolio element.

The double slash (/) allows steps to operate on any descendant
of a node. For example, the expression
doc("portfolio.xn")//name matches any element named name,
anywhere in the portfolio document.

Predicates

A predicate can be added to a step to set conditions for
matching nodes. Predicates often set a condition on the children
of a node. For example, the following path matches stock
elements that contain a ticker element with the value “AMZN".

doc("portfolio. xm")//stock[ticker="AMZN]

DataDirect XQuery User’s Guide and Reference

79

80

Chapter 4 Tutorial: Using XQuery

Using the sample data, this expression produces the following
result:

<st ock>
<ticker>AMZN</ ti cker>
<shar es>3000</ shar es>
</ st ock>

Conditions in a predicate can be combined using “and” and “or”,
as in the following expression.

doc("portfolio.xm")//stock[ticker="AMZN or ticker="EBAY']

Conditions can be negated using fn:not(); for example, the
following expression matches stock elements that do not have a
ticker element with the value “AMZN":

doc("portfolio.xm")//stock[not(ticker="AMZN)]

One type of predicate is a numeric predicate, which sets a
condition on the position of a node in a sequence. For example,
the following expression finds the first stock element in a
portfolio.

doc("portfolio.xm")//stocks/stock[1]

To understand how numeric predicates work in XQuery, you must
know how XQuery evaluates a slash (/), as described in the
following steps:

1 The expression on the left side of a slash is evaluated to
produce a sequence of nodes.

2 The expression on the right side is evaluated for each context
node drawn from the expression on the left side, and the
results are combined.

3 When the numeric predicate is evaluated, it is evaluated for a
given context node.

For example, in the preceding expression, when the numeric
predicate is evaluated, the context node is a stocks element, the

DataDirect XQuery User’s Guide and Reference

Finding XML Nodes: Path Expressions

name test stock evaluates to a sequence of stock elements, and
the numeric predicate matches the first stock in this sequence.

The following expression matches the first ticker element on
each stock element:

doc("portfolio. xm")//stock/ticker[1]

To get the first ticker element in the document, use parentheses
to make the expression on the left of the numeric predicate
evaluate to the sequence of all ticker elements in the document:

(doc("portfolio.xm")//stock/ticker)[1]

Path Expressions for Relational Sources

When XQuery is used to query relational data, relational tables
are treated as though they are XML documents, and path
expressions work the same way as they do for XML. Because
relational tables have a simple structure, path expressions used
for tables are usually simple.

Each XQuery implementation has its own way of accessing a
relational table. DataDirect XQuery uses the fn:collection() to
access a relational table. For example, the following expression
accesses the holdings table:

col l ection(' hol dings')

Each XQuery implementation must also decide how to map
relational tables into XML in the XML view. The SQL 2003
standard has defined a standard set of mappings for this
purpose as part of SQL/XML.

Here is a SQL/XML mapping of the holdings table; this mapping
represents each row as a holdings element, and represents each
column of the table (userid, stockticker, shares) as an element
that is a child of the holdings element:

<hol di ngs>

DataDirect XQuery User’s Guide and Reference

81

82

Chapter 4 Tutorial: Using XQuery

<useri d>Jonat han</ useri d>
<st ockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>

</ hol di ngs>

<hol di ngs>
<userid>M nol | o</ useri d>
<st ockti cker >AMZN</ st ockt i cker >
<shar es>3000</ shar es>

</ hol di ngs>

Once you understand the structure of the XML view, you can
easily see how path expressions are applied to it. For example,
the following expression finds holdings for the user whose userid
is “Minollo”.

col l ection(' hol dings')/hol dings[userid="Mnollo']

DataDirect XQuery Speaks SQL

Because relational data is queried as if it were XML, you might
think that relational tables are actually extracted from the
database, turned into XML documents, and then queried, but this
would be very inefficient.

To the user, DataDirect XQuery makes all data look like XML, but
to a SQL database, the implementation speaks SQL. Before
evaluating the preceding expression, for example, DataDirect
XQuery converts it to a SQL expression similar to this one:

SELECT userid, stockticker, shares
FROM hol di ngs
WHERE useri d="M nol | o'

DataDirect XQuery User’s Guide and Reference

Creating XML: XML Constructors

Creating XML: XML Constructors

Now that we have seen how to locate anything in an XML
document or a relational table, let's learn how to create new
XML structures using XML constructors.

Literal XML constructors

The most simple constructors are literal XML constructors, which
use the same syntax as XML. For example, the following XML
text is also an XQuery expression that creates the equivalent
XML structure.

<stock role="eg" >
<ticker>AMZN</ ti cker>
<shar es>3000</ shar es>
</ st ock>

This example uses only elements and attributes, but processing
instructions, comments, and CDATA sections can also be used in
XML constructors.

Enclosed Expressions

In literal XML constructors, you can use curly braces ({ }) to add
content that is computed when the query is run. This is called an
enclosed expression. For example, the following expression
creates a date element whose content is the current date, which
is computed when the query is run:

<date>{ current-date() }</date>

The result is an element named date with the current date.

DataDirect XQuery User’s Guide and Reference

83

84

Chapter 4 Tutorial: Using XQuery

To see why enclosed expressions are necessary, consider the
following expression:

<date> current-date() </date>
This expression evaluates to the following XML element:
<date> current-date() </date>

Path expressions are frequently used in enclosed expressions. The
following expression creates a portfolio element for Minollo, and
then extracts Minollo's holdings from the holdings table:

<portfolio name='Mnol | o' >
{ collection('holdings')/holdings[userid="Mnollo'] }
</portfolio>

Restructuring Data: FLWOR Expressions

The XQuery FLWOR expression is similar to a SQL Select statement
that has From and Where clauses. FLWOR is pronounced
"flower," and is an acronym for the keywords used to introduce
each clause (for, let, where, order by, and return).

Here is a FLWOR expression that returns holdings for AMZN:

for $h in collection('holdings')/holdings
where $h/stockticker ="' AWN

order by $h/shares

return $h

In the preceding query, the FLWOR expression performs the
following functions:

m The for clause binds the variable $h to each holdings element.

m The where clause filters out bindings of $h for which the
stockticker element does not contain the value AMZN.

m The order by clause determines the order.

DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions

m The return clause produces a result for each binding of $h.

FLWOR expressions are frequently used to combine related
information. The possible combinations are generated by using
variables in the for clause and using a where clause to filter out
combinations that are not useful. This is known as a "join".
Consider the following expression:

for $u in collection('users')/users,
$h in collection('holdings')/holdings
where $u/ userid=$h/ userid
order by $u/lastname, $u/lastnane
return
<hol di ng>

$u/ firstnane,
$u/ | ast nane,
$h/ st ockti cker,
$h/ shares

}
</ hol di ng>

This expression finds every pair of users elements and holdings
elements whose userid child element has the same value, and
then builds a holding element that describes the user and his
holdings.

Now, let's look at a FLWOR expression that uses a let clause:

let $h := collection('holdings')/holdings
return count ($h)

A let clause binds a variable to a sequence, which often contains
more than one item. In the preceding query, $h is bound to all of
the holdings elements in the collection, and the return clause is
evaluated. Note the difference between a for clause and a let
clause: a for clause always iterates over a sequence, binding a
variable to each item; a let clause simply binds a variable to the
entire sequence.

DataDirect XQuery User’s Guide and Reference

85

86

Chapter 4 Tutorial: Using XQuery

In the preceding expression, the result is 8. In contrast, if you use
the following for clause:

for $h in collection('holdings')/holdings
return count ($h)

The result is a sequence of eight numbers: 1 1 1 11 11 1.

In some cases, you might find it useful to combine for and let
clauses. In the following expression, these two clauses are
combined to produce a result that counts the number of stock
holdings for each user.

for $u in collection('users')/users
| et $h:=col l ection(" hol dings')/hol dings[userid=$u/ useri d]
order by $u/lastname, $u/firstname

return
<user nstocks="{count($h)}">

{

$u/ firstnane,
$u/ | ast nanme

}

</ user>

XML Reporting for Relational Sources

Many applications need to create rich XML structures from
relational sources. For example, Web sites generally create
hierarchical displays of the data found in a relational database,
and Web messages are often very complex hierarchical structures.
For these applications, XQuery can act as an “XML report writer.”

DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions

The database tables used in this section are as follows:
m users Table

userid firstname |astname ot hernane

Mnollo Carlo [nnocent i
Jonat han Jonat han Robi e WIliam

m holdings Table

userid st ockti cker shar es

Jonat han PRGS 23
Mnollo PRGS 4000000

m statistical Table

id conmpanynane ti cker percentagechange annual revenues |ocation
1 Apple Conputer, Inc. AAPL -40.80% 5250 Cupertino
2 Accrue Software, Inc. ACRU -57.60% 4.21 Freenont

DataDirect XQuery User’s Guide and Reference

87

88 Chapter 4 Tutorial: Using XQuery

This query creates a portfolio for each user:

< >

{

for $u in collection('users')/users
order by $u/userid

return
< i d="{$u/ userid}">
< >
< >{data($u/firstnanme)}< >
< >{dat a($u/ | ast nane) } < >
< >
< >
{
for $h in collection('holdings')/holdings
where $h/userid = $u/userid
order by $h/stockticker
return
< >
< >{dat a($h/ st ockti cker)}<
< >{dat a($h/ shares)}< >
< >
}
< >
< >
}
< >

DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions 89

Here is the result of the preceding query.

<portfolios>
<portfolio id="Jonathan">
<nane>
<first>Jonathan</first>
<l ast >Robi e</| ast >
</ nane>
<st ocks>
<st ock>
<ticker>AMZN</ ti cker >
<shar es>3000</ shar es>
<[st ock>
<stock>
<ticker>EBAY</ti cker>
<shar es>4000</ shar es>
<[st ock>
<st ock>
<ticker>I B\WK/ ticker>
<shar es>2500</ shar es>
<[st ock>
<st ock>
<ticker>PRGS</ti cker>
<shar es>23</ shar es>
<[st ock>
</ st ocks>
</portfolio>

DataDirect XQuery User’s Guide and Reference

90

Chapter 4 Tutorial: Using XQuery

<portfolio id="Mnollo">
<nane>
<first>Carlo</first>
<l ast >l nnocenti </ | ast>
</ nane>
<st ocks>
<st ock>
<ticker>AMZN</ ti cker >
<shar es>3000</ shar es>
</ st ock>
<st ock>
<ticker>EBAY</ti cker>
<shar es>4000</ shar es>
</ stock>
<st ock>
<ticker>LU</ticker>
<shar es>40000</ shar es>
</ stock>
<st ock>
<ticker>PRGS</ti cker>
<shar es>4000000</ shar es>
<[st ock>
<[stocks>
</portfolio>
</portfolios>

NOTE: The query that created this XML result uses the data
function, which returns only the value of the stockticker column.
Without the data function, the value would be surrounded with
an element named stockticker, resulting in, for example:

< >
< >AMZN< >

DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions

Processing XML and Relational
Together

In some applications, you may need to use XML and relational
data together. For example, a configuration file or an incoming
Web message might provide information needed to
parameterize a query. Suppose you have an XML file that
contains a request for a particular kind of report, and your query
is to produce that report. For example, the following XML file,
request.xml, contains a request to show the performance of
Jonathan's stocks during the period from 2003-01-01 to

2004-06-01.
<?xm version="1.0"?>
< >
< >
< >Jonat han< >
< >2003- 01- 01< >
<end>2004- 06- 01< >
< >
< >

Here is a query that creates a portfolio for the user specified in a
request file, during the requested period:

decl are base-uri "file:///c:/prograns/exanpl es/ Joi nXM.ToRel ational /";
decl are variabl e $request doc('request.xm")/request;

for $user in $request/performnce/ Userld,
$start in $request/performance/start,
$end in $request/ performance/ end

return
< User | d="{$user}">
{ $request }
{

for $st in collection("holdings')/holdings,
$stats in collection('statistical')/statistical
where $st/userid = $user
$stats/ticker = $st/stockticker
return

DataDirect XQuery User’s Guide and Reference

91

92 Chapter 4 Tutorial: Using XQuery

< >

$st at s/ conpanynane }
$st/stockticker }
$st/shares }

$st at s/ annual r evenues }

Pt Rt W W e W

let $hist :=
for $h in collection('historical')/historical
where $h/ticker = $st/stockticker
and xs: date($h/ datetraded) gt xs:date($start)
and xs: date($h/datetraded) |t xs:date($end)
return $h
return
< >
<m n>{m n($hi st/ adj ust edcl ose) } </ m n>
<mex>{ max($hi st/ adj ust edcl ose) } </ max>
< >

for $h in $hist
return <day>{$h/datetraded, $h/adjustedclose }</day>

}

</ >
</ >

Grouping Data

The previous topic, Restructuring Data: FLWOR Expressions,
described how to use XQuery FLWOR expressions with XML and
relational data sources to restructure data. This topic describes
how to group data using the XQuery FLWOR expression window
clause.

DataDirect XQuery User’s Guide and Reference

Grouping Data

[14] The XQuery FLWOR expression window clause is supported in
XQuery 1.1 only.

This section covers the following topics:

What Is Grouping

The window Clause

Example: Tumbling Windows
Example: Positional Grouping
Example: Sliding Windows

What Is Grouping

Grouping is a technique that allows you to group XML data and
then perform some sort of query — a transformation, for example
—on the data in that group.

In XQuery 1.1, you can achieve grouping using the window
clause in a FLWOR expression. The window clause is powerful
because it allows you to bind the for clause variable to a group
of elements, instead of to a single element only. In XQuery 1.0,
the for clause variable in FLWOR expressions could be bound to a
single element only.

The window Clause

The window clause in the XQuery FLWOR expression allows you
to group data in sequences of consecutive items; these
sequences are called windows. The start and end of a window
are based on user-defined criteria — the WindowsStartCondition
(start $var when ExprSingle) and WindowEndCondition (end
$var when ExprSingle), respectively. To create the window, the
window clause iterates over the sequence, referred to as the
binding sequence. The resulting window contains the binding
sequence’s start item, end item, and all the items in between.

DataDirect XQuery User’s Guide and Reference

93

94

Chapter 4 Tutorial: Using XQuery

In a window clause, the starting item of the window is
determined by the window type.

Types of Windows

You can use the window clause to create two types of windows:

m Tumbling - tumbling windows are defined as windows whose
items never overlap. The item that starts one window always
follows the last item of the previous window. Thus, no two
windows drawn from the same binding sequence can contain
the same items.

m Sliding - sliding windows, on the other hand, are defined as
windows that can overlap. That is, one window might contain
the same item as another window drawn from the same
binding sequence. This can occur because every item in the
binding sequence that makes the WindowsStartCondition true
is the starting item for each new window.

Examples of both types of windows appear in the following
sections.

Example: Tumbling Windows

Consider the following XML document, which contains
information customer orders. Note that the document structure is
flat — customer and order elements are intermingled:

<?xm version="1.0"?>

< >
< id="1"/>
< type="book" id="1" price="10.0"/>
< type="DVD' id="3" price="24.0"/>
< id="2"/>
< type="gane" id="5" price="50.0"/>

< >

DataDirect XQuery User’s Guide and Reference

Grouping Data

We want to use XQuery to group all orders by customer, like this:

<?xm version="1.0"?>

< >
< id="1">
< t ype="book" id="1" price="10.0"/>
< type="DVD"' id="3" price="24.0"/>
< >
< id="2">
< type="gane" id="5" price="50.0"/>
< >
< >

Using the tumbling windows in XQuery 1.1, the code required to
generate the same output is straightforward and concise. Here,
the XQuery 1.1 code iterates through all of the elements in the
XML document. The start of the binding sequence is an element
customer; the end of the binding sequence occurs when the
element immediately after the context is not an order (that is, in
this example, it is another customer).

< >{
for tunbling wi ndow $custonmer in $data/orders/*
start $start when $start/sel f::customer
end next $next when $next[self::custoner]
return
< >{
$start/ @,
subsequence($custoner, 2)
}</ >
}</ >

While generating this output is possible in XQuery 1.0, the
recursive function required to process one sibling at a time is
somewhat complex and not especially efficient, as shown here:

declare function |ocal:orders($c as element(*, xs:untyped))
as elenment()*

{
b

I ocal : next ($c/follow ng-sibling::*[1])

DataDirect XQuery User’s Guide and Reference

96 Chapter 4 Tutorial: Using XQuery

declare function local:next($o as el ement(*, xs:untyped)*)
as element()*
{
i f($o/self::order) then

($0, local:next($o/follow ng-sibling::*[1][self::order]))
el se ()

b

< >{
for $ele in $datal orders/custoner
return
< >{
$ele/ @,
| ocal : or ders($el e)
}</ >
}</ >

DataDirect XQuery User’s Guide and Reference

Grouping Data

Example: Positional Grouping

The XQuery 1.1 window clause also allows you to define
grouping criteria based on position within the XML source.
Imagine, for example, an XML document with the following
structure containing thousands of book elements:

<?xm version="1.0"?>

< nane="My books">
< booki d="1" pubdat e="03/01/2002" >
< >Java Web Services< >
< >
< >Davi d A Chappel < >
< >Tyler Jewel | < >
< >
< >\\eb Servi ces< >
< >
< >

The XQuery code required to split a single document into
multiple documents of, say, 10 book elements each might look
like this:

decl are variabl e $w ndow size = 10;

for tumbling w ndow $custoner_orders in $books/books/ book
start when true()
end at $i when $i nod $window size = 0

return
serialize-to-url(
< >{$cust oner _or der s} </ >
concat ("books", $end_pos div $w ndow size,".xm", ""))

DataDirect XQuery User’s Guide and Reference

97

98

Chapter 4 Tutorial: Using XQuery

Example: Sliding Windows

The previous examples showed how to group data using
tumbling windows - that is, windows with adjacent items. Sliding
windows contain items that can overlap.

Consider this example from the XQuery 1.1 W3C Working Draft 3
December 2008. We have a document that contains a list of
colors, like this:

<?xm version="1.0"?>

< >

>@ een< >

>Pi nk< >

>Lil ac< >
>Tur quoi se< >
>Peach< >
>(pal < >
>Chanpagne< >

N NN NN NN

< >

Using a FLWOR expression with a sliding window clause:

decl are option ddtek:serialize
< >{
for sliding window $itemin doc("arrange_rows.xm")/*/data
start at $sp when true()
end at $ep when $ep - $sp = 2
return < >{$i ten} </ >
}</ >

i ndent =yes";

We can generate a sequence of items, grouped by three, each
successive group containing two items overlapping those in the
previous group:

<?xm version="1.0"?>

< >
< >
< >G een< >
< >Pi nk< >
< >Lilac< >

DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xquery-11/#id-sliding-windows
http://www.w3.org/TR/xquery-11/#id-sliding-windows

Grouping Data 99

</ wi ndow>
<wi ndow>
<dat a>Pi nk</ dat a>
<data>Lilac</ dat a>
<dat a>Tur quoi se</ dat a>
</ wi ndow>
<wi ndow>
<data>Lilac</ dat a>
<dat a>Tur quoi se</ dat a>
<dat a>Peach</ dat a>
</ wi ndow>
<wi ndow>
<dat a>Tur quoi se</ dat a>
<dat a>Peach</ dat a>
<dat a>Qpal </ dat a>
</ wi ndow>
<wi ndow>
<dat a>Peach</ dat a>
<dat a>Qpal </ dat a>
<dat a>Chanpagne</ dat a>
</ wi ndow>
<wi ndow>
<dat a>Qpal </ dat a>
<dat a>Chanpagne</ dat a>
</ wi ndow>
<wi ndow>
<dat a>Chanpagne</ dat a>
</ wi ndow>
</root>

DataDirect XQuery User’s Guide and Reference

100 Chapter 4 Tutorial: Using XQuery

Summary

The major capabilities of XQuery that distinguish it from other
programming languages are its ability to:

m Locate any content in an XML document
m Create any XML document

m Combine data to create new XML structures using FLWOR
expressions

For a more extensive XQuery tutorial, refer to XQuery: A Guided
Tour at:
http://www.datadirect.com/developer/xquery/xquerybook/index.ssp

DataDirect XQuery, an implementation of XQuery, allows you to
query both relational and XML sources and combine the data
into one result.

DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/developer/xquery/xquerybook/index.ssp
http://www.datadirect.com/developer/xquery/xquerybook/index.ssp

101

5 Tutorial: The XQuery Update
Facility

DataDirect XQuery supports the XQuery Update Facility 1.0
(XUF). XUF is an extension of the XQuery language that allows
making changes to data that are manipulated inside the XQuery.

This chapter describes how DataDirect XQuery supports XUF and
provides examples for its use. For more details about the XUF
specification, see the W3C Candidate Recommendation here:

http://www.w3.0rg/TR/2008/CR-xquery-update-10-20080801/

This chapter covers the following topics:
m “Support Overview"”

m “XUF Examples”

m “Storing Query Results”

m “Replacing Node Values”

m “Inserting a New Node”

s “Renaming a Node”

m “Transforming Query Results”

m “Updating Data Sources”

DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2008/CR-xquery-update-10-20080801/

102 Chapter 5 Tutorial: The XQuery Update Facility

Support Overview

DataDirect XQuery supports the complete XUF specification for

m Individual XML documents
m XML streams
m File collections

Updating Relational Data

DataDirect XQuery does not support XUF for relational data
sources. XUF expressions can operate on nodes containing data
that originates from a relational data source, but these changes
are not propagated to the relational data source. Consider this
example:

et $nyName : = <name>{col | ection("USERS")/ USERS] USERI D="02"]
| FI RSTNAME/ t ext () } </ nane>

Here, you can use XUF to modify $nyNane, but you cannot change
values from the col | ection() function because those nodes are
retrieved directly from a relational data source.

You can, however, use the ddtek:sql-insert/update/delete
functions to perform update operations directly against an
RDBMS. See “Updating Relational Data” on page 267 for more
information.

XUF Expressions

The XUF specification introduces several new expressions as
extensions to the XQuery specification:

m [nsert
m Delete
m Replace

DataDirect XQuery User’s Guide and Reference

XUF Examples 103

m Rename
m Transform

These and other expressions and functions that support XUF are
described and illustrated in the examples in the sections that
follow.

XUF Examples

DataDirect XQuery bundles several examples that help you
understand how to use XUF in your XQuery applications. These
examples are located in the \examples\UpdateFacility folder
where you install DataDirect XQuery.

These examples, and the XUF expressions and functions they
illustrate, are described in the sections that follow this one.

Sample Files

Most DataDirect XQuery XUF examples use these sample files:

m holdings.xml - an XML document that lists stock holding
information. The holdings.xml document has the following
structure:

<t abl e name="HOLDI NGS">

<hol di ngs>
<User | d>Jonat han</ User | d>
<St ockTi cker >PRGS</ St ockTi cker >
<Shar es>23</ Shar es>

</ hol di ngs>

<hol di ngs>
<User | d>M nol | o</ User | d>
<St ockTi cker >PRGS</ St ockTi cker >
<Shar es>4000000</ Shar es>

</ hol di ngs>

DataDirect XQuery User’s Guide and Reference

104 Chapter 5 Tutorial: The XQuery Update Facility

</tabl e>
m users.xml —an XML document that lists individuals’

information. The users.xml document has the following
structure:

<t abl e name="users">
<users>
<User | d>M nol | o</ User | d>
<Fi r st Name>Car | o</ Fi r st Nane>
<Last Nane>l nnocent i </ Last Nane>
<t her Nane/ >
<Menber Si nce>2004- 06- 16T00: 00: 00</ Menber Si nce>
</ user s>

</t abl e>

Storing Query Results

The XUF specification defines the f n: put () function as
fn: put($node as node(), $uri as xs:string) as enpty-sequence()

where:

m $node can be any node, whether or not it is updated

m $uri can be any valid URI and is processed in the same way as
a URI provided to the ddt ek: serial i ze-to-url () function

The fn: put () function is similar to the ddt ek: serialize-to-url ()
function, but it is executed at the end of the XQuery execution,
when all pending updates have been applied — but before control
is returned to the calling application. See “ddtek:serialize-to-url”
on page 420 for more information on that function.

DataDirect XQuery User’s Guide and Reference

Replacing Node Values

Example

The following code shows an example of the fn: put () function
being used in an updating XQuery:

decl are variabl e $hol ding : = doc(' hol dings.xm");
del ete nodes $hol di ng/tabl e/ hol di ngs[Userld = "M nol | 0"],
put ($hol di ng, "newHol di ng. xm ")

Replacing Node Values

The repl ace expression is an updating expression that can be
used to replace a node or a node’s value. Its syntax varies based
on the type of replacement.

Example

The change-values.xq example queries holdings.xml. It looks for
a user, Minollo (/ t abl e/ hol di ngs[Userld eq 'Mnollo']), and
increases his stock holdings (<shar es>) by 20%, replacing the
current value with the calculated value.

DataDirect XQuery User’s Guide and Reference

105

106 Chapter 5 Tutorial: The XQuery Update Facility

Results of the query are written to a new XML document,
more-shares.xml, using the f n: put () function:

for $holding in doc("/exanpl es/xn/hol dings. xm ")
/tabl e/ hol di ngs[Userld eq 'Mnollo']
return
repl ace val ue of node $hol di ng/ Shares with xs:integer($hol di ng/ Shares * 1.2),
put (doc("/exanpl es/ xm / hol di ngs. xm "), "/exanpl es/ xm / mo-shares. xm ")

Inserting a New Node

Theinsert expression allows you to insert new nodes into XML
documents. The XUF specification defines the i nsert expression
as

insert (node| nodes) target
where:

m (node| nodes) can be one or more individual XML nodes; you
can use either word regardless of the number of nodes being
inserted.

m target isthe target expression. You use it both to identify into
what you want the node inserted (an XML document, for
example) and where. New nodes can be inserted at the start
of the target (as first), and the end (as | ast), or after or
bef or e any node you specify.

Note that if you do not specify placement in the target
expression, DataDirect XQuery inserts new nodes at the end of
the target in document order.

DataDirect XQuery User’s Guide and Reference

Inserting a New Node 107

Example

In this example, for every user in users.xml, insert-nodes.xq adds
1000 shares of DDTEK stock to that user’s holdings. It creates a
new <hol di ngs> node for those users who do not already have
DDTEK - or who are not already listed in the holdings.xml
document — and writes the result to a new XML document. Note
that the i nsert node expression specifies placement (as | ast)
within the target document.

for $user in doc("/exanples/xm/users.xm")/tablel/users
| et $ddtekShares := doc("/exanpl es/xm /hol di ngs.xn ")/t abl e/ hol di ngs[User | d
eq $user/Userld and StockTicker eq "DDTEK"]
return
i f($ddtekShares) then
repl ace val ue of node $ddtekShares/ Shares with $ddtekShares/ Shares + 1000
el se
i nsert node
<hol di ngs>
<User | d>{ $user/ User | d/text()}</ Userld>
<St ockTi cker >DDTEK</ St ockTi cker >
<Shar es>1000</ Shar es>
</ hol di ngs>
as last into doc("/exanples/xm/holdings.xm")/table,
put (doc("/ exanpl es/ xm / hol di ngs. xm "), "/ exanpl es/ xn / nor e- ddt ek-
hol di ngs. xm ")

DataDirect XQuery User’s Guide and Reference

108 Chapter 5 Tutorial:

The XQuery Update Facility

Renaming

Il inmport the XQ

a Node

The rename expression allows you to replace the name property
for a specific node. Attributes and descendants of the specified
node are not affected by the renane operation.

Example

The rename-nodes.xq XQuery changes an XML document by
renaming <User | D> node to <I D> and saving the result to a new
document using the f n: put () function.

for $user in doc("../xm/users.xm")/tabl e/users
return

renane node $user/Userld as QName("", "ID"),
put (doc("../xm /users.xm "), "new_ users.xm")

Example — Using XQJ

You can execute XQuery programmatically using XQJ. In this
example, a Java application is used to execute XQuery that uses
the same rename and put XUF expressions to rename nodes in an
XML document and create a new XML document with the
renamed nodes:

cl asses

inport javax.xm .xquery.*;
i nport com ddt ek. xquery. xqj . DDXQDat aSour ce;
i nport com ddt ek. xquery. xqj . DDXQIDBCConnect i on;

public class XUF {

public static void main(String[] args) throws Exception {

XQConnect i

on xqgconnection = nul | ;

XQPr epar edExpr essi on xqExpr = nul|;

DataDirect XQuery User’s Guide and Reference

Transforming Query Results 109

try {
DDXQDat aSour ce dat aSource = new DDXQDat aSour ce() ;

xqgconnection = dataSource. get Connection();

[l the query
String xquery =
"for $user in doc('../xm/users.xm")/table/users\n"
+ "return\n"
+ "rename node $user/Userld as QName('', 'ID),\n"
+ "put(doc('../xm /users.xm "), 'new users.xm"')\n";
XQExpr = xqconnecti on. prepar eExpr essi on(xquery);

Il execute the query
XqExpr . execut eQuery();
} finally {
if (xqBExpr !'= null) xqExpr.close();
i f (xgconnection !'= null) xqgconnection.close();

To learn more about DataDirect XQuery support for XQJ, see
Appendix G, “XQJ Support”.

Transforming Query Results

Transform expressions are used to create modified copies of
nodes. Using copy, modi fy, and r et urn clauses, transform
expressions make a copy of an input document and then
perform the XQuery and write the result to memory. Unlike
other XUF update operations, transform expressions do not
modify existing nodes.

DataDirect XQuery User’s Guide and Reference

110 Chapter 5 Tutorial: The XQuery Update Facility

Example - Replacing a Node Value

The transform-change-values.xq XQuery transforms the query
result by increasing the number of <Shar es> for user Minollo
($hol di ng/ Userld eq 'Mnollo") by 20% (repl ace val ue of
node... with... ($updatedHol di ng/ Shares * 1.2)). A new root
element, <t abl e>, is created for the modified nodes that result
from this XQuery.

decl are option ddtek:serialize "indent=yes";

<tabl e> {
for $holding in doc("../xm/holdings.xm")/tabl e/ hol di ngs
return
i f($holding/Userld eq "Mnollo) then
copy $updat edHol di ng : = $hol di ng
modi fy
repl ace val ue of node $updat edHol di ng/ Shares with
Xs:integer ($updat edHol di ng/ Shares * 1.2)
return $updat edHol di ng
el se
$hol di ng
} </table>

DataDirect XQuery User’s Guide and Reference

Transforming Query Results

Example - Inserting a Node

The transform-insert-nodes.xq XQuery performs two update
operations depending on the query result:

m If auser has DDTEK hol di ngs, the value of the <Shar es> node
is increased by 1000

m If the user has no shares of DDTEK (el se), a new <hol di ngs>
node is created for that user with the value of the <Shares>

node set to 1000

decl are option ddtek:serialize "indent=yes";
copy $newHol di ngs : = doc("../xnl/hol di ngs.xm ")
modi fy
for $user in doc("../xm/users.xm")/table/users
| et $ddt ekShares := $newHol di ngs/t abl e/ hol di ngs[User | d eq $user/ Userld and
StockTi cker eq "DDTEK']
return
i f($ddtekShares) then
repl ace val ue of node $ddtekShares/ Shares with $ddtekShares/ Shares + 1000
el se
insert node
<hol di ngs>
<User | d>{ $user/ Userl d/text()}</ Userld>
<St ockTi cker >DDTEK</ St ockTi cker >
<Shar es>1000</ Shar es>
</ hol di ngs>
as last into $newHol di ngs/table
return $newHol di ngs

DataDirect XQuery User’s Guide and Reference

111

112 Chapter 5 Tutorial: The XQuery Update Facility

Updating Data Sources

DataDirect XQuery provides a feature that allows XQuery to
automatically update data sources that are accessed through
doc() and coll ection() functions. You can use both literal and
computed arguments for these function calls.

Relational data sources cannot be updated using automatic
update.

Enabling Automatic Update

The automatic update feature can be enabled in one of two
ways:

m Using the ddt ek: aut omat i c- updat e option. The automatic
update feature can be enabled in any XQuery using the
following declaration:

decl are option ddtek: automatic-update "yes"

m Using the -u command line option. See “Using the Command
Line Utility” on page 40 for more information on using the
command line.

The automatic update feature is disabled by default. When it is
enabled, data sources affected by XUF update expressions are
physically modified at the end of the XQuery execution.

In the event of a conflict between command line and XQuery
settings for this feature, the setting specified at the XQuery level
always takes precedence.

DataDirect XQuery User’s Guide and Reference

Updating Data Sources 113

How Updates are Performed

Single data sources specified in a doc() function call are updated
at the end of the XQuery execution. For a col | ecti on() function
call that returns n XML documents, each of those n XML
documents whose XDM instance has been modified is
automatically updated.

Modified files are serialized using global serialization options set
through the XQJ API or the ddt ek: seri al i ze option. See
Appendix D, “Serialization Support” for more information.

Example

In the following example, the <subj ect > element in books.xml is
renamed to <t opi ¢>. Changes to books.xml are saved
automatically when the XQuery execution is complete:

decl are option ddtek: automatic-update "yes";
for $book in doc("file:///c:/nyFiles/ny_books.xm")/books/book

return
rename node $book/subject as QName("","topic")

DataDirect XQuery User’s Guide and Reference

114 Chapter 5 Tutorial: The XQuery Update Facility

DataDirect XQuery User’s Guide and Reference

115

6 Understanding Data Sources
and Connections

This chapter describes the XML and relational data sources that
DataDirect XQuery can work with to produce XML results, the
methods available for connecting to these data sources, and
how to configure URIs used to connect to them.

Using Data Sources in Queries

In XQuery, data sources and query results are both represented
using an XML data model. Physical inputs such as XML text files,
DOM trees, and relational databases are mapped into the XML
data model when they are queried. In the case of relational
databases, the mapping is logical, and relational data is not
materialized as XML. These mappings are documented in this
section.

The result of a query (the XML output) is also defined in the XML
data model and must be mapped to a physical format such as
DOM, SAX, StAX, or text in order for an application to use the
results. See “Accessing XML Results” on page 530 for more
information about the mapping of results.

In addition, when you use DataDirect XQuery with DataDirect
XML Converters, you can convert non-XML formats into XML,
including EDI messages, tab-delimited and comma-separated
text files, dBASE files, RTF files, and many more. Once these
non-XML data sources are converted to XML, they are accessed
the same as XML documents.

DataDirect XQuery User’s Guide and Reference

116 Chapter 6 Understanding Data Sources and Connections

XML Data Sources

The XML data sources that DataDirect XQuery can access have the
following physical formats:

m XML text files/streams. These files/streams can be accessed
using fn:doc(), which supports the http:, ftp:, and file: URI
schemes and DataDirect XML Converters URI schemes.

Here is an example of a file URI scheme:

let $request := doc('file:///c:/request.xm")/request

Here is an example of a DataDirect XQuery XML Converters
URI scheme in which the name of the Converter is Base64, the
properties set for the conversion are newline and encoding,
and the file to convert is base_to_xml.bin:

| et $request := doc(' converter:Base64:new ine=crlf:
encodi ng=ut f-82filel///w /nyfiles/base to xm.bin)/
request

NOTE: Using fn:collection(), DataDirect XQuery also allows
you to make the following types of queries on XML files:

® Query multiple XML files in a directory. See “Querying
Multiple Files in a Directory” on page 288.

® Query XML files archived in ZIP or JAR files. See “Querying
ZIP, JAR, and MS Office Files” on page 292.

DataDirect XQuery User’s Guide and Reference

Using Data Sources in Queries

NOTES FOR SPECIFYING URIs:

® You must use forward slashes (/) in the path regardless of
the platform.

® Relative URIs are allowed in the path. For example:

let $request := doc('request.xm"')/request

® Spaces are allowed in the path. For example:

et $request := doc('file:///c:/DD XQuery/
request.xm"')/request

If you use a custom URI resolver, the rules enforced for URI
paths are governed by the syntax specified by the custom URI
resolver (see “Document URI Resolvers” on page 295).

XML contained in a Java application. This type of XML can be
bound to the initial context item or to external variables in
XQJ and used in XQuery queries. See “Querying Data from
XML Files or DOM Trees” on page 65 for an example.

XML stored in columns of any supported relational database
using an XML data type. See Chapter 11 “Support for
Relational Databases” for details.

XML stored in character columns of any supported relational
database. See “Querying XML Type Data” on page 263 for
details.

Data Model Representation of XML Documents

For XQuery queries that access XML using fn:doc() or external
variables in the query, DataDirect XQuery implements the
Infoset mapping described in the XQuery 1.0 and XPath 2.0 Data
Model specification located at:
http://www.w3.0rg/TR/2005/CR-xpath-datamodel-20051103/

DataDirect XQuery User’s Guide and Reference

117

http://www.w3.org/TR/2005/CR-xpath-datamodel-20051103/

118 Chapter 6 Understanding Data Sources and Connections

Relational Data Sources

DataDirect XQuery provides support for the following relational
databases:

= DB2

m DB2 Universal Database (UDB)
m Informix Dynamic Server

m Microsoft SQL Server

s MySQL Enterprise

m Oracle

= PostgreSQL

m Sybase Adaptive Server Enterprise

Note: For support for specific versions, see “Supported
Databases” on page 445. This information is also maintained on
the DataDirect web site:

http://www.datadirect.com/support/product_info/
databasesupport/index.ssp

Specifying Relational Database Tables

Using DataDirect XQuery, you specify relational database tables
in a query using fn:collection(). The following example specifies a
database table named holdings:

col I ection(' hol dings')
Notes for Specifying Database Table Names

m Qualified names — You might need to qualify the database
table name in order to specify the exact table you want to
access. The argument to fn:collection() can include any

DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/support/product_info/databasesupport/index.ssp

Using Data Sources in Queries

combination of JDBC connection name, database catalog, or
database schema in addition to the database table name.

For example, if the database table being accessed is not
owned by the current user or is not located in the current
database or catalog, you can qualify the database table
name with the catalog name and schema name of the
database table. The following example specifies a catalog
name, schema name, and database table name:

col l ection('financial.joseph.holdings')

If you need to further qualify the database table name, you
can use a JDBC connection name, which identifies a specific
connection to a relational database. The following example
specifies a JDBC connection name, catalog name, schema
name, and database table name:

col l ection('stocks: financial.joseph.holdings')

Escape characters - If the catalog name, schema name, or
table name in the fn:collection() argument contains a period
(.), a colon (:), or a backslash(\), escape the character with a
backslash (\) so that DataDirect XQuery can correctly parse
the argument. For example, if the target table is named
a.holdings and you specify the following query, DataDirect
XQuery parses 'a' as the schema name, not as part of the
table name:

col I ection('a.hol dings')

Escaping the period (.) in the fn:collection() argument using
the backslash character allows DataDirect XQuery to parse
the argument correctly:

col lection('a\.hol dings')

In addition, XQuery string literal syntax applies to the
fn:collection() argument. If a table name contains double
qguotes, for example, a"holdings, and the fn:collection()
argument uses double quote delimiters, you must repeat the
double quotes:

col l ection("a""hol di ngs")

DataDirect XQuery User’s Guide and Reference

119

120 Chapter 6 Understanding Data Sources and Connections

Or, you can use:
col l ection('a"hol dings')

See “Path Expressions for Relational Sources” on page 81 for
examples of using fn:collection(). See “Resolving fn:collection
Errors” on page 564 for information about troubleshooting
fn:collection() errors.

Data Model Representation of Relational Tables

In DataDirect XQuery, XML views of relational data are based on
the SQL/XML mappings specified in the SQL 2003 standard. These
are logical XML views, not a physical format.

SQL/XML provides different ways to parameterize views.
DataDirect XQuery uses the XMLFOREST variable to parameterize
views. Using XMLFOREST is sufficient for most applications, but
you can choose not to use it by setting the JdbcSqlXmlForest
property of DDXQDataSource to false (see “DDXQDataSource
and DDXQJDBCConnection Properties” on page 128).

When the value of the JdbcSqlXmIForest property is set to true
(the default), DataDirect XQuery represents each database table
by a sequence of row elements in a document node. The row
elements use the table name as the element name and contain
an element for each non-null column in the row; DataDirect
XQuery uses the column name as the element name for these
elements. For example, when XML FOREST is used, the result for
col I ection('users') is a document node containing the
following elements:

<user s>
<useri d>M nol | o</ useri d>
<firstname>Carl o</ firstname>
<l ast nane>| nnocenti </ | ast nane>
<menber si nce>2004- 06- 16T00: 00: 00</ nenber si nce>
</ user s>
<user s>

DataDirect XQuery User’s Guide and Reference

Using Data Sources in Queries

<useri d>Jonat han</ useri d>

<firstname>Jonat han</fir st name>

<l ast nanme>Robi e</ | ast nane>

<ot her name>W | | i anx/ ot her nane>

<menber si nce>2004- 03- 03T00: 00: 00</ nenber si nce>
</ user s>

Suppose we wanted to write a FLWOR expression to bind each
row of the preceding table to a variable. In this case, we add an
argument to fn:collection() that defines a path matching the
users elements:

col l ection('users')/users

Here is a FLWOR expression that iterates over the rows returned
by the preceding path expression:

for $u in collection('users')/users
where $u/l astnane = ' Robi e
return $u/ menber si nce

When the XMLFOREST variable is false, the result is a document
node. Inside the document node is a single element that
represents the table. Inside the single element node is a
sequence of elements named row, each representing one row of
the table. For example, when XMLFOREST is not used, a result
for col l ection(' users') might look like this:

<user s>
<r ow>
<userid>M nol | o</ useri d>
<firstnanme>Carl o</firstnane>
<l ast nane>l nnocenti </ | ast nane>
<menber si nce>2004- 06- 16T00: 00: 00</ nenber si nce>
<[row>
<r ow>
<useri d>Jonat han</ useri d>
<firstname>Jonat han</firstnane>
<l ast nane>Robi e</ | ast name>
<ot her name>W | | i anx/ ot her nane>
<nenber si nce>2004- 03- 03T00: 00: 00</ menber si nce>

DataDirect XQuery User’s Guide and Reference

121

122 Chapter 6 Understanding Data Sources and Connections

</row>
</ user s>

Suppose we wanted to write a FLWOR expression to bind each
row of the preceding table to a variable. In this case, we would
need to add a path expression to fn:collection(). The following
path expression defines a path that matches the row elements:

col l ection('users')/users/row

Here is a FLWOR expression that iterates over the rows returned
by the preceding path expression:

for $u in collection(' users')/users/row
where $u/l astnane = ' Robie'
return $u/ membersi nce

Case Sensitivity

XML element and attribute names are case-sensitive. When SQL
column and table names are mapped into XML elements, the case
depends on a number of factors that can vary by database vendor
and the parameters used to create a database.

The case sensitivity of the argument to fn:collection() depends on
the database.

Data Type Mappings

See “Data Type Mappings” on page 447 for information about
how database data types are mapped to XML schema data types.
Security Features

DataDirect XQuery supports authentication and data encryption
security features for data source connections. For more
information, see Chapter 7, “Securing Data Source Connections.”

DataDirect XQuery User’s Guide and Reference

Choosing a Connection Method 123

Choosing a Connection Method

You can use XQJ to connect to a data source using either of the
following methods:

m Construct a DDXQDataSource instance in your Java
application explicitly

m Load a DDXQDataSource object from JNDI

Specifying connection information explicitly in your Java
application using a DDXQDataSource instance requires you to
code the connection information directly in your Java
application. See “Configuring Connections Explicitly” on
page 123 for complete information.

Using a DDXQDataSource object loaded from JNDI can be a
convenient way to manage connections because the connection
information is created and managed outside the applications
that use it. As a result, the effort required to reconfigure your
environment when an infrastructure change occurs is minimal.
For example, if a database is moved to another server and uses a
different port number, you only need to change the relevant
properties of the data source object. An application accessing
the database does not need to change because the application
only references the logical name of the data source object in
JNDI. See “Configuring Connections Using JNDI" on page 127 for
complete information.

Configuring Connections Explicitly

To specify connection information explicitly using XQJ, construct
an XQDataSource instance in your Java application using the
DDXQDataSource class.

DataDirect XQuery User’s Guide and Reference

124 Chapter 6 Understanding Data Sources and Connections

If your Java application contains queries that access an XML file,
you can directly access the file as shown in the following XQJ
code, where the location and name of the XML file is specified as
a parameter of fn:doc(), an XQuery function.

DDXQDat aSour ce ds = new DDXQDat aSource();
XQConnection conn = ds. get Connecti on();
conn. cr eat eExpressi on() . execut eQuery("doc(' path_and_filenane')");

How you configure connection information for relational
databases using XQJ depends on whether you are accessing a
single database or multiple databases. If your Java application
contains XQuery queries that access a single database, you can
configure connection information using the DDXQDataSource
class as shown in the following XQJ code:

DDXQDat aSour ce ds = new DDXQDat aSour ce();
ds. set JdbcUr | ("] dbc: xquery: sql server://serverl: 1433; dat abaseNane=st ocks");

XQConnection conn = ds. get Connection("nyuserid", "nypswd");

If your Java application contains XQuery queries that access
multiple databases, use the DDXQJDBCConnection class to
configure connection information for each database connection,
then construct an XQDataSource instance that specifies all
database connections using the DDXQDataSource class as shown
in the following XQJ code. When specifying the URI for multiple
databases, use the DDXQJDBCConnection Url property instead of
the DDXQDataSource jdbcUrl property to set the JDBC URI for
each connection.

DDXQIDBCConnection jcl = new DDXQIDBCConnecti on();

jcl.setUrl ("jdbc: xquery: sql server://serverl: 1433; dat abaseNane=st ocks");
DDXQIDBCConnection jc2 = new DDXQDBCConnection();

jc2.setUrl ("jdbc: xquery: sql server://server2: 1433; dat abaseNane=hol di ngs");
DDXQat aSour ce ds = new DDXQDat aSour ce();

ds. set DdxgJdbcConnect i on(new DDXQIDBCConnection[] {jcl, jc2});
XQConnection conn = ds. get Connection("nyuserid", "nypswd");

In the preceding example, notice that the user name and
password specified in the getConnection() method are used to
establish all underlying JDBC connections. If you require different

DataDirect XQuery User’s Guide and Reference

Configuring Connections Explicitly

user names and passwords for each connection, set the user
name and password on each DDXQJDBCConnection as shown in
the following XQJ code:

DDXQIDBCConnection jcl = new DDXQIDBCConnecti on();

jcl.setUrl ("jdbc: xquery: sql server://serverl: 1433; dat abaseNane=st ocks");
jcl.setUser("myuseridl");

jcl. set Password(" mypswdl");

DDXQIDBCConnection jc2 = new DDXQDBCConnection();
jc2.setUser("nyuserid2");

j c2. set Password(" nmypswd2") ;

jc2.setUrl ("jdbc: xquery: sql server://server2: 1433; dat abaseNane=hol di ngs");
DDXQat aSour ce ds = new DDXQDat aSour ce();

ds. set DdxgJdbcConnect i on(new DDXQIDBCConnection[] {jcl, jc2});
XQConnection conn = ds. get Connection();

The following table lists properties of the DDXQDataSource class
and the corresponding properties of the DDXQJDBCConnection
class:

DDXQDataSource property
JdbcName

JdbcOptions
JdbcSqlXmlForest
JdbcSqglXmlldentifierEscaping
JdbcTempTableColumns
JdbcTempTableSuffix
JdbcTransactionlsolationLevel
JdbcUrl

Password

User

DDXQJDBCConnection property
Name

Options

SqlXmlForest
SqlXmlldentifierEscaping
TempTableColumns
TempTableSuffix
TransactionlsolationLevel

Url

Password

User

If any of these DDXQJDBCConnection properties is specified for
an individual connection and then specified again using
DDXQDataSource, the latter overrides the former. The following

DataDirect XQuery User’s Guide and Reference

125

126 Chapter 6 Understanding Data Sources and Connections

example shows the Options property first specified for the jc1
connection, and specified again using the JdbcOptions property
of DDXQDataSource. In this case, the precision and scale for
xs:decimal specified for DDXQDataSource overrides the precision
and scale for xs:decimal specified for the jc1 connection.

DDXQIDBCConnection jcl = new DDXQIDBCConnection();

jcl.setUrl ("jdbc: xquery: sql server://serverl: 1433; dat abaseNane=st ocks");
jcl.setUser("nyuseridl");

jcl.setPassword("nypswdl");

jcl.set Options("sql-decinmal -cast=25,5");

DDXQIDBCConnection j¢c2 = new DDXQIDBCConnecti on();

jc2.setUser ("nyuserid2");

j c2. set Password(" mypswd2");

jc2.setUrl ("jdbc: xquery: sql server://server2: 1433; dat abaseNane=hol di ngs");
DDXQDat aSour ce ds = new DDXQDat aSour ce();

ds. set DdxgJdbcConnect i on(new DDXQIDBCConnection[] {jcl, jc2});

ds. set JdbcOpti ons("sql - deci mal - cast =35, 20") ;

XQConnection conn = ds. get Connection();

See “DDXQDataSource and DDXQJDBCConnection Properties”
on page 128 for a description of properties you can set using XQJ.

DataDirect XQuery User’s Guide and Reference

Configuring Connections Using JNDI

Configuring Connections Using JNDI

To create your own data source object for JNDI to use with
DataDirect XQuery, you can use the example named
JNDIDataSource in the /examples subdirectory in your DataDirect
XQuery installation directory as a template.

Once you have created a data source object, you can register it
with JNDI, as shown in the following XQJ code, where
holdings_ds is the name of the data source object:

DDXQDat aSour ce ds = new DDXQDat aSour ce();
Context ctx = new Initial Context();
ct x. bi nd("hol di ngs_ds", ds);

The following XQJ code shows how to load a DDXQDataSource
object from JNDI:

Context ctx = new Initial Context();
XQDat aSour ce ds = (XQDat aSour ce) ct x. | ookup(" hol di ngs_ds");
XQConnection conn = ds. get Connection("nyuserid", "nypswd");

In this example, the JNDI environment is first initialized. Next,
the initial naming context is used to find the name of the data
source object (holdings_ds). The Context.lookup() method
returns a reference to a Java object, which is cast to a
com.ddtek.xquery.xqj.DDXQDataSource object. Finally, the
getConnection() method is called to establish the connection.

DataDirect XQuery User’s Guide and Reference

127

128 Chapter 6 Understanding Data Sources and Connections

DDXQDataSource and DDXQJDBCConnection

Properties

The class name of the DataDirect XQuery XQDataSource
implementation is:

com.ddtek.xquery.xqj.DDXQDataSource

It provides properties that allow you to configure most
DataDirect XQuery settings and data source connections.

Table 6-1 lists the properties supported by the DDXQDataSource
class, DataDirect XQuery's XQDataSource implementation, and
describes each property.

The following class provides additional properties for configuring
connections to multiple databases:

com.ddtek.xquery.xqj.DDXQJDBCConnection

See Table 6-2 for a list of the additional properties supported by
the DDXQJDBCConnection class.

NOTE: All property names are case-insensitive. For example,
password is the same as Password.

DDXQDataSource Properties

Table 6-1. DDXQDataSource Properties

Property

Description

AllowJavaFunctions

Specifies whether external Java functions are allowed. By
default, external functions are allowed. To disable external
functions for security reasons, for example, set this property
to false.

DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties

Table 6-1. DDXQDataSource Properties (cont.)

Property Description

BaseUri The baseURI property in the XQuery static context, which is
the base URI used to resolve relative URIs in fn:doc(). See
“XML Data Sources” on page 116 for rules governing URlIs.

NOTE: You can also specify a base URI in the query prolog.

Collation The collation URI for the default collation to be used by the
Java Virtual Machine. See “Querying Multiple Files in a
Directory” on page 288 for more information.

CollectionUriResolver A Java class that implements the
com.ddtek.xquery.CollectionURIResolver interface to resolve
URIs in fn:collection(). For example, you may want to create a
Java class to resolve custom URLs that point to a directory
that contains your XML files. See “Collection URI Resolvers”
on page 298 for more information.

DocumentUriResolver A Java class that implements the
javax.xml.transform.URIResolver interface to resolve URIs in
fn:doc() and fn:doc-available(). For example, you may want
to create a Java class to resolve custom URLs that point to a
proprietary repository that stores your XML documents such
as an XML database. See “Document URI Resolvers” on
page 295 for more information.

JdbcName The name of the JDBC connection. A JDBC connection name
identifies a specific connection to a relational database.

If specifying a JDBC connection name for multiple databases,
use the Name property of the DDXQJDBCConnection class.

DataDirect XQuery User’s Guide and Reference

129

130 Chapter 6 Understanding Data Sources and Connections

Table 6-1. DDXQDataSource Properties (cont.)

Property

Description

JdbcOptions

Specifies one or multiple option declarations for the
relational database specified by the JdbcUrl property. Valid
option declarations are:

sql-decimal-cast
sql-extra-checks-trailing-spaces
sql-ignore-trailing-spaces
sql-ora10-use-binary-float-double
sql-order-by-on-values
sql-rewrite-algorithm
sql-rewrite-exists-into-count
sql-simple-convert-functions
sql-simple-string-functions
sql-sybase-temptable-index
sql-sybase-use-derived-tables
sql-unicode-strings
sql-varchar-cast

See "Option Declarations” on page 275 for a description of
these option declarations.

The value of this property is a semicolon-separated list of
option declaration name=value pairs:

nane=val ue[;nane=val ue]...
For example:
sqgl - uni code- strings=yes; sql - deci mal - cast =10, 5

You also can specify a global option declaration for all XML
and relational data sources using the Options property.

NOTE: You can override this setting in the query.

If specifying an option declaration for multiple databases,
use the Options property of the DDXQJDBCConnection class.

JdbcSqlXmIiForest

Specifies the format of the XML result that fn:collection()
returns. Valid values are true and false. The default is true.
See "Data Model Representation of Relational Tables” on
page 120 for details about the format of the XML result.

DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 131

Table 6-1. DDXQDataSource Properties (cont.)

Property Description

JdbcSqlXmlldentifierEscaping Specifies how DataDirect XQuery handles escaping of
identifiers, which is needed because of mismatches that occur
when characters in SQL identifiers are mapped to XML. Valid
values are:

= none (the default) - No mapping is performed. An error is
raised if a character in a SQL identifier cannot be mapped
to XML.

m partial — Characters in SQL identifiers that are not XML
characters are escaped using an underscore character ()
followed by a lowercase x followed by the character’s
Unicode representation in hexadecimal format followed
by an underscore character (_). For example, sales!forecast
becomes sales_x0021_forecast.

m full - In addition to the escaping performed by partial, the
character x of a SQL identifier that starts with "xml" (in
any combination of upper and lowercase characters) is
escaped. For example, XMLTable becomes
_x0058_MLTable.

DataDirect XQuery User’s Guide and Reference

132 Chapter 6 Understanding Data Sources and Connections

Table 6-1. DDXQDataSource Properties (cont.)

Property

Description

JdbcTempTableColumns

xquer ytype="val ue" sql Type="val ue". Specifies which
SQL type is used for columns when DataDirect XQuery
creates temporary tables for query optimization.

If you do not specify a value for this property, DataDirect
XQuery uses the SQL/XML mappings to determine which SQL
type to use for the columns of temporary tables; however,
this can sometimes cause problems. For example, if your
database table has a case-sensitive collation and the
temporary table is created with a case-insensitive collation,
an error is raised. In this case, use this property to specify that
the temporary tables be created with a case-sensitive
collation.

A value for xquer yType is required and specifies one of the
following values: boolean, byte, date, dateTime, decimal,
double, float, hexBinary, int, integer, long, short, string, or
time.

A value for sql Type is required and determines the database
type declaration that is appended to the column names
when temporary tables are created. The specified data type
must be supported by the database used to create the
temporary tables.

For example:

xquer yType="string" sql Type="nvar char (2000) col |l ate
SQ._Latinl General CP1 CS AS'

JdbcTempTableSuffix

CCSI D UNI CCDE ON COW T PRESERVE ROAS. You must
specify this property if you are connecting to a DB2 for z/OS
Unicode database.

DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties

Table 6-1. DDXQDataSource Properties (cont.)

Property

Description

JdbcTransactionlsolationLevel

Specifies the transaction isolation level. Valid values are:

java.sql.Connection. TRANSACTION_READ_UNCOMMITTEB
Locks are obtained on modifications to the database and
held until end of transaction (EOT). Reading from the
database does not involve any locking.

java.sql.Connection.TRANSACTION_READ_COMMITTED -
Locks are acquired for reading and modifying the
database. Locks are released after reading, but locks on
modified objects are held until EOT.

java.sgl.Connection.TRANSACTION_REPEATABLE_READ -
Locks are obtained for reading and modifying the
database. Locks on all modified objects are held until EOT.
Locks obtained for reading data are held until EOT. Locks
on non-modified access structures (such as indexes and
hashing structures) are released after reading.

java.sql.Connection. TRANSACTION_SERIALIZABLE — All
data read or modified is locked until EOT. All access
structures that are modified are locked until EOT. Access
structures used by the query are locked until EOT.

java.sgl.Connection.TRANSACTION_NONE - Transactions
are not supported.

-1 — The default transaction isolation level is used, which is
Read Committed.

The database to which you are connecting may not support
all of these isolation levels. See “Transaction Isolation Levels”
on page 271 for details.

NOTE: Once a connection is made, the transaction isolation
level cannot be changed for that connection (XQConnection
object).

DataDirect XQuery User’s Guide and Reference

133

134 Chapter 6 Understanding Data Sources and Connections

Table 6-1. DDXQDataSource Properties (cont.)

Property

Description

JdbcUrl

The JDBC URL of the database. See “Specifying Connection
URIs” on page 141 for the syntax of URLs.

If specifying a URL for multiple databases, use the Url
property of the DDXQJDBCConnection class.

MaxPooledQueries

Specifies the maximum number of queries that can be placed
in the pool when DataDirect XQuery's internal query pooling
is enabled. When enabled, DataDirect XQuery caches a
certain number of queries executed by an application. For
example, if this property is set to 20, DataDirect XQuery
caches the last 20 queries executed by the application. If the
value set for this property is greater than the number of
queries used by the application, all queries are cached. By
default, query pooling is disabled. See “Using Query Pooling”
on page 192 for more information.

ModuleUriResolver

A Java class that implements the
com.ddtek.xquery.ModuleURIResolver interface to resolve
the library module to be imported. For example, you may
want to create a Java class to resolve URLs that point to a
custom repository that stores XQuery modules. See
also”Library Module URI Resolvers” on page 296.

Options

Specifies a global option declaration to use as the default for
all XML and relational data sources that are used by XQuery
queries in your Java application. Valid global option
declarations are:

detect-XPST0005
plan-explain
serialize
xml-streaming

See “Option Declarations” on page 275 for a description of
these option declarations.

The value of this property is a name=value pair:
nane=val ue

where value is either yes or no. For example:
det ect - XPST0005=n0

DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 135

Table 6-1. DDXQDataSource Properties (cont.)

Property Description

Password A password used to connect to the database.

If specifying a password for multiple databases, use the
Password property of the DDXQJDBCConnection class.

SpyAttributes Enables and sets attributes for DataDirect Spy, a tool that
logs detailed information about XQJ calls issued by a running
Java application. For example, you may want to log all XQJ
activity to a log file on your local machine.

The format for the value of this property is:
(spy_attribute=val ue[;spy_attribute=val ue]...)

where spy_at tri but e=val ue is a DataDirect Spy attribute
and a valid value for that attribute. The following example
specifies that DataDirect Spy log all XQJ activity to a log file,
including the content of SAX streams passed through XQJ.

ds. set SpyAttributes("log=(file)/tnp/spy.log;
| 0gSAX=yes")

NOTE: When coding a path in a Java string on Windows, the
backslash character (\) must be preceded by the Java escape
character, which is also a backslash. The Spy parser also uses
the backslash as an escape character, so four slashes must be
used to specify a single backslash in the log path. For
example:

ds. set SpyAttributes("log=
(file)C\\\\temp\\\\spy. | og; | 0gSAX=yes")

Once enabled. you can turn DataDirect Spy on and off at
runtime using the setEnableLogging() method of the
com.ddtek.xquery.xqj.ExtLogControl interface.

See “Logging XQJ Calls with DataDirect Spy™ for XQJ" on
page 553 for instructions on using DataDirect Spy and a list
of supported attributes.

User A user name used to connect to the database.

If specifying a user for multiple databases, use the User
property of the DDXQJDBCConnection class.

DataDirect XQuery User’s Guide and Reference

136 Chapter 6 Understanding Data Sources and Connections

DDXQJDBCConnection Properties

Table 6-2 lists the properties supported by the
DDXQJDBCConnection class and describes each property (see
Table 6-1 for a list of the properties supported by the
DDXQDataSource class).

Table 6-2. DDXQJDBCConnection Properties

Property Description

Name The name of the JDBC connection. A JDBC connection name
identifies a specific connection to a relational database.

If specifying a JDBC connection name for a single database,
use the JdbcName property of the DDXQDataSource class.

DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property

Description

Options

Specifies one or multiple option declarations for the
relational database specified by the Url property. Valid
option declarations are:

sql-decimal-cast
sql-extra-checks-trailing-spaces
sql-ignore-trailing-spaces
sql-ora10-use-binary-float-double
sql-order-by-on-values
sql-rewrite-algorithm
sql-rewrite-exists-into-count
sql-simple-convert-functions
sql-simple-string-functions
sql-sybase-temptable-index
sql-sybase-use-derived-tables
sql-unicode-strings
sql-varchar-cast

See “Option Declarations” on page 275 for a description of
these option declarations.

The value of this property is a semicolon-separated list of
option declaration name=value pairs:

name=val ue[;name=val uel...
For example:
sqgl -uni code-literal s=yes; sql - deci nal - cast =10, 5

You also can specify a global option declaration for all XML
and relational data sources using the Options property of
the DDXQDataSource class.

NOTE: You can override this setting in the query.

If specifying an option declaration for a single database, use
the JdbcOptions property of the DDXQDataSource class.

Password

A password used to connect to the database. A password is
required only if security is enabled on the database. Contact
your system administrator to obtain your password.

If specifying a password for a single database, use the
Password property of the DDXQDataSource class.

DataDirect XQuery User’s Guide and Reference

137

138 Chapter 6 Understanding Data Sources and Connections

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property

Description

SqlXmlForest

Specifies the format of the XML result that fn:collection()
returns. Valid values are true and false. The default is true.
See "Data Model Representation of Relational Tables” on
page 120 for details about the format of the XML result.

SqlXmlldentifierEscaping

Specifies how DataDirect XQuery handles escaping of
identifiers, which is needed because of mismatches that
occur when characters in SQL identifiers are mapped to XML.
Valid values are:

none (the default) - No mapping is performed. An error is
raised if a character in a SQL identifier cannot be mapped
to XML.

partial — Characters in SQL identifiers that are not XML
characters are escaped using an underscore character (_)
followed by a lowercase x followed by the character’s
Unicode representation in hexadecimal format followed
by an underscore character (_). For example,
sales!forecast becomes sales_x0021_forecast.

full — In addition to the escaping performed by partial,
the character x of a SQL identifier that starts with "xml"
(in any combination of upper and lowercase characters) is
escaped. For example, XMLTable becomes
_x0058_MLTable.

DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property

Description

TempTableColumns

xquerytype="val ue" sql Type="val ue". Specifies which
SQL type is used for columns when DataDirect XQuery
creates temporary tables for query optimization.

If you do not specify a value for this property, DataDirect
XQuery uses the SQL/XML mappings to determine which SQL
type to use for the columns of temporary tables; however,
this can sometimes cause problems. For example, if your
database table has a case-sensitive collation and the
temporary table is created with a case-insensitive collation,
an error is raised. In this case, use this property to specify
that the temporary tables be created with a case-sensitive
collation.

A value for xquer yType is required and specifies one of the
following values: boolean, byte, date, dateTime, decimal,
double, float, hexBinary, int, integer, long, short, string, or
time.

Avalue for sql Type is required and determines the database
type declaration that is appended to the column names
when temporary tables are created. The specified data type
must be supported by the database used to create the
temporary tables.

For example:

xquer yType="string" sql Type="nvar char (2000)
collate SQL_Latinl General CP1 _CS AS'

TempTableSuffix

CCSI D UNI CODE ON COMW T PRESERVE ROAS. You must
specify this property if you are connecting to a DB2 for z/OS
Unicode database.

DataDirect XQuery User’s Guide and Reference

139

140 Chapter 6 Understanding Data Sources and Connections

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description

TransactionlsolationLevel Specifies the transaction isolation level. Valid values are:

java.sql.Connection. TRANSACTION_READ_UNCOMMITTED
— Locks are obtained on modifications to the database
and held until end of transaction (EOT). Reading from the
database does not involve any locking.

java.sgl.Connection. TRANSACTION_READ_COMMITTED -
Locks are acquired for reading and modifying the
database. Locks are released after reading, but locks on
modified objects are held until EOT.

java.sgl.Connection. TRANSACTION_REPEATABLE_READ -
Locks are obtained for reading and modifying the
database. Locks on all modified objects are held until
EOT. Locks obtained for reading data are held until EOT.
Locks on non-modified access structures (such as indexes
and hashing structures) are released after reading.

java.sgl.Connection.TRANSACTION_SERIALIZABLE - All
data read or modified is locked until EOT. All access
structures that are modified are locked until EOT. Access
structures used by the query are locked until EOT.

java.sgl.Connection.TRANSACTION_NONE - Transactions
are not supported.

-1 — The default transaction isolation level is used, which
is Read Committed.

The database to which you are connecting may not support
all of these isolation levels. See “Transaction Isolation Levels”
on page 271 for details.

NOTE: Once a connection is made, the transaction isolation
level cannot be changed for that connection (XQConnection
object).

DataDirect XQuery User’s Guide and Reference

Specifying Connection URIs

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description

Url The JDBC URL of the database. See “Specifying Connection
URIs” on page 141 for the syntax of URLs.

If specifying a URL for a single database, use the JdbcUrl
property of the DDXQDataSource class.

User A user name used to connect to the database.

If specifying a user name for a single database, use the User
property of the DDXQDataSource class.

Specifying Connection URIs

DataDirect XQuery provides access to most databases through
built-in JDBC drivers. In addition, you can access specific
databases using third-party JDBC drivers. The format of the
connection URI depends on whether you are using a built-in
JDBC driver or a third-party driver, and the database you are
connecting to.

Connection URIs for Built-In Drivers

DataDirect XQuery provides built-in JDBC drivers to access the
following databases:

DB2 for Linux/UNIX/Windows

DB2 for z/OS

DB2 for iSeries

Informix Dynamic Server

MySQL Enterprise

Oracle

Microsoft SQL Server

Sybase Adaptive Server Enterprise

DataDirect XQuery User’s Guide and Reference

141

142 Chapter 6 Understanding Data Sources and Connections

The format of the connection URI is:

j dbc: xquery: dbtype: //server _name: port; property=val ue[;...]

where:

dbt ype Valid values are db2, informix, mysqgl, oracle,
sqlserver, and sybase.

server_nane The TCP/IP address or TCP/IP host name of the
database server to which you are connecting
(See following NOTE).

port The number of the TCP/IP port.

property=val ue

Connection properties. For a list of connection
properties, ordered by database, see
“Database Connection Properties” on

page 460. For some databases, particular
connection properties are required in the URL
as shown in the following examples.

All connection property names are
case-insensitive. For example, password is the
same as Password.

NOTE FOR ORACLE USERS: See “Using Oracle tnsnames.ora Files”
on page 476 for instructions on retrieving connection
information from an Oracle tnsnames.ora file.

The following URLs show examples of the minimum information,
including any required connection properties, that must be
specified in a connection URL.

DB2 for Linux/UNIX/Windows

j dbc: xquery: db2: // server_nane: 50000; dat abaseName=your _dat abase

DB2 for z/OS and iSeries

j dbc: xquery: db2: //server _name: 446; | ocati onNarme=db2_| ocati on

Informix

j dbc: xquery:informx://server_nane; 1526; | nf or ni xSer ver =dbser ver _nane

DataDirect XQuery User’s Guide and Reference

Specifying Connection URIs

Microsoft SQL Server

j dbc: xquery: sql server://server_name: 1433
MySQL Enterprise

jdbc: xquery: nysql : //server _nane: [port]
Oracle

j dbc: xquery: oracl e://server_nane: 1521

Sybase

j dbc: xquery: sybase: // server _nane: 5000

Connection URIs for Third-Party Drivers

You can access the PostgreSQL database using the PostgreSQL
JDBC driver from:

http://jdbc.postgresql.org/

Connection URI Format

The format of the connection URI is:
j dbc: post gresql : dat abase
or

jdbc: postgresql://[server_nanme][:port]/database[?property=val ue]
[&property=val ue[...]]

DataDirect XQuery User’s Guide and Reference

143

http://jdbc.postgresql.org/

144 Chapter 6 Understanding Data Sources and Connections

where:

server_nanme

por t

dat abase

property=val ue

The TCP/IP address or TCP/IP host name of
the database server to which you are
connecting. If an IPv6 TCP/IP address is
specified, it must be enclosed within
brackets. For example:

jdbc: postgresql://[::1]:5432/ accounting

If an address or a host name is not
specified, the value defaults to a host name
of | ocal host .

The number of the TCP/IP port. If a port is
not specified, the value defaults to 5432.

The name of the database you are
connecting to.

Connection properties. Refer to your
PostgreSQL JDBC driver documentation for
information about the connection
properties supported by the driver.

The following URI is an example of the minimum information
that must be specified in the URI:

j dbc: post gresql : your _dat abase

DataDirect XQuery User’s Guide and Reference

145

7 Securing Data Source
Connections

DataDirect XQuery supports these security methods:
m Authentication

m Data encryption

This chapter describes these methods and how to implement
them. It covers the following topics:

m About Authentication
m Using Kerberos Authentication
m Using NTLM Authentication

m Data Encryption Across the Network

About Authentication

On most computer systems, a password is used to prove
(authenticate) a user's identity. This password often is
transmitted over the network and can possibly be intercepted by
malicious hackers. Because this password is the one secret piece

DataDirect XQuery User’s Guide and Reference

146 Chapter 7 Securing Data Source Connections

of information that identifies a user, anyone knowing a user's
password can effectively be that user.

Authentication methods protect the identity of the user.
DataDirect XQuery supports the following authentication
methods:

User ID/password authentication authenticates the user to the
database using a database user name and password.

Kerberos is a trusted third-party authentication service. The
drivers support both Windows Active Directory Kerberos and
MIT Kerberos implementations for DB2, Oracle, and Sybase.
For Microsoft SQL Server, the driver supports Windows Active
Directory Kerberos only.

Client authentication uses the user ID of the user logged onto
the system on which the driver is running to authenticate the
user to the database. The database server relies on the client
to authenticate the user and does not provide additional
authentication.

NTLM authentication is a single sign-on authentication
method for Windows environments. This method provides
authentication from Windows clients only.

Table 7-1 shows the authentication methods supported by
DataDirect XQuery.

Table 7-1. Authentication Methods Supported by DataDirect XQuery

User ID/
Driver Password Kerberos® Client NTLM
DB2 for Linux/UNIX/Windows X X X
DB2 for z/OS X X X
DB2 for iSeries X X
Informix X
MySQL X
Oracle X X X X

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication

Table 7-1. Authentication Methods Supported by DataDirect XQuery

User ID/
Driver Password Kerberos® Client NTLM
Microsoft SQL Server X Xt X
Sybase X X

a. For DB2, Oracle, and Sybase, the drivers support the Windows Active Directory KDC and MIT Ker-
beros KDC. For Microsoft SQL Server, the driver supports the Windows Active Directory KDC only.

b. Supported for Microsoft SQL Server 2000 and higher.

Using Kerberos Authentication

Kerberos authentication is a trusted third-party authentication
service. Kerberos authentication can take advantage of the user
name and password maintained by the operating system to
authenticate users to the database or use another set of user
credentials specified by the application.

DataDirect XQuery supports Kerberos authentication for the
following databases:

DB2

Oracle

Microsoft SQL Server
Sybase

Verify that your environment meets the requirements listed in
Table 7-2 before you configure DataDirect XQuery for Kerberos
authentication.

DataDirect XQuery User’s Guide and Reference

147

148 Chapter 7 Securing Data Source Connections

Table 7-2. Kerberos Authentication Requirements

Component Requirements

Database server The database server must be running one of the following
databases:

DB2:
m DB2 v8.1 or higher for Linux/UNIX/Windows
Oracle:

s Oracle 11g
s Oracle 10g (R1 and R2)

Microsoft SQL Server:

Microsoft SQL Server 2008
Microsoft SQL Server 2005
Microsoft SQL Server 2000

Microsoft SQL Server 2000 Enterprise Edition (64-bit)
Service Pack 2 or higher

Sybase:
= Sybase 12.5.1 or higher

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication

Table 7-2. Kerberos Authentication Requirements(cont.)

Component

Requirements

Kerberos server

The Kerberos server is the machine where the user IDs for
authentication are administered. The Kerberos server is also the
location of the Kerberos Key Distribution Center (KDC). If using
Windows Active Directory, this machine is also the domain
controller.

DB2, Oracle, and Sybase:

Network authentication must be provided by one of the following
methods:
= Windows Active Directory on one of the following operating
systems:
® Windows Server 2003
® Windows 2000 Server Service Pack 3 or higher
m MIT Kerberos 1.4.2 or higher

Microsoft SQL Server:

Network authentication must be provided by Windows Active
Directory on one of the following operating systems:

= Windows Server 2003
= Windows 2000 Server Service Pack 3 or higher

Configuring Kerberos Authentication

During installation, DataDirect XQuery installs the following files
required for Kerberos authentication in the /lib subdirectory of
your DataDirect XQuery installation directory:

krb5.conf is a Kerberos configuration file containing values
for the Kerberos realm and the KDC name for that realm.
DataDirect XQuery installs a generic file that you must
modify for your environment.

JDBCDriverLogin.conf file is a configuration file that specifies
which Java Authentication and Authorization Service (JAAS)

login module to use for Kerberos authentication. This file is

DataDirect XQuery User’s Guide and Reference

149

150 Chapter 7 Securing Data Source Connections

configured to load automatically unless the
java.security.auth.login.config system property is set to load
another configuration file. You can modify this file, but
DataDirect XQuery must be able to find the JDBC DRI VER 01
entry in this file or another specified login configuration file
to configure the JAAS login module. Refer to your J2SE
documentation for information about setting configuration
options in this file

To configure DataDirect XQuery:

1

Set the AuthenticationMethod connection property to
kerberos. See the DB2, Oracle, Microsoft SQL Server, and
Sybase connection properties tables in “Database Connection
Properties” on page 460 for more information about setting a
value for this property.

Modify the krb5.conf file to contain your Kerberos realm
name and the KDC name for that Kerberos realm by editing
the file with a text editor or by specifying the system
properties, java.security.krb5.realm and java.security.krb5.kdc.

NOTE: If using Windows Active Directory, the Kerberos realm
name is the Windows domain name and the KDC name is the
Windows domain controller name.

For example, if your Kerberos realm name is XYZ.COM and
your KDC name is kdc1, your krb5.conf file would look like
this:

[Iibdefaul ts]
default _real m= XYZ COM

[real ns]
XYZ. COM = {
kdc = kdcl
}

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication

If the krb5.conf file does not contain a valid Kerberos realm
and KDC name, an exception is thrown.

3 If using Kerberos authentication with a Security Manager on
a Java 2 Platform, you must grant security permissions to the
application and DataDirect XQuery. See “Permissions for
Kerberos Authentication” on page 151 for an example.

Permissions for Kerberos Authentication

Using DataDirect XQuery on a Java 2 Platform with the standard
Security Manager enabled requires certain permissions to be set
in the security policy file of the Java 2 Platform. This security
policy file can be found in the jre/lib/security subdirectory of the
Java 2 Platform installation directory.

NOTE: Web browser applets running in the Java 2 plug-in are
always running in a JVM with the standard Security Manager
enabled.

To run an application on a Java 2 Platform with the standard
Security Manager, use the following command:

"java -Djava. security. manager application_class_nane"

where appl i cation_cl ass_nane is the class name of the
application.

Refer to your Java 2 Platform documentation for more
information about setting permissions in the security policy file.

To use Kerberos authentication with DataDirect XQuery, the
application and code bases must be granted security permissions
in the security policy file of the Java 2 Platform as shown in the
following examples.

DataDirect XQuery User’s Guide and Reference

151

152 Chapter 7 Securing Data Source Connections

DB2

grant codeBase "file:/install_dir/lib/-" {

pernission java.lang. Runti mePerm ssion "getProtecti onDomain";
permission java.util.PropertyPernmi ssion "java.security.krb5.conf", "read";
permission java.util.PropertyPernmission "java.security.auth.login.config",
"read", "wite";
perni ssion javax.security. aut h. Aut hPer ni ssi on
"creat eLogi nCont ext. JDBC DRI VER 01";
permission javax.security. aut h. Aut hPer ni ssi on
" creat eLogi nCont ext . DDTEK- JDBC';
perm ssion javax.security.auth. Aut hPerm ssion "doAs";
permi ssion javax.security.auth. kerberos. Servi cePermi ssion
"krbtgt/your_real m@our_realn, "initiate";
permi ssion javax.security.auth. kerberos. Servi cePermi ssion
“principal _name/db_host nane@our _realnf', "initiate";

where:

install _dir is the DataDirect XQuery installation directory.

princi pal _name is the service principal name registered with the
Kerberos Key Distribution Center (KDC) that identifies the
database service.

your _real mis the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

db_host nane is the host name of the machine running the
database.

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication

Oracle

grant codeBase "file:/install _dir/lib/-" {
pernission java.lang. Runti mePerm ssion "getProtecti onDomai n";

permission java.util.PropertyPernmission "java.security.krb5.conf", "read";
permission java.util.PropertyPernmission "java.security.auth.login.config",
"read", "wite";
perni ssion javax.security. aut h. Aut hPer ni ssi on
"creat eLogi nCont ext. JDBC DRI VER 01";
pernission javax.security. aut h. Aut hPer ni ssi on
" creat eLogi nCont ext . DDTEK- JDBC';
permi ssion javax.security. auth. Aut hPerm ssion "doAs";
perni ssion javax.security. auth. kerberos. Servi cePerni ssi on
"krbtgt/your_real m@our_realnf, "initiate";
pernission javax.security. aut h. kerberos. Servi cePerni ssi on
"principal _nane/ db_host nane@our _realnm', "initiate";

where:

instal | _dir isthe DataDirect XQuery installation directory.

your _real mis the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

princi pal _name is the service principal name registered with the
Kerberos Key Distribution Center (KDC) that identifies the
database service.

db_host nane is the host name of the machine running the
database.

DataDirect XQuery User’s Guide and Reference

153

154 Chapter 7 Securing Data Source Connections

Microsoft SQL Server

grant codeBase "file:/install_dir/lib/-" {

pernission java.lang. Runti mePerm ssion "getProtecti onDomain";
permission java.util.PropertyPernmi ssion "java.security.krb5.conf", "read";
permission java.util.PropertyPernmission "java.security.auth.login.config",
"read", "wite";
perni ssion javax.security. aut h. Aut hPer ni ssi on
"creat eLogi nCont ext. JDBC DRI VER 01";
permission javax.security. aut h. Aut hPer ni ssi on
" creat eLogi nCont ext . DDTEK- JDBC';
permi ssion javax.security. auth. Aut hPerm ssion "doAs";
permi ssion javax.security.auth. kerberos. Servi cePermi ssion
"krbtgt/your_real m@our_realn, "initiate";
permi ssion javax.security.auth. kerberos. Servi cePermi ssion
"MBSQ.Svc/ db_host name: SQLServer _port @our_realnf', "initiate";

where:
install _dir is the DataDirect XQuery installation directory.

your _real mis the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

db_host nane is the host name of the machine running the
database.

SQ.Server _port is the TCP/IP port on which the Microsoft
SQL Server instance is listening.

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication

Sybase

grant codeBase "file:/install _dir/lib/-" {
pernission java.lang. Runti mePerm ssion "getProtectionDonmain";

permission java.util.PropertyPernmission "java.security.krb5.conf", "read";
permission java.util.PropertyPernmission "java.security.auth.login.config",
"read", "wite";
perni ssion javax.security. aut h. Aut hPer ni ssi on
"creat eLogi nCont ext. JDBC DRI VER 01";
pernission javax.security. aut h. Aut hPer ni ssi on
" creat eLogi nCont ext . DDTEK- JDBC';
permi ssion javax. security.auth. Aut hPerm ssion "doAs";
permi ssion javax.security.auth. kerberos. Servi cePermi ssion
"krbtgt/your_real m@our_realn, "initiate";
perm ssion javax.security. auth. kerberos. Servi cePerm ssion
“principal _name/db_host nane@our _realnf', "initiate";

where:

install _dir is the DataDirect XQuery installation directory.

your _real mis the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

princi pal _name is the service principal name registered with the
KDC that identifies the database service.

db_host nane is the host name of the machine running the
database.

DataDirect XQuery User’s Guide and Reference

155

156 Chapter 7 Securing Data Source Connections

Specifying User Credentials with
Kerberos Authentication

By default, when Kerberos authentication is used, DataDirect
XQuery takes advantage of the user name and password
maintained by the operating system to authenticate users to the
database. By allowing the database to share the user name and
password used for the operating system, users with a valid
operating system account can log into the database without
supplying a user name and password.

There may be times when you want to use another set of user
credentials. For example, many application servers or Web servers
act on behalf of the client user logged on the machine on which
the application is running, rather than the server user.

If you want to use user credentials other than the server user’s
operating system credentials, include code in your application to
obtain and pass a javax.security.auth.Subject used for
authentication as shown in the following example.

i nport javax.security.auth. Subject;
i nport javax.security.auth.login.LoginContext;

inport javax.xm .xquery.*;
i nport com ddt ek. xquery. xqj . DDXQDat aSour ce;

/1 The follow ng code creates a javax.security.auth. Subject instance
Il used for authentication. Refer to the Java Authentication

/1 and Authorization Service docurmentation for details on using a

Il LoginContext to obtain a Subject.

Logi nContext Ic
Subj ect subj ect

try {

nul | ;
nul | ;

[¢ = new Logi nCont ext ("JaasSanpl e", new Text Cal | backHandl er());

[c.login();

subj ect = Ic.getSubject();

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication

}
catch (Exception le) {

. Il display login error
}

DDXQDat aSour ce xqgDat aSour ce = new DDXQDat aSour ce() ;

/1 This application passes the javax.security.auth. Subject
Il to the driver by executing the driver code as the subject

XQConnection con =
(XQConnection) Subject.doAs(subject, new Privil egedExceptionAction() {
public oject run() {
XQConnection con = null;
try {
xqDat aSour ce. set Propert y(DDXQat aSour ce. JDBCURL,
"jdbc: xquery: db2: // nyServer: 50000; dat abaseNane=j dbc");
con = xqgDat aSour ce. get Connecti on();
}
catch (Exception except) {
. I/l og the connection error
return null;

}

return con;

}
1

/1 This application now has a connection that was authenticated with
Il the subject. The application can now use the connection.

XQExpr essi on xgqExpression = con. creat eExpression();

String xquery = "for $holding in collection('holdings')/holdings
return $hol di ng";

X@equence xgSequence = xqExpressi on. execut eQuery(xquery);

. Il do sonething with the results

DataDirect XQuery User’s Guide and Reference

157

158 Chapter 7 Securing Data Source Connections

Obtaining a Kerberos Ticket Granting
Ticket

To use Kerberos authentication, the application user first must
obtain a Kerberos Ticket Granting Ticket (TGT) from the Kerberos
server. The Kerberos server verifies the identity of the user and
controls access to services using the credentials contained in the
TGT.

If the application uses Kerberos authentication from a Windows
client, the application user does not need to explicitly obtain a
TGT. Windows Active Directory automatically obtains a TGT for
the user.

If the application uses Kerberos authentication from a UNIX or
Linux client, the user must explicitly obtain a TGT. To explicitly
obtain a TGT, the user must log onto the Kerberos server using
the kinit command. For example, the following command
requests a TGT from the server with a lifetime of 10 hours, which
is renewable for 5 days:

kinit -1 10h -r 5d user

where user is the application user.

Refer to your Kerberos documentation for more information
about using the kinit command and obtaining TGTs for users.

DataDirect XQuery User’s Guide and Reference

Using NTLM Authentication

Using NTLM Authentication

NTLM authentication is a single sign-on OS authentication
method. This method provides authentication from Windows
clients only and requires minimal configuration.

DataDirect XQuery supports NTLM authentication for the
following databases:

m Oracle
m Microsoft SQL Server

Verify that your environment meets the requirements listed in
Table 7-3 before you configure the driver for NTLM
authentication.

Table 7-3. NTLM Authentication Requirements

Component

Requirements

Database server

The database server must be administered by the same domain
controller that administers the client and must be running one of
the following databases:

Oracle:
s Oracle 11g

m Oracle 10g (R1 and R2)

m Oracle 9i (R1 and R2)

Microsoft SQL Server:

Microsoft SQL Server 2008

Microsoft SQL Server 2005

Microsoft SQL Server 2000 Service Pack 3 or higher
Microsoft SQL Server 2000 Enterprise Edition (64-bit)
Service Pack 2 or higher

Domain controller

The domain controller must administer both the database server
and the client. Network authentication must be provided by
NTLM on one of the following operating systems:

= Windows Server 2003
= Windows 2000 Server Service Pack 3 or higher

DataDirect XQuery User’s Guide and Reference

159

160 Chapter 7 Securing Data Source Connections

Table 7-3. NTLM Authentication Requirements

Component

Requirements

Client

The client must be administered by the same domain controller
that administers the database server and must be running on one
of the following operating systems:

Windows Vista

Windows Server 2003

Windows XP Service Pack 1 or higher
Windows 2000 Service Pack 4 or higher
Windows NT 4.0

Configuring NTLM Authentication

DataDirect XQuery provides three NTLM authentication DLLs:

m DDJDBCAuthxx.dll (32-bit)
DDJDBC64Authxx.dll (Itanium 64-bit)
m DDJDBCx64Authxx.dll (AMD64 and Intel EM64T 64-bit)

where xx is a two-digit number.

The DLLs are located in the install_dir/lib directory (where
install_dir is your DataDirect XQuery installation directory). If the
application using NTLM authentication is running in a 32-bit JVM,
DataDirect XQuery automatically uses DDJDBCAuthxx.dll.
Similarly, if the application is running in a 64-bit JVM,
DDJDBC64Authxx.dll or DDJDBCx64Authxx.dll is used.

DataDirect XQuery User’s Guide and Reference

Using NTLM Authentication

To configure DataDirect XQuery:

1 Set the AuthenticationMethod connection property to auto
(the default) or ntim. See the Oracle and Microsoft SQL
Server connection properties tables in “Database Connection
Properties” on page 460 for more information about setting
a value for this property.

2 By default, DataDirect XQuery looks for the NTLM
authentication DLLs in a directory on the Windows system
path defined by the PATH environment variable. If you install
DataDirect XQuery in a directory that is not on the Windows
system path, perform one of the following actions to ensure
the DDLs can be loaded:

m Add the install_dir/lib directory to the Windows system
path, where install_dir is the DataDirect XQuery
installation directory.

m Copy the NTLM authentication DLLs from install_dir/lib to
a directory that is on the Windows system path, where
install_dir is the DataDirect XQuery installation directory.

m Set the LoadLibraryPath connection property to specify
the location of the NTLM authentication DLLs. For
example, if you install DataDirect XQuery in a directory
named "DataDirect" that is not on the Windows system
path, you can use the LoadLibraryPath connection
property to specify the directory containing the NTLM
authentication DLLs. For example, for SQL Server:

jdbc: xquery: sql server://server3: 1521,
dat abaseName=t est ; LoadLi braryPat h=C. \ DataDi rect\ i b;
User =t est ; Passwor d=secr et

See the database connection properties tables in
“Specifying Connection URIs” on page 141 for more
information about setting a value for this property.

3 If using NTLM authentication with a Security Manager on a
Java 2 Platform, security permissions must be granted to
allow DataDirect XQuery to establish connections. See

DataDirect XQuery User’s Guide and Reference

161

162 Chapter 7 Securing Data Source Connections

“Permissions for Establishing Connections” on page 162 for
an example.

Permissions for Establishing Connections

Using DataDirect XQuery on a Java 2 Platform with the standard
Security Manager enabled requires certain permissions to be set
in the security policy file of the Java 2 Platform. This security
policy file can be found in the jre/lib/security subdirectory of the
Java 2 Platform installation directory.

NOTE: Web browser applets running in the Java 2 plug-in are
always running in a JVM with the standard Security Manager
enabled.

To run an application on a Java 2 Platform with the standard
Security Manager, use the following command:

java -Djava. security. manager application_class_nane

where appl i cation_cl ass_nane is the class name of the
application.

Refer to your Java 2 Platform documentation for more
information about setting permissions in the security policy file.

To establish a connection to the database server, DataDirect
XQuery must be granted the permissions as shown in the
following example:

grant codeBase "file:/install_dir/lib/-" {
perni ssion java. net. Socket Permission "*", "connect";

b

whereinstall _dir is the DataDirect XQuery installation
directory.

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 163

In addition, if Microsoft SQL Server named instances are used,
permission must be granted for the listen and accept actions as
shown in the following example:

grant codeBase "file:/install _dir/lib/-" {
pernmission java. net. Socket Perm ssion "*", "listen, connect, accept";

B
whereinstal | _dir is the DataDirect XQuery installation
directory.

Data Encryption Across the Network

If your database connection is not configured to use data
encryption, data is sent across the network in a format that is
designed for fast transmission. This format does not provide
complete protection from hackers, and it can be decoded given
some time and effort.

To address data security concerns, you might want to use data
encryption to provide a more secure transmission of data.
Consider using data encryption in the following scenarios:

m You have offices that share confidential information over an
intranet.

m You send sensitive data, such as credit card numbers, over a
database connection.

m You need to comply with government or industry privacy and
security requirements.

NOTE: Data encryption can adversely affect performance
because of the additional overhead (mainly CPU usage) required
to encrypt and decrypt data.

DataDirect XQuery User’s Guide and Reference

164 Chapter 7 Securing Data Source Connections

This section covers the following topics:

“Supported Encryption Methods” on page 164
“Database-Specific Data Encryption” on page 165

“SSL Encryption” on page 166

“Configuring SSL for DB2"” on page 170

“Configuring SSL for Oracle” on page 171

“Configuring SSL for Microsoft SQL Server” on page 172
“Configuring SSL for Sybase” on page 175

Supported Encryption Methods

DataDirect XQuery supports the following encryption methods:

Database-specific encryption. DB2 defines its own encryption
protocol for DB2 for Linux/UNIX/Windows and DB2 for z/OS
only. See “Database-Specific Data Encryption” on page 165
for more information.

Secure Sockets Layer (SSL). SSL is an industry-standard
protocol for sending encrypted data over database
connections. SSL secures the integrity of your data by
encrypting information and providing client/server
authentication. See “SSL Encryption” on page 166 for more
information.

Table 7-4 summarizes the data encryption methods supported by
DataDirect XQuery.

Table 7-4. Data Encryption Methods Supported by DataDirect XQuery

Driver Database-Specific SSL
DB2 for Linux/UNIX/Windows X xe
DB2 for z/OS X XP

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network

Table 7-4. Data Encryption Methods Supported by DataDirect XQuery

Driver Database-Specific SSL
DB2 for iSeries X
Informix

MySQL

Oracle X
Microsoft SQL Server X
Sybase X

a. Supported for V9.1 Fixpack 2 and higher for Linux/UNIX/Windows.
b. Supported for DB2 v9.1 for z/OS.

¢. Supported for DB2 V5R3 and higher for iSeries.

d. Supported for Microsoft SQL Server 2000 and higher.

Database-Specific Data Encryption

The DB2 driver supports a proprietary data encryption protocol
for the following DB2 databases:

s DB2 for Linux/UNIX/Windows
s DB2 for z/0OS

Configuring Data Encryption for DB2

To configure data encryption for a DB2 database:

1 Set the AuthenticationMethod property to clearText,
encryptedPassword, or encryptedUIDPassword.

2 Set the EncryptionMethod property to DBEncryption or
RequestDBENcryption.

DataDirect XQuery User’s Guide and Reference

165

166 Chapter 7 Securing Data Source Connections

SSL Encryption

SSL works by allowing the client and server to send each other
encrypted data that only they can decrypt. SSL negotiates the

terms of the encryption in a sequence of events known as the

SSL handshake. The handshake involves the following types of
authentication:

m SSL server authentication requires the server to authenticate
itself to the client.

m SSL client authentication is optional and requires the client to
authenticate itself to the server after the server has
authenticated itself to the client.

NOTE: DB2 and Oracle are the only databases supported by
DataDirect Connect for JDBC that support SSL client
authentication.

The version of SSL that is used and which SSL cryptographic
algorithm is used depends on which JVM you are using. Refer to
your JVM documentation for more information about its SSL
support.

Procedures for configuring SSL vary for the databases that
support it. See the individual driver chapters for details about
configuring SSL:

m DB2 - “Configuring SSL for DB2” on page 170.

m Oracle - “Configuring SSL for Oracle” on page 171

m Microsoft SQL Server — “Configuring SSL for Microsoft SQL
Server” on page 172

m Sybase — “Configuring SSL for Sybase” on page 175

SSL Server Authentication

When the client makes a connection request, the server presents
its public certificate for the client to accept or deny. The client
checks the issuer of the certificate against a list of trusted

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network

Certificate Authorities (CAs) that resides in an encrypted file on
the client known as a truststore. Optionally, the client may check
the subject (owner) of the certificate. If the certificate matches a
trusted CA in the truststore (and the certificate’s subject matches
the value that the application expects), an encrypted connection
is established between the client and server. If the certificate
does not match, the connection fails and the driver throws an
exception.

To check the issuer of the certificate against the contents of the
truststore, the driver must be able to locate the truststore and
unlock the truststore with the appropriate password. You can
specify truststore information in either of the following ways:

m Specify values for the Java system properties
javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword.
For example:

java -Djavax. net.ssl.trustStore=
C\Certificates\M/Truststore

and

java -Djavax. net.ssl.trust StorePassword=
M/Tr ust st or ePasswor d

This method sets values for all SSL sockets created in the JVM.

m Specify values for the connection properties TrustStore and
TrustStorePassword. For example:

TrustStore=C \Certficates\MTruststore
and
Tr ust St or ePasswor d=M/Tr ust st or ePasswor d

Any values specified by the TrustStore and
TrustStorePassword properties override values specified by
the Java system properties. This allows you to choose which
truststore file you want to use for a particular connection.

DataDirect XQuery User’s Guide and Reference

167

168 Chapter 7 Securing Data Source Connections

Alternatively, you can configure the DataDirect Connect for JDBC
drivers to trust any certificate sent by the server, even if the issuer
is not a trusted CA. Allowing a driver to trust any certificate sent
from the server is useful in test environments because it
eliminates the need to specify truststore information on each
client in the test environment. If the driver is configured to trust
any certificate sent from the server, the issuer information in the
certificate is ignored.

SSL Client Authentication (DB2 and Oracle)

If the server is configured for SSL client authentication, the server
asks the client to verify its identity after the server has proved its
identity. Similar to SSL server authentication, the client sends a
public certificate to the server to accept or deny. The client stores
its public certificate in an encrypted file known as a keystore.

The driver must be able to locate the keystore and unlock the
keystore with the appropriate keystore password. Depending on
the type of keystore used, the driver also may need to unlock the
keystore entry with a password to gain access to the certificate
and its private key.

DataDirect XQuery can use the following types of keystores:

m Java Keystore (JKS) contains a collection of certificates. Each
entry is identified by an alias. The value of each entry is a
certificate and the certificate’s private key. Each keystore
entry can have the same password as the keystore password
or a different password. If a keystore entry has a password
different than the keystore password, the driver must provide
this password to unlock the entry and gain access to the
certificate and its private key.

m PKCS #12 keystore contains only one certificate. To gain access
to the certificate and its private key, the driver must provide
only the keystore password. The file extension of the keystore
must be .pfx or .p12.

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network

You can specify this information in either of the following ways:

Specify values for the Java system properties
javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword. For
example:

java -Djavax. net.ssl.keyStore=
C\Certificates\ MKeystore

and

java -Djavax. net. ssl. keySt or ePasswor d=
MyKeyst or ePasswor d

This method sets values for all SSL sockets created in the JVM.

NOTE: If the keystore specified by the javax.net.ssl.keyStore
Java system property is a JKS and the keystore entry has a
password different than the keystore password, the
KeyPassword connection property must specify the password
of the keystore entry. For example:

KeyPasswor d=MyKeyPasswor d

Specify values for the connection properties KeyStore and
KeyStorePassword. For example:

KeySt ore=C:\ Certficates\ M/KeySt ore
and
Key St or ePasswor d=MyKeyst or ePasswor d

NOTE: If the keystore specified by the KeyStore connection
property is a JKS and the keystore entry has a password
different than the keystore password, the KeyPassword
connection property must specify the password of the
keystore entry. For example:

KeyPasswor d=MyKeyPasswor d

Any values specified by the KeyStore and KeyStorePassword
properties override values specified by the Java system

DataDirect XQuery User’s Guide and Reference

169

170 Chapter 7 Securing Data Source Connections

properties. This allows you to choose which keystore file you
want to use for a particular connection.

Configuring SSL for DB2

The DB2 driver supports SSL encryption for the following
databases:

m DB2 V9.1 Fixpack 2 and higher for Linux/UNIX/Windows
m DB2v9.1 for z/OS
m DB2 V5R3 and higher for iSeries

NOTE: Connection hangs can occur when the driver is configured
for SSL and the database server does not support SSL. You may
want to set a login timeout using the LoginTimeout property to
avoid problems when connecting to a server that does not
support SSL.

To configure SSL encryption:
1 Set the EncryptionMethod property to SSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

4 Optionally, set the HostNamelnCertificate property to a host
name to be used to validate the certificate. The
HostNamelnCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network

5 If your database server is configured for SSL client
authentication, configure your keystore information:

a Specify the location and password of the keystore file.
Either set the KeyStore and KeyStore properties or their
corresponding Java system properties
(javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword, respectively).

b If any key entry in the keystore file is password-protected,
set the KeyPassword property to the key password.

Configuring SSL for Oracle

The Oracle driver supports SSL encryption for the following
databases:

m Oracle 11g (R1)
m Oracle 10g (R1 and R2)
m Oracle 9i (R1 and R2)

Oracle Advanced Security must be enabled on the database
server to support SSL.

NOTE: Connection hangs can occur when the driver is configured
for SSL and the database server does not support SSL. You may
want to set a login timeout using the LoginTimeout property to
avoid problems when connecting to a server that does not
support SSL.

To configure SSL encryption:
1 Set the EncryptionMethod property to SSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).

DataDirect XQuery User’s Guide and Reference

171

172 Chapter 7 Securing Data Source Connections

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

4 Optionally, set the HostNamelnCertificate property to a host
name to be used to validate the certificate. The
HostNamelnCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

5 If your database server is configured for SSL client
authentication, configure your keystore information:

a Specify the location and password of the keystore file.
Either set the KeyStore and KeyStore properties or their
corresponding Java system properties
(javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword,
respectively).

b If any key entry in the keystore file is password-protected,
set the KeyPassword property to the key password.

Configuring SSL for Microsoft SQL
Server

The SQL Server driver supports SSL encryption for the following
databases:

m Microsoft SQL Server 2000 or higher
m Microsoft SQL Server 2000 Enterprise Edition (64-bit) or
higher

Depending on your Microsoft SQL Server configuration, you can
choose to encrypt all data, including the login request, or encrypt
the login request only. Encrypting login requests, but not data, is
useful for the following scenarios:

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network

m When your application needs security, but cannot afford to
pay the performance penalty for encrypting data transferred
between the driver and server.

m When the server is not configured for SSL, but your
application still requires a minimum degree of security.
(Applicable to Microsoft SQL Server 2005 and higher only.)

NOTE: When SSL is enabled, the driver communicates with
database protocol packets set by the server’s default packet size.
Any value set by the PacketSize property is ignored.

Using SSL with Microsoft SQL Server

If your Microsoft SQL Server database server has been
configured with an SSL certificate signed by a trusted CA, the
server can be configured so that SSL encryption is either optional
or required. When required, connections from clients that do
support SSL encryption fail.

Although a signed trusted SSL certificate is recommended for
the best degree of security, Microsoft SQL Server 2005 and
higher can provide limited security protection even if an SSL
certificate has not been configured on the server. If a trusted
certificate is not installed, the server will use a self-signed
certificate to encrypt the login request, but not the data.

Table 7-5 shows how the different EncryptionMethod property
values behave with different Microsoft SQL Server
configurations.

Table 7-5. EncryptionMethod Property and Microsoft SQL Server Configurations

Value No SSL Certificate SSL Optional SSL Required
noEncryption Login request and Login request and Connection attempt
data are not data are not fails.
encrypted. encrypted.

DataDirect XQuery User’s Guide and Reference

173

174 Chapter 7 Securing Data Source Connections

Table 7-5. EncryptionMethod Property and Microsoft SQL Server Configurations

Value No SSL Certificate SSL Optional SSL Required

SSL Connection attempt Login request and Login request and
fails. data are encrypted. data are encrypted.

requestSSL Login request and Login request and Login request and
data are not data are encrypted. data are encrypted.
encrypted.

loginSSL Microsoft SQL Server Login request is Login request and

2005 and higher:
Login request is
encrypted; data is
not.

Microsoft SQL Server
2000: Connection
attempt fails.

encrypted; data is
not.

data are encrypted.

How to Configure SSL for Microsoft SQL Server

To configure SSL encryption for Microsoft SQL Server:

1 Choose the type of encryption for your application:

= If you want the driver to encrypt all data, including the
login request, set the EncryptionMethod property to SSL

or requestSSL.

m If you want the driver to encrypt only the login request,
set the EncryptionMethod property to loginSSL.

2 Specify the location and password of the truststore file used

for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system

properties (javax.net.ssl.trustStore and

javax.net.ssl.trustStorePassword, respectively).

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network

4 Optionally, set the HostNamelnCertificate property to a host
name to be used to validate the certificate. The
HostNamelnCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

Configuring SSL for Sybase

The Sybase driver supports SSL encryption for the following
databases:

m Sybase Adaptive Server Enterprise 15.0

m Sybase Adaptive Server Enterprise 12.5, 12.5.1, 12.5.2, 12.5.3,
and 12.5.4

In addition, the Sybase Security and Directory Services package,
ASE_SECDIR, is required.

NOTE: Connection hangs can occur when the driver is configured
for SSL and the database server does not support SSL. You may
want to set a login timeout using the LoginTimeout property to
avoid problems when connecting to a server that does not
support SSL.

To configure SSL encryption:
1 Set the EncryptionMethod property to SSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

DataDirect XQuery User’s Guide and Reference

175

176 Chapter 7 Securing Data Source Connections

4 Optionally, set the HostNamelnCertificate property to a host
name to be used to validate the certificate. The
HostNamelnCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

DataDirect XQuery User’s Guide and Reference

177

8 Improving Performance

This chapter provides information and techniques you can use to
enhance the performance or your DataDirect XQuery
applications. This chapter covers the following topics:

“Querying Large XML Documents” on page 177
"Using Comparisons” on page 189
“Understanding Compensation” on page 191
“Using Query Pooling” on page 192

“Using Connection Pooling” on page 193

If you work with relational databases, see “Using DataDirect
XQuery SQL Generation Algorithms” on page 260 to learn about
different ways DataDirect XQuery can generate translations of
XQuery code to SQL statements.

Querying Large XML Documents

Querying large XML documents can present processing
challenges, both in terms of query performance and memory
resources. The DataDirect XQuery Streaming XML feature
provides an efficient way to process XQuery, especially against
large documents.

This section describes what the Streaming XML feature is, how to
use it, and provides several examples. It covers the following

topics:

m “What is Streaming XML?"” on page 178
m “Enabling Streaming XML" on page 178
m “Data Sources” on page 180

m “Using Plan Explain” on page 181

DataDirect XQuery User’s Guide and Reference

178 Chapter 8 Improving Performance

m “Taking Advantage of Streaming XML" on page 182
m “Streaming XML Examples” on page 185

What is Streaming XML?

The DataDirect XQuery engine supports a processing technique
known as Streaming XML. Streaming XML processes a document
sequentially, discarding portions of the document that are no
longer needed to produce further query results. This technique
reduces memory usage because only the portion of a document
needed at a given stage of query processing is instantiated in
memory — it simultaneously parses the XML document, executes
the query, and sends the data to the application as needed.

The Streaming XML feature operates on a per XML document
basis. For example, in a single query, the Streaming XML feature
might be used for XML document A and not for XML document
B. See “Streaming XML Is Not Always Used” on page 179 for
more information on this topic.

Enabling Streaming XML

The Streaming XML feature is enabled by default. You can
override the default behavior in one of two ways:

m Set ddtek:xml-streaming="no" in the query prolog. See
“Using Option Declarations and Extension Expressions” on
page 275 for more information on this topic.

m Setthe "streaming" attribute in the <request> element to no.
See “HTTP Functions <request> Element” on page 433 for
more information on this topic.

DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents

Streaming XML Is Not Always Used

When Streaming XML is enabled, the DataDirect XQuery engine
makes the determination to use it when the XQuery is executed.
There are certain circumstances, however, in which Streaming
XML is not used, even if it is enabled:

m If the XML document possibly needs to be parsed more than
once. For example, the following two circumstances require
an XML document to be parsed more than once:

¢ If the query includes fn:doc() without literal arguments.
In this case, the documents to be queried are determined
at runtime and, therefore, might be parsed twice.

e |f the fn:doc() expression is used in multiple for clauses in
a FLWOR expression. For example:

for $a in doc("A XM")/AB/IC
return
for $b in doc("X XM")/ XY/ Z
return

In this case, Streaming XML is used for A.XML, but not for
X XML.

m If nodes from the XML document are accessed with a reverse
or optional axis, or with any function that is based indirectly
on such an axis: fn:root(), fn:id(), and fn:idref().

When Streaming XML is not used, the DataDirect XQuery engine
loads the entire XML document in memory and creates an
optimized in-memory representation of it. The in-memory
representation is used during query execution and then
discarded. In general, this technique requires more memory than
Streaming XML, but it can be more efficient (in terms of
processing time) for certain XQuery.

DataDirect XQuery User’s Guide and Reference

179

180 Chapter 8 Improving Performance

Streaming Can Be Interrupted

In the following circumstances, some expressions can cause the
Streaming XML feature to stop processing the current node:

A node is used in a function or operator, including effective
boolean value calculations. For example:

i f(doc("foo.xm")/alblc

In this example, Streaming XML is used for the a and b nodes,
but the c nodes and all of its children are instantiated in
memory.

Multiple path expressions are evaluated on a node. For
example:

doc("foo.xm ")/ al/ b/ (c|d)
In this example, Streaming XML is used for the a nodes, but

the b nodes and all of its children are instantiated in memory.

A node is referenced multiple times in the query.

You can easily see whether or not Streaming XML is being used to
process an XQuery using DataDirect XQuery Plan Explain. See
“Using Plan Explain” on page 181 for more information.

Data Sources

DataDirect XQuery supports Streaming XML on XML documents
accessed through:

fn:doc()

fn:collection() when using the extensions that allow querying
of directories (see “Querying Multiple Files in a Directory” on
page 288)

DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents

External variables and initial context item. For the input
values to be streamed, they must be defined as XQSequence,
java.io.Reader, java.io.InputStream, StAX, or a SAXSource
containing only an InputSource property (that is, not
XMLReader). For streaming to work with external variables
when not using prepared queries, DataDirect XQuery must
be using deferred binding (see “Support of Deferred
Binding” on page 532).

External Java functions. For the return values to be streamed,
they must be defined as
javax.xml.transform.stream.StreamSource,
javax.xml.transform.stax.StAXSource (for JVM 1.6 only), or
com.ddtek.xquery.StAXSource.

Using Plan Explain

Plan Explain allows you to generate an XQuery execution plan
that lets you see how DataDirect XQuery will execute your query.
Among other information about your XQuery, Plan Explain
shows you whether or not the DataDirect XQuery engine will use
Streaming XML, as shown in the following illustration:

= Plan

=2y flwor
d-‘ return
=6 let
L Outputs
m XQuery: let gmnrme ;= count($mnrml) return $mnmea
=] =
= T
| Outputs
m XQuery: let gmnrml = doc"inventory.xml")ffitem return fmnrm1

See “Generating XQuery Execution Plans” on page 307 to learn
more about Plan Explain.

DataDirect XQuery User’s Guide and Reference

181

182 Chapter 8 Improving Performance

Taking Advantage of Streaming XML

Depending on the task performed by your XQuery, it is possible
to make small changes to your XQuery to take advantage of the
performance benefits provided by Streaming XML.

Working with XML Headers

Streaming XML can be useful when parts of an input document
are used to create a header in the result, and numerous
transformations are performed on the rest of the result.
Streaming XML can be especially beneficial when dealing with
large input documents.

Consider the following XML document, which lists numerous
stock holdings for an individual (imagine <hol di ng> elements
numbering in the hundreds or even thousands).

<?xm version="1.0"?>
<per son>
<first-name>John</first-name>
<l ast - name>Sni t h</ | ast - nane>
<hol di ngs>
<hol di ng ticker="PRGS">1000</ hol di ng>
<hol di ng ticker="STOCK1">2000</ hol di ng>
<hol di ng ticker="STOCK2">3000</ hol di ng>
<l-- ., -->
</ hol di ngs>
</ person>

Your XQuery needs to create a separate XML document for each
stock holding, using the header information to create a <per son>
element and then listing holding information, like this:

<person | astName="Snith" nane="John">
<hol di ng ti cker="PRGS">1000</ hol di ng>
</ per son>

The XQuery used to provide this XML output could look like this:

DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents

et $firstNane := doc("header.xm")/person/first-name
et $l astName : = doc("header.xnl ")/person/last-nanme
for $hol ding at $pos in
doc("header.xn ")/ person/ hol di ngs/ hol di ng
return
ddtek: serialize-to-url(

<person nanme="{$firstName}" |astName=
"{$l ast Nane} " >{ $hol di ng} </ per son>,

concat ("out put-", $pos, ".xm"), "indent=yes"

)

In this case, though, the Streaming XML feature is not used
where it will provide the most benefit. Indeed, it is used only for
minor formatting operations performed on the XQuery output.

Making a simple change to the XQuery (shown in bold in the
following code sample) ensures that Streaming XML is used
throughout the XQuery — most importantly in the loop formed
by the FLWOR expression:

let $firstNane as el ement() := doc("header.xm ")/ person/first-nane
et $lastName as el enent() := doc("header.xm ")/ person/|ast-nane
for $hol ding at $pos in doc("header.xn ")/ person/ hol di ngs/ hol di ng
return
ddt ek: serialize-to-url(
<person nanme="{$firstNane}" |astNane="{$l ast Nane}">{$hol di ng} </ per son>
concat ("output-", $pos, ".xm"), "indent=yes"

)

The as el enent () declarations tell DataDirect XQuery that the
first-nane and | ast - nane elements in the source document are
singletons, which allows the DataDirect XQuery engine to use
Streaming XML on the FLWOR expression.

Aggregation Functions

XQuery aggregation functions — functions that count elements
in an XML document, for example — can take advantage of the
efficiencies made available by the Streaming XML feature.
Aggregation functions include:

DataDirect XQuery User’s Guide and Reference

183

184 Chapter 8 Improving Performance

fcn:count()
fn:min()
fn:max()
fn:sum()
fn:avg()

Example

Consider the following XQuery; imagine that inventory.xml
contains thousands of <i t en» elements:

count (doc("inventory.xm"')//item

Here, the count () function is simply counting the number of

<i tem> elements in the inventory.xml document. Examining the
XQuery using Plan Explain, we can see that Streaming XML is
used in two let clauses:

= Plan
2y flwor
4-‘ return
=6 let
FE Streaming XML Data Source
=[] Oufputs
m XQuery: et gmnrme = count($mnrml) return $mnmez
o let
=[] Outputs
m XQuery: let tmnrml = doc{"inventory.«ml'iffitem return fmnrml

If we make the XQuery slightly more complicated, by returning
the number of <i t en» elements per <r egi on>:

for $b in doc('inventory.xm"')/sitelregions/*
return count ($b//item

XML Streaming is still used to process this XQuery, but note that
the XQuery uses a let- and for- clause, rather than two let-
clauses, as in the previous example:

DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents

E1¢ Plan
=Y flwor

= Streaming XML Data Source
o

Ea

m XQuery: for Evarl in doc("inventory.zml")/sitefregions/* let $A3 (= $varlffitem return £43

Streaming XML Examples

This section provides several examples of the Streaming XML
feature, including examples of when it is not used by the
DataDirect XQuery engine to process the XQuery. The examples
are commented, allowing you to easily copy/paste them into test
applications.

When Streaming XML Is Used

The following show examples of XQuery in which Streaming
XML is used.

Simple Path Expressions
(:
A sinple path expression.

The conpl ete docunment can be processed in streaning node.
D)
doc("file.xm")/alblc

(:
A sinple path expression.

The conpl ete docunment can be processed in streaning node.
If ac element is a descendent of a parent c elenent, it is
menori zed.

D)
doc("file.xm")/albl/c

DataDirect XQuery User’s Guide and Reference

185

186 Chapter 8 Improving Performance

Path Expression with Predicate
(:
A path expression with predicate.

The docunent is queried using the Streaning XM feature.
Only the values of d that match the predicate are
materialized; all ¢'s and x’s are materialized and

di scarded one by one.

D)
doc("file.xm")/alb/c[x eq 1]/d

Path Expression with Attribute Predicate
(:
A path expression with attribute predicate.

The docunent is queried using the Streaning XM feature.
No materialization is perforned. Only general conparisons
with attribute tests are supported.

D)
doc("file.xm ")/ /I TEMS @ TEMNO eq ' 1004]

XQuery Expression with fn:data

(:

The docunent is queried using the Streaning XM feature.
Atom zation on streanming results is supported.

| TEMNO el ements are not first materialized and then
atom zed.

H)
fn:data(doc("file.xm")//I TEMS/ | TEMNO

XQuery Expression with Function on Node

(:

The docunent is queried using the Streaning XM feature.
Functions on nodes (fn:name(), fn:node-nane(),

fn:local -name(), etc.) are supported.

D)
doc("file.xm")//1 TEMS/ el ement () [fn:local - nang(.)
eq ' TEMNO]

DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents 187

XQuery Expression with exists

(:

The docunent is queried using the Streanming XM feature.
Exi stentional tests are supported.

D)

doc("file.xm ")/ /1 TEMS exi sts(@ TEMNO)]
doc("file.xm")//1 TEMS] exi sts(I TEMNO)]
doc("file.xm")//1 TEMS/ | TEMN(exi sts(.)]

Two XML Documents

(:
Two different documents in a sequence. Both are queried
with the Streamng XM feature.

D)
doc("filel.xm")/alblc,

doc("file2.xm")/x/ylz

Complex Example Using the Streaming XML Feature

(
The docunent is queried using the Streaning XM feature.
D)
<or der s>{
for $order in doc("orders.xm")//orders
for $customer in collection("CUSTOMVER')/ CUSTOVER] CUST I D = $order/ cust oner]
return
<order id="{$order/ @d}">
<cust oner >
<name>{ $cust omer / CUST_NAME/ dat a(.) } </ name>
<addr ess>{ $cust omer / CUST_ADDRESS/ dat a(.) } </ addr ess>
</ cust omer >
</ order>
}<lorders>

(:
If the for clauses are switched, the orders.xm document is queried nultiple
tinmes; therefore, streamng is not used and the docunent is instantiated.

D)

DataDirect XQuery User’s Guide and Reference

188 Chapter 8 Improving Performance

<or der s>{
for $customer in collection("CUSTOMER')/ CUSTOMVER
for $order in doc("orders.xm")//orders
where $cust omer /CUST | D = $order/ cust onmer

return
<order id="{$order/ @d}">
<cust oner >

<name>{ $cust omer / CUST_NAME/ dat a(.) } </ name>
<addr ess>{ $cust omer / CUST_ADDRESS/ dat a(.) } </ addr ess>
</ cust oner >
</ order>
}<lorders>

When Streaming XML Is Not Used

The following show examples of XQuery in which Streaming XML
is not used.

Reverse Axis

(:

The Streaming XM. feature is not used due to the reverse
axi s.

D)

doc("file.xm")/alblc/../d

(:

This query coul d have been witten as follows, in which
case the b elenents are materialized one by one.

D)
doc("file.xm")/alb[c]/d

Optional Axis
(:

The Streaming XM. feature is not used due to the
precedi ng-sibling optional axis.

D)
doc("file.xm")/alb[c=5]/preceding-sibling::*[1]

DataDirect XQuery User’s Guide and Reference

Using Comparisons 189

Two Documents

(:

Two docunents, not queried with the Streanming XM. feature
as the sanme document. These docunments are possibly queried
twi ce.

D)
declare variable $file as xs:string external;
doc("filel.xm")/alblc,

doc($file)/xlylz

Using Comparisons

When DataDirect XQuery encounters comparisons in where
clauses or in predicate expressions and an operand is bound to
data in an XML data source, performance can be significantly
improved if this operand is known by DataDirect XQuery to be a
single item.

Consider the following query:

for $request in doc('file:///c:/in/request.xm")/request
let $ticker := $request/performancel/ticker,
$start := $request/performance/start,
$end : = $request/ performance/ end
for $h in collection('historical')/historical
where $h/ticker = $ticker
return $h

DataDirect XQuery does not know how many ticker, start, or end
elements may occur in the XML source, so it restricts its rewrites
in case there are more than one of each of these elements.

DataDirect XQuery User’s Guide and Reference

190 Chapter 8 Improving Performance

Using value comparisons — for example, eq, as shown in the
following code - instead of general comparisons makes this
query run faster:

for $request in doc('file:///c:/in/request.xm")/request
let $ticker := $request/performancel/ticker,
$start : = $request/performance/start,
$end : = $request/ performance/ end
for $h in collection('historical')/historica
where $h/ticker eq $ticker
return $h

However, this does not work for all data types because eq is
restrictive in the types it accepts and does less implicit casting.

Generally, using value comparisons (eq, ne, It, le, gt, ge) instead
of general comparisons (=, !=, <, <=, >, >=) improves
performance. When using general comparison against sequences,
the result of the expression is true if any combination of the
items contained in the sequences satisfies the comparison. Value
comparison only applies to operands that are single items, and
the expression returns true if the single items compared with the
value comparison operator (for example, eq) match. If one of the
two operands is not a single item, the use of eq raises an error. In
the preceding example, the query behavior perceived by the user
does not differ when using = or eq because $h/ticker and $ticker
are always single items. But, typically, using eq instead of =
significantly improves performance.

DataDirect XQuery User’s Guide and Reference

Understanding Compensation 191

Understanding Compensation

XQuery contains expressions, functions, and operators that
cannot be directly translated into SQL. For example,
fn:tokenize() has no SQL equivalent. When an XQuery
expression cannot be translated to SQL, DataDirect XQuery
"compensates" the expression; that is, it executes the expression
in the DataDirect XQuery Engine using data retrieved from the
database. Compensation provides full-featured XQuery
functionality, but it is is often slower than executing an
expression in the database.

Sometimes, the same result can be obtained by using an
expression that does not require compensation. For example,
suppose you need to perform string comparisons with data that
contains trailing spaces. You could use the XQuery function
normalize-space(), which removes leading and trailing spaces:

for $h in collection('stocks.dbo.historical')/historical
where normal i ze-space($h/ticker) = ' AVZN
return $h

However, the normalize-space() function is compensated, which
means that the where clause is evaluated in the DataDirect
XQuery engine rather than in the database, which slows
performance. As shown in the following example, the most
efficient solution is to use the function rtrim(), which is available
for XML documents and all supported databases:

for $h in collection('historical')/historical
where ddtek:rtrin($h/ticker) ="AVN
return $h

See Appendix A “XQuery Support” on page 339 for details
about which expressions, functions, and operators are
compensated.

DataDirect XQuery User’s Guide and Reference

192 Chapter 8 Improving Performance

Using Query Pooling

Query pooling allows an application to reuse queries that have
been executed. If your Java application executes the same query
more than once, you can improve performance by enabling
DataDirect XQuery's internal query pooling. When query pooling
is enabled, DataDirect XQuery caches a specified number of
qgueries executed by an application. DataDirect XQuery pools
queries executed using XQExpression and XQPreparedExpression.

Using XQJ, you can enable query pooling by specifying the
DDXQDataSource MaxPooledQueries property. For example, if
the DDXQDataSource MaxPooledQueries property is set to 20,
DataDirect XQuery caches the last 20 queries executed by the
application. If the value set for this property is greater than the
number of queries used by the application, all queries are cached.
See “DDXQDataSource and DDXQJDBCConnection Properties”
on page 128 for more information.

DataDirect XQuery User’s Guide and Reference

Using Connection Pooling 193

Using Connection Pooling

Connection pooling allows your application to reuse
connections. DataDirect XQuery supports connection pooling
through JDBC and supports JDBC connection pool managers in
the following application server environments:

Tomcat 5.x and 6.x

JBoss 4.x and 5.x

BEA WebLogic Platform 9.x and 10.x
IBM WebSphere Application Server V6.1
Oracle Application Server 10g

For the most current information about which application server
environments are supported, go to:

http://www.datadirect.com/developer/data-integration/tutorials/
examples/connection-pooling/index.ssp

DataDirect XQuery has a JDBC driver that allows your
application to use connection pooling with an application
server's JDBC pool manager. See “Configuring Connection
Pooling” on page 196 for information about this driver.

DataDirect XQuery provides three classes for support of
connection pooling:

m com.ddtek.xquery.jdbc.XQueryDriver. This is the driver class
for the DataDirect XQuery JDBC driver, which is used to
configure a pooled connection through the JDBC Driver
Manager. See “Configuring a Connection Through the JDBC
Driver Manager” on page 194.

m com.ddtek.xquery.jdbc.XQueryConnectionPoolDataSource.
This class is used to configure a pooled connection through a
data source. See “Configuring a Connection Through a Data
Source” on page 195.

DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/developer/data-integration/tutorials/examples/connection-pooling/index.ssp

194 Chapter 8 Improving Performance

m com.ddtek.xquery.jdbc.XQueryConnection. This class is used
to convert a JDBC connection into an XQJ connection. See the
example in “Configuring Connection Pooling” on page 196.

Configuring a Connection Through the
JDBC Driver Manager

The com.ddtek.xquery.jdbc.XQueryDriver class is an
implementation of the JDBC driver interface (java.sql.Driver) and

is used to configure a pooled connection through the JDBC Driver
Manager.

The syntax of the JDBC URL required by this class depends on if
you are connecting to one relational data source or multiple
relational data sources.

If you are connecting to one relational data source the syntax is:

j dbc: dat adi rect: xquery: //JdbcUrl ={url }[; optional Property=val ue[;...]]
where:

url is a URL, as documented in “Specifying Connection URIs” on
page 141.

optional Property is any of the DDXQDataSource properties, as
documented in Table 6-1, “DDXQDataSource Properties,” on
page 128.

val ue is determined by the DDXQDataSource property you are
specifying.

In the following example, the JDBC URL is defined in the first set
of braces {} and the baseURI is a property of DDXQDataSource:

j dbc: dat adi rect : xquery: //JdbcUr | ={j dbc: xquery: sql server://| ocal host: 1433;
dat abaseNanme=hol di ngs; User =nyuser | D; Passwor d=nypwd} ;
baseUR ={file:///C./xm documents/};

DataDirect XQuery User’s Guide and Reference

Using Connection Pooling

If you are connecting to multiple relational data sources the
syntax is:

j dbc: dat adi rect: xquery: //jdbcConnections={Ur | ={url}[;optional Property=val ue
[10

where:

url is a URL, as documented in “Specifying Connection URIs” on
page 141.

optional Property is any of the DDXQJDBCConnection
properties, as documented in Table 6-2, “DDXQJDBCConnection
Properties,” on page 136.

val ue is determined by the DDXQJDBCConnection property you
are specifying.

In the following example, two JDBC URLs are specified and the
user ID and password are specified using the User and Password
properties of DDXQJDBCConnection; they are not specified
within the URL:

j dbc: dat adi rect: xquery://jdbcConnecti ons=

{Url ={j dbc: xquery: sql server://serverl: 1433; dat abaseNane=st ocks}; User =myuser | D;
Passwor d=mypwd}, {Url={jdbc: xquery:sql server://server2:1433; dat abaseNane=
hol di ngs};

User =nyuser | D2; Passwor d=nypwd2}

Configuring a Connection Through a
Data Source

The com.ddtek.xquery.jdbc.XQueryConnectionPoolDataSource
class is an implementation of the JDBC interface

javax.sql.ConnectionPoolDataSource and is used to configure a
connection pool connection through a data source.

DataDirect XQuery User’s Guide and Reference

195

196 Chapter 8 Improving Performance

Some application servers, such as IBM WebSphere, require a data
source to configure pooled connections and provide the
infrastructure for you to create the ConnectionPoolDataSource
objects you need to configure connection pooling.

The only property defined for this class is connectionURL. The
value for this property is a URL, which is documented in
“Configuring a Connection Through the JDBC Driver Manager”
on page 194.

Configuring Connection Pooling

1 The DataDirect XQuery JDBC driver must be registered in the
application server and a connection pool must be created.
This step makes the pooled connections available to your
application code through JNDI. For example:

Context evnContext =
(Context)initContext.|ookup("java:/conmp/env");

Dat aSource jdbc_ds =

(Dat aSour ce) envCont ext . | ookup("j dbc/ DDXQExanpl ") ;
Connection jdbc_c = jdbc_ds. get Connection();

Now, a JDBC connection is available.

2 Convert the JDBC connection into an XQJ connection. For
example:

XQConnection xqj _c =
XQuer yConnect i on. get XQConnection(j dbc_c);

NOTE: DataDirect XQuery provides a class,
com.ddtek.xquery.jdbc.XQueryConnection, to convert the
JDBC connection into an XQJ connection.

Now, an XQJ connection is available and can be used with
XQJ. For example:

XQPr epar edExpression xqj _p =
Xqj _c. prepareExpression("fn:doc(’foo.xm")//abc");

DataDirect XQuery User’s Guide and Reference

i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

i mport

Using Connection Pooling

3 To make a connection available again for pooling, you must
close the JDBC connection, not the XQJ connection. For
example:

jdbc_c.close()

For information about how to configure DataDirect XQuery to
use connection pooling in the supported application server
environments, go to:

http://www.datadirect.com/developer/data-integration/tutorials/
examples/connection-pooling/index.ssp

Example of Servlet Using Connection
Pooling

The following code is a fully functional example for a Java
Servlet.

java.io.| CException;
java.io.PrintWiter;

j ava. sqgl . Connecti on;

j ava. sql . SQLExcept i on;
java.util.Properties;

j avax.
j avax.
j avax.
j avax.
j avax.
j avax.
j avax.
j avax.
j avax.
j avax.
j avax.

nam ng. Cont ext ;

nam ng. I ni tial Cont ext;

servl et. Servl et Excepti on;
servlet.http. HtpServlet;
servlet. http. Ht pServl et Request ;
servlet. http. Ht pServl et Response;
sql . Dat aSour ce;

xm . xquery. XQConnect i on;

xm . xquery. XQExcept i on;

xm . xquery. XQEXpr essi on;

xm . xquery. XQSequence;

com ddt ek. xquery. j dbc. XQuer yConnect i on;

DataDirect XQuery User’s Guide and Reference

197

http://www.datadirect.com/developer/data-integration/tutorials/examples/connection-pooling/index.ssp

198

Chapter 8 Improving Performance

/**

* DataDirect Servlet exanple denmonstrating the integration with
* JDBC Connection Pooling

*/

public class DDXQServlet extends HtpServlet {

public void doGet(HtpServl et Request request, HtpServletResponse response)
throws Servl et Exception, |CException {

Connection jdbc_c = null;
XQExpression xqj _e = null;

try {
Context initContext = new Initial Context();

Cont ext envContext = (Context)initContext.|ookup("java:/conp/env");
Dat aSour ce j dbc_ds =(Dat aSour ce) envCont ext .| ookup("j dbc/ DDXQExanpl ") ;
jdbc_c = jdbc_ds. get Connection();

PrintWiter out = response.getWiter();
XQConnection xgj _c = XQueryConnecti on. get XQConnecti on(j dbc_c);
XQj _e = xQj _c. creat eExpression();

X@equence xqj _S = xQj _e. execut eQuery(
' Current date: current-date(),
" +

Current time: current-time(), " +
" <table border="1'> "+
" <tr> "+

" <th>User</th> "+
" <th>Stock</th> "+
" <t h>Shares</th> "+
" </tr> "+
{ "+
for $itemin collection('holdings')/holdings "+
return "+
<tr> "+
<td>{$itemuserid/data(.)}</td> "+
<td>{$i tenm stockticker/data(.)}</td> "+
" <td>{$i tenl shares/data(.)}</td> "+
" </tr> "+
" e
" </table>");

DataDirect XQuery User’s Guide and Reference

Using Connection Pooling 199

Xqj _S.writeSequence(out, new Properties());

out. cl ose();
}
cat ch(Exception e){
t hrow new Servl et Exception(e);
}
finally {
if (xgj_e !'=null) try{xqj _e.close();} catch (XQException e) {}
if (jdbc_c !'=null) try{jdbc_c.close();} catch (SQLException e) {}
1
}
1

DataDirect XQuery User’s Guide and Reference

200 Chapter 8 Improving Performance

DataDirect XQuery User’s Guide and Reference

201

9 Building a Web Service

This chapter provides an overview of the XQueryWebService
framework and describes how to use it to build a Web service. It
covers the following topics:

“XQueryWebService Framework Overview” on page 201
“XQueryWebService Framework Architecture” on page 204
“Example — Employee Lookup” on page 211

“Specifying a Database Connection” on page 213

“Choosing an Interface for Web Service Access” on page 216
“Tools for Testing Web Service Operations” on page 219
“Generating WSDL"” on page 221

“Using WSDL Service References” on page 223

XQueryWebService Framework Overview

XQueryWebService is a framework that allows you to expose an
XQuery as a Web service. Implemented as a library for Java
classes, XQueryWebService is designed to simplify the design and
implementation of Web Servlet Applications. The jar file for this
library, xquerywebservice.jar, is located in the \lib directory
where you install DataDirect XQuery.

The XQueryWebService framework provides a Servlet
implementation to expose as a Web service XQuery stored in a
specific directory. Each XQuery exposes one operation; this
operation is expressed in the query body through a function that
takes the name of the XQuery file without the extension. For
example, the file emp.xquery provides the emp operation.
Parameters (external variables) expressed in the XQuery, if any,
are reflected in the operation’s prototype.

DataDirect XQuery User’s Guide and Reference

202 Chapter 9 Building a Web Service

XQuery modules cannot be published as Web services. A module
can be parsed only indirectly when imported by another query.

An XQuery is compiled using lazy evaulation on the first request;
after that it is compiled only if the XQuery source on the disk
changes.

Third Party Dependencies

The XQueryWebService framework does not require any
additional Java library; it relies only on built-in classes, like JAXP
to manipulate XML, which are available from Java 1.4.2 and later.

Web Service Interfaces

The Web Service Description Language (WSDL) specification
allows a Web service to be exposed through several types of
bindings: HTTP GET, HTTP POST and SOAP over HTTP. This section
describes these bindings in greater detail.

DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/wsdl

XQueryWebService Framework Overview 203

HTTP GET

The simplest binding is HTTP GET, often described as REST
(Representational State Transfer), in which the Web service call is
represented by a URL with all its parameters inline. Consider the
following URI:

http://exanpl es. xquery. conf enpl oyee- | ookup/ enp. xquer y?i d=A- C71970F

Here, enpl oyee- | ookup is the service name, enp is the operation
name, and what follows after the question mark is a name/value
pair of parameters (i d=A- C71970F).

HTTP GET is very simple to invoke - it is equivalent to accessing
an HTML page on a Web server; any internet browser can invoke
an XQuery Web service this way. However, only simple types such
as strings or numbers can be passed through HTTP GET, limiting
this approach to Remote Procedure Calling (RPC) style Web
services. Web service responses from a REST binding are always
XML fragments.

HTTP POST

HTTP POST allows you to design Web services with sophisticated
request messages in the form of XML fragments. The drawback
to HTTP POST is that the XQuery language does not provide a
standard function to perform this type of binding.

SOAP

SOAP over HTTP is layered on HTTP POST, with the addition of an
XML-based wire protocol that describes what the
request/response looks like and provides a tighter integration
with XML Schema. The SOAP protocol defines an optional
element called Header to carry information like user/password or
session id.

DataDirect XQuery User’s Guide and Reference

204 Chapter 9 Building a Web Service

For more information on Web service interfaces, see
“XQueryWebService Framework Architecture” on page 204.

XQueryWebService Framework Architecture

A high-level illustration of the XQueryWebService framework
architecture looks like this:

Tomcat Web Server

HTTP Request
hitp:ffexamples xquery.com/employee-lookup/femp. xquery?id=A-C7 1970F

-
</dd:0utout>

To start, an HTTP request is submitted to a Web server (a Tomcat
Web Server in this case). The URI used to invoke the Web service
takes the following form:

http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

where:

m http://exanpl es. xquery. com enpl oyee- | ookup/ enp. xquery is
the location of the XQuery Web service. The Web service was
created by saving an XQuery to the employee-lookup
directory where the Tomcat Web Server is running.

m i d=A-C71970F is a parameter passed to the XQuery. This
parameter, as you will see in a moment, is defined in the
XQuery.

DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

XQueryWebService Framework Architecture

When the XQuery is finished, it returns a value using HTTP
response, as shown in the following illustration.

<2 http:/lexamples.xquery.com/employee-lookup/emp.xquery?id-A-C71970F - Microsoft Internet E... E|@|E‘

File Edit Wiew Favorites Tools Help I
Q- © X @ G P Joroos @ -l & -)51 E B
Addressi@ http: ffexamples cquery, comfemployee-lookup/emp.xqueryfid=A-C7F 197 0F V. Go Links

- =dd: Output xmins:dd="http:/ /www.datadirect.com"»
- <roots
- =<employees
zemp_id>A-C71970F</emp_id>
<fhame=Ara</fnamas
“minit /=
zlnamezCruz=/Iname=
<job_id=10</0b_id=
<job_lvl=87</ob_lvl=
<pub_id>=1389</pub_id=
<hire_date>1991-10-26T00:00:00</hire_datexs
</femployees
</roots
=/dd: Output>

&] Dane ® Internet

Let’s take a closer look inside the DataDirect XQueryWebService
directory on the Web server (DDXQWS).

DDXQWS Servlet

Web Service
Request
. Web Service
DataDirect XQuery Response
emp.xquery
\‘--_--‘/’-.__‘~

The browser (or an application) submits the Web service request
using SOAP or HTTP GET for the XQuery stored on the Web
server. Next, DataDirect XQuery unpacks the Web service request
and binds its parameters, if any, to the XQuery. In our example,
the parameter passed with the Web service request is an ID. The
XQuery is then executed and its result (an XML document) is
returned to the client.

DataDirect XQuery User’s Guide and Reference

205

206 Chapter 9 Building a Web Service

Example XQuery

To gain a more detailed understanding of what is happening
inside the Web service, consider an XQuery, emp.xquery. This
XQuery retrieves employee data given a unique ID. The query
defines a parameter called id; the query body is just a single
FLWOR expression:

declare variable $id as xs:string external;

<root >{
for $enployee in collection("enployee")/enployee
where $enpl oyee/enp_id = $id
return $enpl oyee

}<lroot>

In the following section, “Example — Employee Lookup” on
page 211, you'll see how to implement this XQuery as a Web
service on your local machine.

The Web Service Description Language
(WSDL)

The Web Service Description Language (WSDL) is a language for
describing Web services. If we copy the emp.xquery to a directory,
say employee-lookup, where our Java servlet container is
running, we can use the following URI to access a WSDL
document that describes the Web service that results from our
XQuery:

http://examples.xquery.com/employee-lookup/WSDL

Using this tool, we can take a closer look at how our XQuery is
described by the WSDL document.

DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/WSDL

XQueryWebService Framework Architecture

Service Element

The service element — only one per WSDL document — is named
after the query file name without its extension. The service
contains two port definitions that always have the same name:
SOAPPort and HTTPCGETPor t, respectively; one for SOAP over HTTP,
one for HTTP GET.

<wsdl : servi ce name="Service">
<wsdl : port bi ndi ng="dd: SOAPBi ndi ng" name="S0APPort ">
<wsdl soap: addr ess
| ocation="http://exanpl es. xquery. conl enpl oyee- | ookup/ WSDL"/ >

</wsdl : port>

<wsdl : port bi ndi ng="dd: HTTPGETBI ndi ng" name="HTTPGETPort" >
<http: address
| ocation="http://exanpl es. xquery. con enpl oyee- | ookup/ WSDL"/ >

</wsdl : port>

</ wsdl ; service>

Notice that the service address or end point is the same for both
ports.

For each element wsdl : port under the element wsdl : service
there is an attribute called bi ndi ng=; the attribute value matches
the value of attribute name= of one of the bi ndi ng elements.

HTTPGETBinding

The HTTPGETBI ndi ng describes the HTTP verb (in this case it is
GET), which operations are exposed, and how the input/output
are encoded. The attribute | ocati on=in the element

wsdl : operation is particularly important — it represents the query
function to invoke in our query; in this case enp means the query
body.

<wsdl : bi ndi ng name="HTTPGETBI ndi ng" type="dd: HTTPGETPort" >
<http: binding verb: "CET"/ >
<wsdl : operation name="enp">
<http: operation |ocation="/enp"/>

DataDirect XQuery User’s Guide and Reference

207

208 Chapter 9 Building a Web Service

<wsdl : i nput >
<http: url Encoded/ >
</wsdl : i nput >
<wsdl : out put >
<mi ne: m meXM. part="Body"/>
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>

SOAPBinding

The SOAPBI ndi ng (in the following code sample) describes the
encoding style that will be used by the service; the value can be
either docunent or rpc (in our case it is always docunent). The style
docunent is completely driven by the schema definition associated
with the message, so the resulting XML fragment is more
elegant. The style r pc assumes the creation of a wrapper element
that matches the underlying function name to encapsulate the
function arguments. The XML on the wire might look the same,
but it is conceptually different.

Each wsdl soap: oper at i on defines the attribute soapActi on= that,
similar to the attribute | ocati on=in http: operati on, represents
the function name; soapAct i on= must be encoded as an HTTP
header in the Web service request.

The attribute use= in the element wsdl soap: body can be either
literal orencoded. (In the generated WSDL it will be always
literal, as suggested by the OASIS WS Basic Profile 1.0, to
improve interoperability between different client
implementations.) The message representation on the wire has
the child element of the element wsdl soap: body, which matches
the global element defined in the XML Schema and is declared in
the related message part.

DataDirect XQuery User’s Guide and Reference

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16649056

XQueryWebService Framework Architecture

The attribute t ype=in the element bi ndi ng matches the attribute
nane= of one of the element port Type. The element port Type
associates one message for the input and one for the output to
each operation.

<wsdl : bi ndi ng name="SQOAPBi ndi ng" type="dd: SOAPPort">
<wsdl soap: bi ndi ng transport="http://schemas. xn soap. or g/ soap/ htt p"
styl e="docunent "/ >
<wsdl : oper ati on name="enp">
<wsd| soap: operati on soapAction="enp. xquery" styl e="document"/>
<wsdl : i nput >
<wsd| soap: body use="literal"/>
</wsdl : i nput >
<wsdl : out put >
<wsdl soap: body use="literal"/>
</ wsdl : out put >
</wsdl : operation>
</ wsdl : bi ndi ng>

For each query function there is a pair of messages (i nput and
out put) for each binding (SOAPPort and HTTPGETPor t). Having
different messages for each binding allows, for instance, simple
types like xs:string or xs:integer to be used for HTTP GET, which
can be easily expressed inline as a URI.

<wsdl : port Type nane="SOAPPort ">
<wsdl : operati on name="enp">
<wsdl : i nput nessage="dd: enpl nput Msg"/ >
<wsdl : out put message="dd: Qut put Msg" />
<wsdl : fault name="nnt oken" nessage="dd: Faul t Msg"/>
</wsdl : operation>
</wsdl : port Type>

<wsdl : port Type name="HTTPGETPort" >
<wsdl : oper ati on name="enp">
<wsdl : i nput nessage="dd: enpl nput Msg"/ >
<wsdl : out put nmessage="dd: Qut put Msg"/ >
<wsdl : fault name="nnt oken" nessage="dd: Faul t Msg"/>
</ wsdl : oper ati on>
</ wsdl : port Type>

DataDirect XQuery User’s Guide and Reference

209

210 Chapter 9 Building a Web Service

<wsdl : types>

<wsdl : types>

The element wsdl : message may have multiple sub-elements called
wsdl : part; each part references either an XML Schema global
type or global element. OASIS WS Basic Profil