
Important: This guide is no longer being updated. For information on the latest updates to
DataDirect XQuery, refer to the Fixes.txt and Readme.txt files in your installation directory.

Release 5.0
October 2009

DataDirect XQuery®

User’s Guide and
Reference

© 2009 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by
Progress Software Corporation. The information in these materials is subject to change without notice,
and Progress Software Corporation assumes no responsibility for any errors that may appear therein.
The references in these materials to specific platforms supported are subject to change.

Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design), Artix,
Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64,
DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, IntelliStream, IONA, IONA (and design),
Making Software Work Together, Mindreef, Neon, Neon New Era of Networks, ObjectStore,
OpenEdge, Orbix, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results,
Progress Software Developers Network, Progress Sonic, ProVision, PS Select, SequeLink, Shadow,
SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software (and
design), SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and
design), and Your Software, Our Technology-Experience the Connection are registered trademarks of
Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries.
AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event
Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, DataDirect Spy, DataDirect SupportLink, FUSE, FUSE Mediation Router, FUSE
Message Broker, FUSE Services Framework, Future Proof, GVAC, High Performance Integration,
ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress Event Engine, Progress
RFID, Progress Software Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow
z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability
Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server, StormGlass, The Brains
Behind BAM, WebClient, Who Makes Progress, and Your World. Your SOA. are trademarks or service
marks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and other
countries. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. MySQL and MySQL Enterprise are registered trademarks of MySQL
AB in the United States, the European Union and other countries. Any other trademarks or service
marks contained herein are the property of their respective owners.

Third Party Acknowledgments:

DataDirect products for the Microsoft SQL Server database:

These products contain a licensed implementation of the Microsoft TDS Protocol.

Stylus Studio includes:

Xerces c++ developed by the Apache Software Foundation (http:// www.apache.org/). Copyright ©

3

1999-2006 the Apache Software Foundation. All rights reserved.

XercesJ developed by the Apache Software Foundation (http:// www.apache.org/). Copyright ©
1999-2006 the Apache Software Foundation. All rights reserved.

FOP developed by the Apache Software Foundation (http:// www.apache.org/). Copyright © 1999-2006
the Apache Software Foundation. All rights reserved.

Axis developed by the Apache Software Foundation (http:// www.apache.org/). Copyright © 1999-2006
the Apache Software Foundation. All rights reserved.

The names "Xalan", "FOP", and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation. For written permission, please contact
apache@apache.org.

Files that are subject to the DSTC Public License (DPL) Version 1.1 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at http://
www.dstc.com. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License. The Original Code is xs3p. The Initial Developer of
the Original Code is DSTC. Portions created by DSTC are Copyright © 2002. All rights reserved.

Pathan developed by DecisionSoft Limited. Copyright © 2001 DecisionSoft Limited. All rights reserved.

Software developed by Thai Open Source Software Center Ltd. Copyright © 2001-2003, Thai Open
Source Software Center Ltd. All rights reserved.

IBM ICU developed by IBM. Copyright © 1995-2003 International Business Machines Corporation and
others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
provided that the above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

Software developed by Kevin Atkinson. Copyright © 2000-2004, by Kevin Atkinson. All rights reserved.

Aspell 0.60.2, from the Free Software Foundation, Inc. (http://www.fsf.org/), which is subject to the GNU
Lesser General Public License Version 2.1 (http://www.gnu.org/licenses/lgpl.html). Software distributed
under this license is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
or implied. See the license for the specific language governing rights and limitations under the license.

Software developed by xqDoc.org. Copyright © 2005 Elsevier, Inc. All rights reserved.

Software developed by Info-ZIP. Copyright © 1990-2004 Info-ZIP. All rights reserved. For the purposes of
this copyright and license, "Info-ZIP" is defined as the following set of individuals: Mark Adler, John
Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly, Hunter Goatley, Ian Gorman,
Chris Herborth, Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David
Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith
Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler,
Antoine Verheijen, Paul von Behren, Rich Wales, Mike White. Info-ZIP software is provided "as is",
without warranty of any kind, express or implied. In no event shall Info-ZIP or its contributors be held
liable for any direct, indirect, incidental, special or consequential damages arising out of the use of or
inability to use this software.

4

Software developed by Tim Bray and Sun Microsystems and is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. Copyright © 2004 Tim Bray and Sun Microsystems.
All rights reserved.

Software developed by Saxonica Limited and is distributed on an "AS IS" basis WITHOUT WARRANTY
OF ANY KIND, either express or implied. Copyright © 2005 Saxonica Limited. All rights reserved.

Software developed by The Anti-Grain Geometry Project. Copyright © 2002-2005 Maxim Shemanarev
(McSeem). This software is provided "as is" without express or implied warranty, and with no claim as
to its suitability for any purpose.

DataDirect XML Converters. Copyright 2004 - 2009 Progress Software Corporation and/or its subsidiaries
or affiliates. All rights reserved.

DataDirect XQuery. Copyright 2004 - 2009 Progress Software Corporation and/or its subsidiaries or
affiliates. All rights reserved.

DataDirect XML Converters includes:

Software developed by World Wide Web Consortium. Copyright (c) 1998-2003 World Wide Web
Consortium (Massachusetts Institute of Technology, European Research Consortium for Informatics and
Mathematics, Keio University). All Rights Reserved.

Software developed by World Wide Web Consortium. Copyright (c) 1998-2000 World Wide Web
Consortium (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et
en Automatique, Keio University). All Rights Reserved.

Software developed by JSON.org. Copyright (c) 2002 JSON.org. All rights reserved.

DataDirect XQuery includes:

XQJ 225 XQuery API for Java 1.0 Reference Implementation. Copyright (c) 2003 -2007 Oracle. THIS
SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED, IMPLIED OR STATUTORY WARRANTIES,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL ORACLE OR
ITS LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMTED TO LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ORACLE IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

September 2009

5

 Table of Contents

List of Tables . 19

Preface . 25

What Is DataDirect XQuery®? . 25

Using This Book . 26

About the Product Documentation . 29
HTML Version. 29
PDF Version . 30

Typographical Conventions. 31

Contacting Technical Support . 33

1 Quick Start . 35

Getting Started with DataDirect XQuery. 35

Using the Command Line Utility. 40

Additional Resources. 45

2 Introduction . 47

What Is DataDirect XQuery®? . 47

What Is XQuery? . 48
The XQuery Standard . 49

What Is XQJ? . 53

DataDirect XQuery® Architecture . 55

Using DataDirect XML Converters™ . 56

Using Stylus Studio® . 57
DataDirect XQuery User’s Guide and Reference

6 Table of Contents
3 Tutorial: Using DataDirect XQuery® 59

Specifying the XQuery Version . 60
Where to Specify Version. 60
When to Specify Version . 60
How to Specify Version . 61

Configuring Connections . 61
Specifying Connection Information 62

Executing Queries. 62

Querying Data from XML Files or DOM Trees 65
Querying an XML File. 65
Querying a DOM . 66
Querying a Directory . 67

Joining Data from XML and Relational Sources. 67

Returning Results with Java XML APIs 69
DOM . 70
SAX . 71
StAX. 71

Preparing XQuery Statements . 72

Updating Data in Relational Databases 74

4 Tutorial: Using XQuery . 75

Finding XML Nodes: Path Expressions. 76
Path Expressions for XML Sources 76
Path Expressions for Relational Sources 81
DataDirect XQuery Speaks SQL . 82

Creating XML: XML Constructors . 83
Literal XML constructors . 83
Enclosed Expressions . 83

Restructuring Data: FLWOR Expressions 84
XML Reporting for Relational Sources 86
Processing XML and Relational Together 91
DataDirect XQuery User’s Guide and Reference

 Table of Contents 7
Grouping Data . 92
What Is Grouping. 93
The window Clause . 93
Example: Tumbling Windows . 94
Example: Positional Grouping. 97
Example: Sliding Windows . 98

Summary . 100

5 Tutorial: The XQuery Update Facility 101

Support Overview . 102
XUF Expressions . 102

XUF Examples. 103
Sample Files . 103

Storing Query Results . 104
Example . 105

Replacing Node Values . 105
Example . 105

Inserting a New Node . 106
Example . 107

Renaming a Node . 108
Example . 108
Example – Using XQJ . 108

Transforming Query Results . 109
Example – Replacing a Node Value 110
Example – Inserting a Node . 111

Updating Data Sources . 112
Enabling Automatic Update . 112
How Updates are Performed . 113
Example . 113
DataDirect XQuery User’s Guide and Reference

8 Table of Contents
6 Understanding Data Sources and Connections. . . . 115

Using Data Sources in Queries. 115
XML Data Sources. 116
Relational Data Sources . 118

Choosing a Connection Method . 123

Configuring Connections Explicitly . 123

Configuring Connections Using JNDI 127

DDXQDataSource and DDXQJDBCConnection Properties. . . 128
DDXQDataSource Properties . 128
DDXQJDBCConnection Properties 136

Specifying Connection URIs . 141
Connection URIs for Built-In Drivers 141
Connection URIs for Third-Party Drivers 143

7 Securing Data Source Connections 145

About Authentication . 145

Using Kerberos Authentication . 147
Configuring Kerberos Authentication 149
Specifying User Credentials with Kerberos Authentication156
Obtaining a Kerberos Ticket Granting Ticket 158

Using NTLM Authentication . 159
Configuring NTLM Authentication 160

Data Encryption Across the Network 163
Supported Encryption Methods. 164
Database-Specific Data Encryption 165
SSL Encryption . 166
Configuring SSL for DB2 . 170
Configuring SSL for Oracle . 171
Configuring SSL for Microsoft SQL Server. 172
Configuring SSL for Sybase . 175
DataDirect XQuery User’s Guide and Reference

 Table of Contents 9
8 Improving Performance . 177

Querying Large XML Documents . 177
What is Streaming XML? . 178
Enabling Streaming XML. 178
Data Sources. 180
Using Plan Explain . 181
Taking Advantage of Streaming XML 182
Streaming XML Examples . 185

Using Comparisons . 189

Understanding Compensation . 191

Using Query Pooling . 192

Using Connection Pooling. 193
Configuring a Connection Through the JDBC Driver Manager
194
Configuring a Connection Through a Data Source 195
Configuring Connection Pooling . 196
Example of Servlet Using Connection Pooling. 197

9 Building a Web Service . 201

XQueryWebService Framework Overview 201
Third Party Dependencies . 202
Web Service Interfaces . 202

XQueryWebService Framework Architecture 204
Example XQuery . 206
The Web Service Description Language (WSDL) 206

Example – Employee Lookup . 211
Other Examples . 211
Before You Begin . 211
Setting Up . 212
Next Steps. 213

Specifying a Database Connection . 213
Specifying a Single Connection. 214
DataDirect XQuery User’s Guide and Reference

10 Table of Contents
Database Connection Pooling . 214
Next Steps . 216

Choosing an Interface for Web Service Access 216
Sample XQuery . 217
Next Steps . 219

Tools for Testing Web Service Operations 219
The HTML Test Interface . 220
Next Steps . 220

Generating WSDL . 221
Next Steps . 222

Using WSDL Service References. 223
Augmenting WSDL with External XML Schema 226

10 Building a Web Service Client. 229

Overview . 229
Choosing a Function Type . 230

DataDirect HTTP Functions . 231
Function Overview . 231
Connection Authentication . 233
Managing Connections and Sockets 235
Data Streaming. 237
Response Encoding. 238
Managing Cookies . 242
Specifying HTTP Client-Server Options 244

Example: Web Service Client Comparison. 244
Using HTTP Functions . 245
Using ddtek:wscall . 246

HTTP Function Request and Response XML Schemas 247
Request XML Schema . 247
Response XML Schema. 249
DataDirect XQuery User’s Guide and Reference

 Table of Contents 11
11 Support for Relational Databases 251

Querying Relational Data . 251
XML and SQL Data Structures . 253
Simplifying Generated SQL . 253
Using an Order By Clause . 257
Using a SQL EXISTS Subclause in DB2 259
Using BINARY_DOUBLE and BINARY_FLOAT Data Types
(Oracle 10g and higher) . 260
Using DataDirect XQuery SQL Generation Algorithms . . . 260

Querying XML Type Data . 263
Supported Databases. 265
Evaluating Queries in Memory . 265

Updating Relational Data . 267
ddtek:sql-insert . 268
ddtek:sql-update . 269
ddtek:sql-delete . 270

Understanding the Transactional Behavior of DataDirect XQuery
Updates . 270

Transactions . 271
Transaction Isolation Levels. 271
Distributed Transactions . 274

12 Using Advanced Features . 275

Using Option Declarations and Extension Expressions 275
Option Declarations. 275
Using Extension Expressions . 285

Querying Multiple Files in a Directory 288
XML Files . 288
Non-XML Files . 290

Querying ZIP, JAR, and MS Office Files. 292
Creating and Updating ZIP Files . 294

Using URI Resolvers . 294
Document URI Resolvers . 295
DataDirect XQuery User’s Guide and Reference

12 Table of Contents
Library Module URI Resolvers . 296
Collection URI Resolvers . 298

Analyzing EDI to XML Conversions . 299
Overview . 300
Built-in EDI Analysis and Conversion Functions 302
Examples . 304

Generating XQuery Execution Plans . 307
Format of an XQuery Execution Plan 307
Enabling Plan Explain. 310
Example of an XQuery Execution Plan 311

Specifying Collations . 312

Using External Functions . 315
Supported External Functions . 315
Using Java Functions . 317
Using SQL Functions . 329

A XQuery Support. 339
Terminology . 339
In This Appendix . 340

2 Basics . 341
Expression Context . 342
Processing Model . 345
Error Handling . 345
Concepts . 346
Types . 346
Comments . 347

3 Expressions. 347
Primary Expressions . 348
Path Expressions . 349
Sequence Expressions . 350
Arithmetic Expressions . 350
Comparison Expressions. 351
Logical Expressions . 351
DataDirect XQuery User’s Guide and Reference

 Table of Contents 13
Constructors . 352
FLWOR Expressions . 353
Ordered and Unordered Expressions 353
Conditional Expressions. 354
Quantified Expressions . 354
Expressions on SequenceTypes . 355
Validate Expressions . 356
Extension Expressions . 356

4 Modules and Prologs . 357

5 Conformance . 358
Optional Features . 358
Data Model Conformance. 359

Namespaces . 360
Predefined Namespaces (Not Reserved). 360

B Functions and Operators. 361
2 Accessors . 362
3 Error Function . 363
4 Trace Function. 363
5 Constructor Functions. 364
6 Functions and Operators on Numerics 367
7 Functions on Strings . 369
8 Functions and Operators for anyURI 372
9 Functions and Operators on Boolean Values 373
10 Functions and Operators on Durations, Dates, and Times
374
11 Functions Related to QNames . 381
12 Operators on base64Binary and hexBinary. 382
13 Functions and Operators on NOTATION 383
14 Functions and Operators on Nodes 383
15 Functions and Operators on Sequences 384
16 Context Functions . 387
17 Casting. 388
DataDirect XQuery User’s Guide and Reference

14 Table of Contents
C Built-in Functions and Options 389

DataDirect XQuery Built-In Functions 389
ddtek:analyze-edi-from-string. 390
ddtek:analyze-edi-from-url . 391
ddtek:convert-to-xml . 393
ddtek:decimal . 394
ddtek:edi-to-xml-from-string. 394
ddtek:edi-to-xml-from-url . 396
ddtek:format-date . 397
ddtek:format-date-time. 401
ddtek:format-number . 402
ddtek:format-time . 405
ddtek:http-delete . 407
ddtek:http-get . 408
ddtek:http-head . 409
ddtek:http-options . 410
ddtek:http-post . 411
ddtek:http-put . 412
ddtek:http-trace . 414
ddtek:info . 415
ddtek:isValid . 416
ddtek:javaCast . 416
ddtek:ltrim, ddtek:rtrim, and ddtek:trim 417
ddtek:parse . 418
ddtek:serialize . 419
ddtek:serialize-to-url . 420
ddtek:sql-delete . 421
ddtek:sql-insert . 422
ddtek:sql-update . 423
ddtek:validate. 424
ddtek:validate-and-report . 427
ddtek:wscall . 430

HTTP Functions <request> Element . 433

DataDirect XQuery Options . 437
DataDirect XQuery User’s Guide and Reference

 Table of Contents 15
Namespaces . 437
Predefined Namespaces (Not Reserved). 437
Predefined Namespaces and Prefixes (Reserved). 438

D Serialization Support. 439

Overview . 439

Serialization Methods . 439
Using Standard Support . 440
Using the DataDirect XML Converters™ 442

E Database Support . 445

Supported Databases . 445

Data Type Mappings . 447
DB2 . 448
Informix . 449
MySQL. 451
Oracle . 452
PostgreSQL . 454
Microsoft SQL Server . 455
Sybase . 457

Supported XQuery Atomic Types . 459

Database Connection Properties . 460
DB2 . 460
Informix . 466
Microsoft SQL Server . 467
MySQL Enterprise. 470
Oracle . 471
PostgreSQL . 480
Sybase . 481

Database-Specific Query Functions . 483
Querying XML on DB2. 484
Querying XML on Oracle. 490
Querying XML on Microsoft SQL Server 2005 497
DataDirect XQuery User’s Guide and Reference

16 Table of Contents
F XUF Support. 501

2 Extensions to XQuery 1.0 . 502
2.1 Extensions to the Processing Model 502
2.2 Extensions to the Prolog . 503
2.3 Extensions to the Static Context 503
2.4 New Kinds of Expressions . 504
2.5 Extensions to Existing Expressions. 505
2.6 Extensions to Built-in Function Library 505

5 Conformance . 506
5.2 Optional Features . 506

G XQJ Support . 507

Java Package Name . 508

XQConnection Interface . 508

XQDataFactory . 510

XQDataSource Interface . 512

XQDynamicContext Interface . 514

XQExpression Interface . 516

XQItem Interface . 517

XQItemAccessor Interface . 517

XQItemType Interface . 519

XQMetaData Interface. 521

XQPreparedExpression Interface. 522

XQResultItem Interface . 523

XQResultSequence Interface . 524

XQSequence Interface . 524

XQSequenceType Interface . 526

XQStaticContext Interface . 526

Exception Handling . 529
DataDirect XQuery User’s Guide and Reference

 Table of Contents 17
Multi-Threading Support . 530

Accessing XML Results . 530
DOM . 531
SAX . 531
StAX . 531
Text . 532

Support of Deferred Binding . 532

XQuery Types Supported by XQJ get Methods 533

Retrieving and Binding XQuery Data Model Instances 534

H Examples . 539

Required Software. 539
Database. 539
DataDirect XQuery® . 539

Configuring Your Environment to Run the Examples 540

About the Examples . 541
Connect . 543
CustomDocumentURIResolver . 544
ExternalFunctions . 545
ExternalVariables . 546
JNDIDataSource . 546
RDBMSUpdate . 547
ResultRetrieval . 548
UpdateFacility . 549
XMLQuery . 550
XQJExecute. 551

I Troubleshooting. 553

Logging XQJ Calls with DataDirect Spy™ for XQJ 553
Enabling DataDirect Spy™ Logging 554
Generating a DataDirect Spy™ Log 559

Java Logging . 562
DataDirect XQuery User’s Guide and Reference

18 Table of Contents
Resolving fn:collection Errors . 564
Guidelines for Resolving Errors . 564
Qualifying Table Names . 565
Using Catalog and Schema Names 565
Using JDBC Connection Names . 566
Escaping Special Characters . 568
Verifying Connections . 569
Checklist . 570
Querying XML Files in a Directory 572

Resolving Static Type Errors . 573
Types for External Variables. 574
Types for Initial Context Items . 576
Union Types. 576
Types for Sorting. 577
Static Typing Extensions . 579

Index . 581
DataDirect XQuery User’s Guide and Reference

19
List of Tables

Table 1-1. Command Line Utility Options. 41

Table 6-1. DDXQDataSource Properties . 128

Table 6-2. DDXQJDBCConnection Properties . 136

Table 7-1. Authentication Methods Supported by DataDirect XQuery 146

Table 7-2. Kerberos Authentication Requirements . 148

Table 7-3. NTLM Authentication Requirements . 159

Table 7-4. Data Encryption Methods Supported by DataDirect XQuery 164

Table 7-5. EncryptionMethod Property and Microsoft SQL Server Configurations
173

Table 10-1. Recognized Mime Types and Associated Encodings 241

Table 10-2. <request> Element cookie-policy Parameters 243

Table 11-1. Isolation Level Support . 273

Table 12-1. Global Option Declarations . 276

Table 12-2. Relational Option Declarations . 279

Table 12-3. Database-Specific Option Declarations . 283

Table 12-4. Extension Expressions . 287

Table 12-5. Mapping Types Between Java and XQuery . 320

Table A-1. XQuery Expression Context . 342

Table A-2. XQuery Processing Model. 345

Table A-3. Error Handling. 345

Table A-4. XQuery Documents . 346

Table A-5. XQuery Types . 346

Table A-6. Comments . 347
DataDirect XQuery User’s Guide and Reference

20 List of Tables
Table A-7. XQuery Primary Expressions . 348

Table A-8. XQuery Path Expressions . 349

Table A-9. XQuery Sequence Expressions. 350

Table A-10. XQuery Arithmetic Expressions. 350

Table A-11. XQuery Comparison Expressions. 351

Table A-12. XQuery Logical Expressions. 351

Table A-13. XQuery Constructors . 352

Table A-14. XQuery FLWOR Expressions . 353

Table A-15. XQuery Ordered and Unordered Expressions 353

Table A-16. XQuery Conditional Expressions . 354

Table A-17. XQuery Quantified Expressions . 354

Table A-18. XQuery Expressions on Sequence Types. 355

Table A-19. XQuery Validate Expressions . 356

Table A-20. XQuery Extension Expressions . 356

Table A-21. XQuery Modules and Prologs . 357

Table A-22. XQuery Optional Features . 358

Table A-23. Predefined Namespaces . 360

Table B-1. XQuery Accessor Functions . 362

Table B-2. XQuery Error Function. 363

Table B-3. XQuery Trace Function . 363

Table B-4. XQuery Constructor Functions for XML Schema Built-In Types 364

Table B-5. A Special Constructor Function for xs:dateTime 366

Table B-6. XQuery Operators on Numeric Values . 367

Table B-7. XQuery Comparison Operators on Numeric Values 368

Table B-8. XQuery Functions on Numeric Values . 368

Table B-9. XQuery Functions to Assemble and Disassemble Strings 369
DataDirect XQuery User’s Guide and Reference

List of Tables 21
Table B-10. XQuery Functions for Equality and Comparison of Strings 369

Table B-11. XQuery Functions on String Values . 370

Table B-12. XQuery Functions Based on Substring Matching 371

Table B-13. String Functions That Use Pattern Matching 372

Table B-14. XQuery anyURI Functions . 372

Table B-15. XQuery Boolean Constructor Functions . 373

Table B-16. XQuery Operators on Boolean Values. 373

Table B-17. XQuery Functions on Boolean Values . 374

Table B-18. Functions on Duration, Date, and Time Data Types 374

Table B-19. XQuery Comparisons of Duration, Date, and Time Values 375

Table B-20. XQuery Component Extraction Functions . 377

Table B-21. XQuery Arithmetic Operators on Durations . 378

Table B-22. Functions for Timezone Adjustment on dateTime, date, and time Values
379

Table B-23. Operators for Adding and Subtracting Durations from dateTime, date,
and time . 379

Table B-24. Constructor Functions for QNames . 381

Table B-25. XQuery Operators and Functions Related to QNames 381

Table B-26. XQuery Comparisons of base64Binary and hexBinary Values 382

Table B-27. XQuery Operators on NOTATION . 383

Table B-28. XQuery Functions and Operators on Nodes . 383

Table B-29. XQuery General Functions and Operators on Sequences. 384

Table B-30. XQuery Functions that Test Cardinality on Sequences 385

Table B-31. XQuery Functions and Operators on Equals, Union, Intersection, and Ex-
cept . 385

Table B-32. XQuery Aggregate Functions. 386

Table B-33. XQuery Functions and Operators That Generate Sequences 386

Table B-34. XQuery Context Functions . 387
DataDirect XQuery User’s Guide and Reference

22 List of Tables
Table 12-6. Common Picture String Specifiers. 399

Table 12-7. ddtek:format-number Function Parameters 403

Table 12-8. Function Request Parameters . 433

Table C-1. Predefined Namespaces . 437

Table D-1. Serialization Parameters . 440

Table D-2. Formats Supported by the DataDirect XML Converters 442

Table 12-9. DataDirect XQuery Relational Database Support 445

Table E-1. DB2 Data Types . 448

Table E-2. Informix Data Types. 449

Table E-3. MySQL Enterprise Data Types . 451

Table E-4. Oracle Data Types . 452

Table E-5. PostgreSQL Data Types . 454

Table E-6. Microsoft SQL Server Data Types . 455

Table E-7. Sybase Data Types . 457

Table E-8. Predefined XQuery Atomic Types . 459

Table E-9. DB2 Connection Properties . 461

Table E-10. Informix Connection Properties . 466

Table E-11. Microsoft SQL Server Connection Properties 468

Table E-12. MySQL Enterprise Connection Properties . 470

Table E-13. Oracle Connection Properties . 472

Table E-14. Oracle Connection Property Mappings to tnsnames.ora Connect Descrip-
tor Parameters . 478

Table E-15. Sybase Connection Properties. 481

Table 12-10. Ways to Query XML Data on DB2. 484

Table F-1. Extensions to the Processing Model . 502

Table F-2. Extensions to the Prolog . 503

Table F-3. Extensions to the Static Context . 503
DataDirect XQuery User’s Guide and Reference

List of Tables 23
Table F-4. New Kinds of Expressions . 504

Table F-5. Extensions to Built-in Function Library . 505

Table F-6. Extensions to Built-in Function Library . 505

Table G-1. XQConnection Method Summary . 508

Table G-2. XQDataFactory Method Summary . 510

Table G-3. XQDataSource Method Summary . 513

Table G-4. XQDynamicContext Method Summary . 514

Table G-5. XQExpression Method Summary . 516

Table G-6. XQItem Method Summary . 517

Table G-7. XQItemAccessor Method Summary . 517

Table G-8. XQItemType Method Summary . 519

Table G-9. XQMetaData Method Summary . 521

Table G-10. XQPreparedExpression Method Summary . 522

Table G-11. XQResultItem Method Summary . 523

Table G-12. XQResultSequence Method Summary . 524

Table G-13. XQSequence Method Summary . 524

Table G-14. XQSequenceType Method Summary . 526

Table G-15. XQStaticContext Method Summary. 527

Table G-16. XQuery Types Supported for XQJ get Methods 533

Table G-17. XQJ bind Methods and Resulting XQuery Data Model Instances . . . 534

Table G-18. Mapping XQuery Data Model Instances to Java Objects 536

Table I-1. DataDirect Spy Attributes. 557
DataDirect XQuery User’s Guide and Reference

24 List of Tables
DataDirect XQuery User’s Guide and Reference

25
Preface

This book is your guide and reference to DataDirect XQuery®
from DataDirect Technologies and describes how to use
DataDirect XQuery to access and update both XML and
relational sources, and to return XML results. This book provides
information about the following topics:

■ Using DataDirect XQuery to query both XML and relational
sources, and return XML results

■ Using DataDirect XQuery to update relational sources

■ DataDirect XQuery support for XQuery and the XQuery API
for Java™ (XQJ)

■ Examples and tutorials that show how you can use
DataDirect XQuery in your environment

■ Using DataDirect Spy™ for XQJ, a tracing and logging utility for
troubleshooting

What Is DataDirect XQuery®?
DataDirect XQuery is an XQuery processor that enables
developers to access and query XML, relational data, SOAP
messages, EDI, or a combination of data sources, and, in
addition, provides full update support for relational data.
DataDirect XQuery supports the XQuery API for Java (XQJ) API,
and is easily embeddable into any Java program; it does not
require any other product or application server, and has no
server of its own. It is recommended for developers who need to
combine and efficiently process XML, relational, and legacy data
formats in application scenarios such as data integration,
DataDirect XQuery User’s Guide and Reference

26 Preface
XML-based data exchange, XML-driven web sites, and XML
publishing. DataDirect XQuery vastly simplifies and enhances the
performance of combining and processing different types of data
(relational, XML, EDI, and more) in heterogeneous environments
and, thus, enables developers to build and deploy
high-performance applications quickly and efficiently.

Using This Book
This book assumes that you are familiar with your operating
system and its commands; the concept of directories; the
management of user accounts and security access; and your
network configuration.

This book contains the following chapters:

■ Chapter 1 “Quick Start” on page 35 provides basic
information for getting started with DataDirect XQuery
immediately after installation.

■ Chapter 2 “Introduction” on page 47 introduces DataDirect
XQuery, XQuery, XQJ, and development tools. In addition, it
provides examples of XQuery and a Java application that uses
XQJ to execute a query.

■ Chapter 3 “Tutorial: Using DataDirect XQuery®” on page 59
shows how to use DataDirect XQuery and XQJ in your Java
application to perform tasks that allow you to process queries
that access XML and relational data sources, and return XML
results.

■ Chapter 4 “Tutorial: Using XQuery” on page 75 focuses on the
three major capabilities of XQuery that make it distinctive,
and which are fundamental to processing and creating XML:
path expressions, XML constructors, and FLWOR expressions.
DataDirect XQuery User’s Guide and Reference

Using This Book 27
■ Chapter 5 “Tutorial: The XQuery Update Facility” on
page 101 describes the XQuery Update Facility (XUF), an
extension of the XQuery language that allows making
changes to data that are manipulated inside the XQuery.

■ Chapter 6 “Understanding Data Sources and
Connections” on page 115 provides conceptual information
about DataDirect XQuery data sources and connections, and
instructions for configuring them.

■ Chapter 7 “Securing Data Source Connections” on page 145
describes how to implement supported authentication and
data encryption securing methods.

■ Chapter 8 “Improving Performance” on page 177 describes
information about performance that you should consider
when working with DataDirect XQuery.

■ Chapter 9 “Building a Web Service” on page 201 describes
how to expose your XQuery as a Web service.

■ Chapter 10 “Building a Web Service Client” on page 229
describes how to use DataDirect XQuery built-in HTTP
functions to build a Web service client.

■ Chapter 11 “Support for Relational Databases” on page 251
explains DataDirect XQuery’s support of relational databases.
Specifically, it describes support of XML-typed data and how
DataDirect XQuery generates SQL.

■ Chapter 12 “Using Advanced Features” on page 275 provides
information about the following advanced features: option
declarations, extension expressions, URI resolvers, and
collations.

■ Appendix A “XQuery Support” on page 339 describes how
DataDirect XQuery supports XQuery 1.0 and 1.1 expressions.

■ Appendix B “Functions and Operators” on page 361
describes how DataDirect XQuery supports XQuery functions
and operators.
DataDirect XQuery User’s Guide and Reference

28 Preface
■ Appendix C “Built-in Functions and Options” on page 389
describes built-in DataDirect XQuery functions and options
and how to use them to process XQuery results.

■ Appendix E “Database Support” on page 445 describes the
relational databases that DataDirect XQuery supports,
including XML type mappings for relational data and
supported connection properties.

■ Appendix F, “XUF Support” on page 501 describes how
DataDirect XQuery supports the XQuery Update Facility (XUF)
expressions, functions, optional feature. It also describes
built-in DataDirect XQuery functions that support XUF.

■ Appendix G “XQJ Support” on page 507 describes how
DataDirect XQuery supports XQJ classes, interfaces, and
methods. It also describes serialization, multi-threading,
accessing XML results, and mapping data types.

■ Appendix H “Examples” on page 539 explains the example
Java applications that are shipped with DataDirect XQuery
and provides instructions for setting up and running them.

■ Appendix I “Troubleshooting” on page 553 provides valuable
DataDirect XQuery troubleshooting information, including
how to use DataDirect Spy, a development tool for tracking
XQJ calls.

NOTE: This book refers the reader to Web pages for more
information about specific topics, including Web pages that are
not maintained by DataDirect Technologies. Because it is the
nature of Web content to change frequently, DataDirect
Technologies can guarantee only that the URLs referenced in this
book were correct at the time the book was produced.
DataDirect XQuery User’s Guide and Reference

About the Product Documentation 29
About the Product Documentation
The DataDirect XQuery library consists of the following books:

■ DataDirect XQuery Installation Guide describes the
requirements and procedures for installing DataDirect
XQuery.

■ DataDirect XQuery User’s Guide and Reference provides
information about using DataDirect XQuery to access both
XML and relational sources.

Both of these books are available in HTML and PDF format. By
default, the HTML version is installed during a normal
installation of DataDirect XQuery. The PDF version is an optional
installation. If you choose to install the PDF version, the books
are installed in the books/ddxquery subdirectory of the
DataDirect XQuery installation directory.

HTML Version

Both of the DataDirect XQuery books are placed on your system
as HTML-based online Help during a normal installation of the
product. The Help system is located in the /help subdirectory of
the product installation directory. To use the Help, you must
have one of the following browsers installed:

■ Internet Explorer 5.x or higher
■ Netscape 4.x, 6.1, or higher
■ FireFox 1.0 or higher

You can access the Help system by navigating to the /help
subdirectory of the product installation directory and opening
the following file from within your browser:

install_dir/help/help.htm
DataDirect XQuery User’s Guide and Reference

30 Preface
where install_dir is the path to your product installation
directory.

After the browser opens, the left pane displays the Table of
Contents, Index, and Search tabs for the entire documentation
library. When you have opened the main screen of the Help
system in your browser, you can bookmark it in the browser for
quick access later.

NOTE: Security features set in your browser can prevent the Help
system from launching. In this case, a security warning message is
displayed. Often, the warning message provides instructions for
unblocking the Help system for the current session. To allow the
Help system to launch without encountering a security warning
message, you can modify the security settings in your browser.
Check with your system administrator before disabling any
security features.

PDF Version

DataDirect product documentation is also provided in PDF
format, which allows you to view it, perform text searches, and
print it. You can view the PDF documentation using Adobe
Reader. The PDF documentation is available on the product CD, as
a product installation component, and also on the DataDirect
Technologies Web site:

http://www.datadirect.com/techres/xqueryproddoc/index.ssp

You can download the entire DataDirect XQuery library as a
compressed file. When you uncompress the file, the library
appears in the correct directory structure.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xqueryproddoc/index.ssp

Typographical Conventions 31
If you want to copy the documentation library from the product
CD, you must maintain the directory structure that is on the CD.

■ To copy all product books, copy the entire \books directory to
your local or network drive.

■ To copy a specific set of books, copy that book set’s directory
structure (beneath the \books directory) to your local or
network drive. For example, in the case of:

\books\product_name

you would copy the entire \product_name directory.

Maintaining the correct directory structure allows cross-book
text searches and cross-references. If you download or copy the
books individually outside of their normal directory structure,
their cross-book search indexes and hyperlinked cross-references
to other books will not work. You can view a book individually,
but it will not automatically open other books to which it has
cross-references.

To help you navigate the library, a file named books.pdf is
provided. This file lists each online book provided for the
product. We recommend that you open this file first and, from
this file, open the book you want to view.

Typographical Conventions
This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms with which you may not be
familiar, and is used occasionally for emphasis.

bold Emphasizes important information. Also indicates
button, menu, and icon names on which you can
act. For example, click Next.
DataDirect XQuery User’s Guide and Reference

32 Preface
UPPERCASE Indicates the name of a file. For operating
environments that use case-sensitive file names, the
correct capitalization is used in information specific
to those environments.

Also indicates keys or key combinations that you
can use. For example, press the ENTER key.

monospace Indicates syntax examples, values that you specify,
or results that you receive.

monospaced
italics

Indicates names that are placeholders for values
that you specify. For example, filename.

forward slash / Separates menus and their associated commands.
For example, Select File / Copy means that you
should select Copy from the File menu.

The slash also separates directory levels when
specifying locations under UNIX and Linux.

vertical rule | Indicates an "OR" separator used to delineate
items.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT], DISTINCT
is an optional keyword.

Also indicates sections of the Windows Registry.

braces { } Indicates that you must select one item. For
example, {yes | no} means that you must specify
either yes or no.

ellipsis . . . Indicates that the immediately preceding item can
be repeated any number of times in succession. An
ellipsis following a closing bracket indicates that all
information in that unit can be repeated.

Identifies a feature or functionality that is
supported only for XQuery 1.1.

Convention Explanation
DataDirect XQuery User’s Guide and Reference

Contacting Technical Support 33
Contacting Technical Support
DataDirect Technologies offers a variety of options to meet your
technical support needs. Please visit our Web site for more
details and for contact information:

http://support.datadirect.com

The DataDirect Technologies Web site provides the latest
support information through our global service network. The
SupportLink program provides access to support contact details,
tools, patches, and valuable information, including a list of FAQs
for each product. In addition, you can search our
Knowledgebase for technical bulletins and other information.

To obtain technical support for an evaluation copy of the
product, go to:

http://www.datadirect.com/support/eval_help/index.ssp

or contact your sales representative.

When you contact us for assistance, please provide the following
information:

■ The serial number that corresponds to the product for which
you are seeking support, or a case number if you have been
provided one for your issue. If you do not have a SupportLink
contract, the SupportLink representative assisting you will
connect you with our Sales team.

■ Your name, phone number, email address, and organization.
For a first-time call, you may be asked for full customer
information, including location.

■ The DataDirect product and the version that you are using.

■ The type and version of the operating system where you
have installed your DataDirect product.
DataDirect XQuery User’s Guide and Reference

http://support.datadirect.com
http://www.datadirect.com/support/eval_help/index.ssp

34 Preface
■ Any database, database version, third-party software, or
other environment information required to understand the
problem.

■ A brief description of the problem, including, but not limited
to, any error messages you have received, what steps you
followed prior to the initial occurrence of the problem, any
trace logs capturing the issue, and so on. Depending on the
complexity of the problem, you may be asked to submit an
example or reproducible application so that the issue can be
recreated.

■ A description of what you have attempted to resolve the
issue. If you have researched your issue on Web search
engines, our Knowledgebase, or have tested additional
configurations, applications, or other vendor products, you
will want to carefully note everything you have already
attempted.

■ A simple assessment of how the severity of the issue is
impacting your organization.
DataDirect XQuery User’s Guide and Reference

35
1 Quick Start

This quick start provides basic information for getting started
with DataDirect XQuery immediately after installation. It covers
the following topics:

■ "Getting Started with DataDirect XQuery"

■ "Using the Command Line Utility"

■ "Additional Resources"

Getting Started with DataDirect XQuery
This section shows you how to get up and running with
DataDirect XQuery. It covers the following topics:

"1. Setting the CLASSPATH"
"2. Configuring Connections"
"3. Developing a Java Application that Executes a Query"

1. Setting the CLASSPATH

The CLASSPATH is the search string your Java Virtual Machine
(JVM) uses to locate DataDirect XQuery on your computer. Only
one DataDirect XQuery jar file, ddxq.jar, must be defined in your
CLASSPATH. If ddxq.jar is not defined in your CLASSPATH, you
receive a ClassNotFoundException exception when trying to use
DataDirect XQuery.
DataDirect XQuery User’s Guide and Reference

36 Chapter 1 Quick Start
Set your CLASSPATH to include:

install_dir/lib/ddxq.jar

where install_dir is the path to your DataDirect XQuery
installation directory.

NOTE: If you are connecting to PostgreSQL, you must also add the
PostgreSQL JDBC driver jar file to the CLASSPATH. Refer to your
PostgreSQL JDBC driver documentation for the name of the jar
file.

2. Configuring Connections

DataDirect XQuery provides multiple ways to configure
connections to XML data sources and relational data sources (see
“Choosing a Connection Method” on page 123). This section
shows how to use XQJ to create a DDXQDataSource instance in
your Java application explicitly.

XML Data Source Connections

If your Java application contains queries that access an XML file,
you can directly access the file as shown in the following XQJ
code example, where the location and name of the XML file is
specified as a parameter of fn:doc(), an XQuery function.

DDXQDataSource ds = new DDXQDataSource();
XQConnection conn = ds.getConnection();
conn.createExpression().executeQuery("doc('path_and_filename')");

Relational Data Source Connections

How you configure connection information for relational
databases using XQJ depends on whether you are accessing a
single database or multiple databases. This section shows how to
configure connection information to access a single database.
DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start 37
(For information about accessing multiple databases, see
“Configuring Connections Explicitly” on page 123.)

To configure a single relational data source connection, use the
DDXQDataSource class as shown in the following XQJ code
example. This example specifies a connection URI (represented
by "URL") for the relational data source that you want to access
and the user ID and password required to access the relational
data source.

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("URL");
XQConnection conn = ds.getConnection("myuserid","mypswd");

The format of the connection URL depends on whether you are
using a built-in JDBC driver or a third-party driver, and the
database you are connecting to. See “Specifying Connection
URIs” on page 141 for details.

See “Sample Connection URIs” on page 37 for examples of the
minimum information, including any required connection
properties, that you must specify in a connection URL.

Sample Connection URIs

The following URIs are examples of the minimum information
that must be specified in a connection URI.

DB2 for Linux/UNIX/Windows

jdbc:xquery:db2://server_name:50000;databaseName=your_database

DB2 for z/OS and iSeries

jdbc:xquery:db2://server_name:446;locationName=db2_location

Informix

jdbc:xquery:informix://server_name;1526;InformixServer=dbserver_name
DataDirect XQuery User’s Guide and Reference

38 Chapter 1 Quick Start
Microsoft SQL Server

jdbc:xquery:sqlserver://server_name:1433

MySQL Enterprise

jdbc:xquery:mysql://server_name

Oracle

jdbc:xquery:oracle://server_name:1521

PostgreSQL

jdbc:postgresql:your_database

Sybase

jdbc:xquery:sybase://server_name:5000

3. Developing a Java Application that
Executes a Query

Using DataDirect XQuery, a Java application uses XQJ to execute
a query. The Java package name of the XQJ classes is:

javax.xml.xquery

The Java class name of the DataDirect XQuery implementation of
the XQJ standard interface, XQDataSource, is:

com.ddtek.xquery.xqj.DDXQDataSource

The following sample Java code illustrates the basic steps that an
application would perform to execute an XQuery expression
using DataDirect XQuery. This example accesses a Microsoft
SQL Server data source. To simplify the example, this code does
not include error handling.
DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start 39
// import the XQJ classes
import javax.xml.xquery.*;
import com.ddtek.xquery.xqj.DDXQDataSource;

// establish a connection to a relational data source
// specify the URL and the user ID and password
DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
XQConnection conn = ds.getConnection("myuserid", "mypswd");
// create an expression object that is used to execute a query
XQExpression xqExpression = conn.createExpression();

// the query
String es = "for $h in collection('holdings')/holdings " +
 "where $h/stockticker='AMZN' " +
 "return $h";

// execute the query
XQResultSequence result = xqExpression.executeQuery(es);
result.writeSequence(System.out, null);

// free all resources
result.close();
xqExpression.close();
conn.close();

NOTE: XQJ examples are shipped with the product and are
located in the /examples subdirectory in the DataDirect XQuery
installation directory.
DataDirect XQuery User’s Guide and Reference

40 Chapter 1 Quick Start
Using the Command Line Utility
The DataDirect XQuery command line utility allows you to
quickly run and test XQueries through a console window.

To invoke this utility, enter the following command at a prompt
from the /lib subdirectory of your DataDirect XQuery installation
directory (for example, ddxq/lib):

java -jar ddxq.jar

Alternatively, you can specify the path to the lib directory in the
command line, for example:

java -jar ddxq/lib/ddxq.jar

NOTE: If your XQuery needs to locate classes other than the
DataDirect XQuery classes – if you are specifying a custom URI
resolver, for example – you must perform one of the following
actions:

■ Set your CLASSPATH to include the path to the jar files or
directories for these classes and invoke the utility using the
following command:

java com.ddtek.xquery.Query

NOTE: If you are connecting to PostgreSQL, you must add the
PostgreSQL JDBC driver jar file to the CLASSPATH in addition
to ddxq.jar. Refer to your PostgreSQL JDBC driver
documentation for the name of the jar file.

■ Add the class path to the command line:

java -cp c:\myClasses com.ddtek.xquery.Query

See Example 8.

NOTE: If you are connecting to PostgreSQL, you must add the
PostgreSQL JDBC driver jar file to the CLASSPATH in addition
DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start 41
to ddxq.jar. Refer to your PostgreSQL JDBC driver
documentation for the name of the jar file.

The following table lists the options available for the utility.

Table 1-1. Command Line Utility Options

Option Description

-cr classname Specifies the CollectionURIResolver class to
use. See “Collection URI Resolvers” on
page 298. See the NOTE on page 40 about
setting your CLASSPATH for custom URI
resolvers.

-e [xhtml|xml] Generates an XQuery execution plan and,
optionally, specifies the format of the plan.
If a format is not specified, XHTML is
generated. See “Generating XQuery
Execution Plans” on page 307 for an
explanation of execution plans.

-jdbc jdbcurl Specifies a connection URI. See “Relational
Data Source Connections” on page 36.

NOTE: On UNIX and Linux, the value for
this option must be enclosed with double
quotes, for example:

java -jar ddxq.jar -jdbc
"jdbc:xquery:sqlserver://localhost:1433
;databaseName=pubs;user=sa"

-mr classname Specifies the ModuleURIResolver class to
use. See “Library Module URI Resolvers” on
page 296. See the NOTE on page 40 about
setting your CLASSPATH for custom URI
resolvers.

-noext Disallows calls to Java methods.

-o filename Sends results (output) to specified file.
DataDirect XQuery User’s Guide and Reference

42 Chapter 1 Quick Start
-option
property=value

Specifies XQuery or JDBC global options.
See “Using Option Declarations and
Extension Expressions” on page 275 for
more information.

-prop
property=value

Specifies data source and connection
options. See “DDXQDataSource and
DDXQJDBCConnection Properties” on
page 128 for more information.

-p Displays a stack trace in case of an
exception.

-r classname Specifies the URIResolver class to use. See
“Document URI Resolvers” on page 295.
See the NOTE on page 40 about setting
your CLASSPATH for custom URI resolvers.

-s file|URI Specifies an initial context item in the form
of a file name or a URI.

-t Displays version and timing information.

-u Enables automatic updating of sources.
See “Updating Data Sources” on page 112
for more information.

-version Display version information.

-? Displays the help for the command-line
utility.

param=value Specifies a query string parameter and its
value.

#param=value Specifies a query number parameter and
its value. On UNIX and Linux, the value for
this option must be enclosed with double
quotes, for example:
java -jar ddxq.jar q.xq "#i=2"

Table 1-1. Command Line Utility Options

Option Description
DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start 43
Example 1: Executes a Simple XQuery

This example executes the simple query {2+5}.

java -jar ddxq.jar {2+5}

Example 2: Retrieves Values from an Initial Context Item

This example retrieves all values for UserId from the initial
context item users.xml.

java -jar ddxq.jar -s ..\..\examples\xml\users.xml
{//users/UserId}

Example 3: Retrieves Values and Writes Them to a File

This example retrieves all values for UserId and writes the results
to a file named out.xml.

java -jar ddxq.jar -o out.xml
{doc('..\..\examples\xml\users.xml')/users/UserId}

Example 4: Executes an XQuery in a File

This example executes the XQuery contained in the file
myXQuery.xq using the initial context item input.xml.

java -jar ddxq.jar -s input.xml myXQuery.xq

+param=value Specifies a query document parameter and
its value.

!option=value Specifies a serialization option and its
value. See “Serialization Support” on
page 439 for a list of serialization options.

Table 1-1. Command Line Utility Options

Option Description
DataDirect XQuery User’s Guide and Reference

44 Chapter 1 Quick Start
Example 5: Binds a Query Document Parameter

This example executes the XQuery contained in the file
myXQuery.xq binding the query document parameter inputDoc
to the input.xml document.

java -jar ddxq.jar myXQuery.xq +inputDoc=input.xml

Example 6: Binds a Query String Parameter and Sets an Option

This example executes the XQuery contained in the file
myXQuery.xq binding the query string parameter param1 to the
character string Jonathan and setting the serialization option
indent to yes so that results are indented.

java -jar ddxq.jar myXQuery.xq param1=Jonathan !indent=yes

Example 7: Accesses a Relational Data Source

This example executes the XQuery contained in the file
myXQuery2.xq that accesses a relational data source. See the
NOTE about specifying connection URLs.

java -jar ddxq.jar -jdbc
"jdbc:xquery:sqlserver://localhost:1433;databaseName=pubs;
user=sa" myXQuery2.xq

Example 8: Specifies a Document URI

This example retrieves all values for UserId, specifies a document
URI, and writes the results to a file named out.xml.

java -cp c:\myClasses com.ddtek.xquery.Query
-r myURIResolver -o out.xml {doc('users.xml')/users/UserId}
DataDirect XQuery User’s Guide and Reference

Chapter 1 Quick Start 45
Additional Resources
In addition to this quick start, you might find these resources
useful:

■ For complete information about the many DataDirect
XQuery features, read the other chapterstopics in this
bookhelp.

■ For information about product requirements, refer to
"System and Product Requirements" in the DataDirect
XQuery Installation Guide.

■ For information about getting started with the examples
shipped with DataDirect XQuery, see Appendix H “Examples”
on page 539.

■ For information about using the DataDirect XML Converters
and Stylus Studio, refer to:
http://www.datadirect.com/products/data-integration/index.s
sp
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/products/data-integration/index.ssp

46 Chapter 1 Quick Start
DataDirect XQuery User’s Guide and Reference

47
2 Introduction

This chapter introduces DataDirect XQuery, XQuery, XQJ, and
associated development tools. In addition, it provides examples
of queries and a Java application that uses XQJ to execute a
query.

What Is DataDirect XQuery®?
DataDirect XQuery® is an XQuery processor that enables
developers to access and query XML, relational data, SOAP
messages, EDI, or a combination of data sources, and, in
addition, provides full update support for relational data.
DataDirect XQuery supports the XQuery for Java™ (XQJ) API, and
is easily embeddable into any Java program; it does not require
any other product or application server, and has no server of its
own. It is recommended for developers who need to combine
and efficiently process XML, relational, and legacy data formats
in application scenarios such as data integration, XML-based
data exchange, XML-driven web sites, and XML publishing.
DataDirect XQuery vastly simplifies and enhances the
performance of combining and processing different types of
data (relational, XML, legacy, EDI, and more) in heterogeneous
environments and, thus, enables developers to build and deploy
high-performance applications quickly and efficiently.

See Chapter 3 “Tutorial: Using DataDirect XQuery®” on page 59
for a tutorial that shows how to use DataDirect XQuery and XQJ
in your Java application. This tutorial explains tasks that allow
you to process queries that access XML and relational data
sources, and return XML results.
DataDirect XQuery User’s Guide and Reference

48 Chapter 2 Introduction
What Is XQuery?
XQuery is a query language for XML. In the same way that SQL is
used to query relational tables, XQuery is used to query XML or
anything for which a logical XML view can be defined. Typically,
SQL queries create tables to represent the result of a query, and
XQuery queries create XML to represent the result of a query. The
resulting XML can be as complex as necessary. For example, the
result of a query may be a complex document such as an
inventory report, a document with dynamic content, or a SOAP
message. The result of an XQuery can also be as simple as a single
integer; for example, a query might count the number of items
that satisfy a condition. In this book, we use the term XML results
to refer to the results of any XQuery query.1

XQuery goes beyond the functionality of relational query
languages, and includes support for many features not found in
the SQL language. Just as SQL is a relational query language and
Java is an object-oriented language, XQuery is often thought of
as a native XML programming language. In XQuery, the only
complex data structure is XML, and the operations that are
regularly needed for processing XML are directly supported in a
convenient manner.

XQuery can easily search any XML structure with path
expressions, create any XML structure using constructors, and
transform XML structures using FLWOR expressions. In addition,
XQuery simplifies the tasks encountered when working with
namespaces or data types.

Because XML is used to represent and transfer data from a wide
variety of sources, XQuery is also widely used for data
integration. Even when data is not physically stored as XML,
XQuery can be used with any product that provides a processor
that creates a logical view of the data as XML. For instance, SOAP

1. In XQuery terminology, the results of a query is an instance of the
XQuery data model. We use the term "XML result" for simplicity.

DataDirect XQuery User’s Guide and Reference

What Is XQuery? 49
may be used to acquire data from a variety of sources, and
XQuery may be used to query the resulting SOAP messages (in
XML) together with data found in a relational database (using
an XML view).

The XQuery Standard

The XQuery standard is developed by the W3C®, a standards
body for the World Wide Web. You can learn more about their
work on XQuery here:

http://www.w3.org/XML/Query.html

As of January 2007, XQuery 1.0 is the recommended
specification of the W3C:

http://www.w3.org/TR/xquery/

In December 2008, the W3C published a working draft for the
next XQuery version, XQuery 1.1:

http://www.w3.org/TR/xquery-11/

Additional information about XQuery can be found at:

http://www.datadirect.com/products/data-integration/index.ssp

Support for the XQuery Standard

DataDirect XQuery supports both XQuery 1.0 and XQuery 1.1 as
described in Appendix A “XQuery Support” on page 339.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/XML/Query.html
http://www.datadirect.com/products/data-integration/index.ssp
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-11/

50 Chapter 2 Introduction
XQuery Examples

This section provides examples of queries – from simple to more
complex – to help you become familiar with XQuery.

NOTE: The XQuery examples shown in this section use the
database tables and XML files provided with the product in the
/examples subdirectory in your DataDirect XQuery installation
directory.

Example 1: Query Using a FLWOR Expression

The following simple query uses a FLWOR (For each, Let, Where,
Order by, Return) expression to return only the rows of the
holdings database table that contain a value of AMZN in the
stockticker column. In this query, collection('holdings') refers
to the holdings table in a relational database.

for $h in collection('holdings')/holdings
where $h/stockticker='AMZN'
return $h

Result

The query returns $h directly, so it returns a sequence containing
an XML representation of each row.

<holdings>
 <userid>Jonathan</userid>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
</holdings>
<holdings>
 <userid>Minollo</userid>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
</holdings>

See “Data Model Representation of Relational Tables” on
page 120 for more information about XML views of tables.
DataDirect XQuery User’s Guide and Reference

What Is XQuery? 51
Example 2: Creating a Specific XML Structure

In this example, the query returns the same data as Example 1,
but it uses an element constructor to create a different XML
structure.

for $h in collection('holdings')/holdings
where $h/stockticker='AMZN'
return
 <Amazon Client="{$h/userid}" Shares="{$h/shares}" />

Result

The return clause creates an element named Amazon. It creates
two attributes, Client and Shares, which have the values of the
userid and shares columns from the relational table.

<Amazon Client="Jonathan" Shares="3000" />
<Amazon Client="Minollo" Shares="3000" />

Example 3: Combining Data From XML and Relational Sources

Web messages, such as SOAP requests, are XML documents, and
they can parameterize or provide data for a query. The following
example joins an XML document named request.xml to two
relational database tables named holdings and statistical. The
request.xml file is joined to the holdings table by the UserId
element in the XML file and the userid column of the holdings
table. The two tables are joined by the ticker column of the
statistical table and the stockticker column of the holdings table.

let $request := doc('request.xml')/request
for $user in $request/performance/UserId
return
 <portfolio UserId="{$user}">
 {$request}
 {
 for $st in collection('holdings')/holdings,
 $stats in collection('statistical')/statistical
 where $st/userid = $user
 and $stats/ticker = $st/stockticker
DataDirect XQuery User’s Guide and Reference

52 Chapter 2 Introduction
 return
 <stock>
 {$stats/companyname}
 {$st/stockticker}
 {$st/shares}
 {$stats/annualrevenues}
 </stock>
 }
 </portfolio>

Result

The result of this query is an element named portfolio. The first
child of this element contains the original request from
request.xml. Subsequently, the query provides the stock
information for a given user, obtained from two tables:

<portfolio UserId="Jonathan">
 <request>
 <performance>
 <UserId>Jonathan</UserId>
 <start>2003-01-01</start>
 <end>2004-06-01</end>
 </performance>
 </request>
 <stock>
 <companyname>Amazon.com, Inc.</companyname>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
 <annualrevenues>7780</annualrevenues>
 </stock>
 <stock>
 <companyname>eBay Inc.</companyname>
 <stockticker>EBAY</stockticker>
 <shares>4000</shares>
 <annualrevenues>22600</annualrevenues>
 </stock>
 <stock>
 <companyname>Int'l Business Machines C</companyname>
 <stockticker>IBM</stockticker>
DataDirect XQuery User’s Guide and Reference

What Is XQJ? 53
 <shares>2500</shares>
 <annualrevenues>128200</annualrevenues>
 </stock>
 <stock>
 <companyname>Progress Software</companyname>
 <stockticker>PRGS</stockticker>
 <shares>23</shares>
 <annualrevenues>493.4</annualrevenues>
 </stock>
</portfolio>

Where to Learn More

See Chapter 4 “Tutorial: Using XQuery” on page 75 for a tutorial
that focuses on the following major capabilities of XQuery that
are fundamental to creating and processing XML:

■ Path expressions, which can locate anything in an XML
document

■ XML constructors, which can create XML documents

■ FLWOR expressions (pronounced “flower expressions” and
means "for let where order by return"), which allow data to
be combined to create new XML structures

What Is XQJ?
The XQuery API for Java (XQJ) is a Java-based API that enables a
Java application to submit XQuery queries to an XML data
source and process the results. XQJ is designed to support the
XQuery language, just as the JDBC API supports the SQL query
language. The XQJ standard (JSR 225) is being developed under
the Java Community Process. For more information, refer to:
http://www.jcp.org/en/jsr/detail?id=225
DataDirect XQuery User’s Guide and Reference

http://www.jcp.org/en/jsr/detail?id=225

54 Chapter 2 Introduction
Java Example

The following example illustrates the basic steps that an
application performs to execute a query using DataDirect XQuery
and XQJ. To simplify the example, the code does not include error
handling. Multiple Java examples showing how to use XQJ are
shipped with the product and are located in the /examples
subdirectory in your DataDirect XQuery installation directory.

In this example, the application establishes a connection to a
relational database using a DDXQDataSource instance. See
“Configuring Connections Explicitly” on page 123 for more
information about using XQJ to specify connection information
for XML and relational data sources.

Example: Executing a Query

// import the XQJ classes
import javax.xml.xquery.*;
import com.ddtek.xquery.xqj.DDXQDataSource;

// establish a connection to a data source
DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
XQConnection conn = ds.getConnection("myuserid", "mypswd");

// create an expression object that is used to execute a query
XQExpression expr = conn.createExpression();

// the query
String es = "for $h in collection('holdings')/holdings " +
 "where $h/stockticker='AMZN' " +
 "return $h";

// execute the query
XQResultSequence result = expr.executeQuery(es);
System.out.println(result.getSequenceAsString(null));
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery® Architecture 55
// free all resources
result.close();
expr.close();
conn.close();

DataDirect XQuery® Architecture
The following illustration provides a high-level architectural
overview of DataDirect XQuery.

When you execute a query using DataDirect XQuery, DataDirect
XQuery might processes the query in the following fashion:

1 A Java application passes a query to the DataDirect XQuery
implementation of XQJ.

2 The XQuery Engine analyzes the query and divides it into one
or multiple XQuery expressions to be processed by the
adaptors.
DataDirect XQuery User’s Guide and Reference

56 Chapter 2 Introduction
3 The XQuery Engine sends the query to the SQL adaptor or the
Streaming XML adaptor based on its analysis:

• If a relational source is queried, the XQuery Engine sends
the query to the SQL Adaptor. The SQL Adaptor translates
the query into SQL, which is used to query the database.
The SQL Adaptor receives the results and maps them into
XML.

• If an XML source is queried, the XQuery Engine sends the
query to the Streaming XML Adaptor, which executes the
query and returns XML results.

• If a flat or EDI file is queried, the XQuery Engine sends the
query to the Streaming XML Adaptor, which relies on the
DataDirect XML Converters™ to retrieve an XML
representation of the flat or EDI file.

4 The adaptors send the XML results to the XQuery Engine. If
the XML results are obtained from more than one source, the
XQuery Engine combines the results.

5 The Java application receives results as XML, using XQJ.

Using DataDirect XML Converters™
DataDirect XML Converters are high-performance Java™ and
.NET components that provide bi-directional, programmatic
access to virtually any non-XML file including EDI, flat files, and
other legacy formats. DataDirect XQuery includes several built-in
functions that take advantage of the DataDirect XML Converters
engine to allow you to access as XML data stored in many
non-XML formats, including EDI messages, tab-delimited and
comma-separated text files, dBASE files, RTF files, and many
more.
DataDirect XQuery User’s Guide and Reference

Using Stylus Studio® 57
■ DataDirect XML Converters are installed along with
DataDirect XQuery and Stylus Studio as part of the
DataDirect Data Integration Suite. You can also download
the DataDirect XML Converters, including the
documentation and examples, here:
http://www.datadirect.com/products/data-integration/index.s
sp

Using Stylus Studio®
Stylus Studio® is an advanced XML Integrated Development
Environment (XML IDE) consisting of hundreds of powerful XML
tools in one all-inclusive suite. Among others, Stylus Studio
includes for working with XQuery, XSLT, Web services, XML
Pipelines, and XML reports.

■ The Stylus Studio XQuery editor and XQuery mapper provide
integrated support for developing XQuery applications that
are powered by DataDirect XQuery. The integration is
seamless— simply write your code using Stylus Studio's
productive XQuery tools as you would normally do. To learn
more about Stylus Studio, refer to:
http://www.datadirect.com/products/data-integration/index.s
sp
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/products/data-integration/index.ssp
http://www.datadirect.com/products/data-integration/index.ssp

58 Chapter 2 Introduction
DataDirect XQuery User’s Guide and Reference

59
3 Tutorial: Using DataDirect
XQuery®

This tutorial shows how to use DataDirect XQuery and XQJ in
your Java application to perform tasks that allow you to process
queries that access XML and relational data sources, and return
XML results. Topics covered in this tutorial include:

■ Specifying the XQuery Version

■ Configuring Connections

■ Executing Queries

■ Querying Data from XML Files or DOM Trees

■ Joining Data from XML and Relational Sources

■ Returning Results with Java XML APIs

■ Preparing XQuery Statements

■ Updating Data in Relational Databases

This tutorial uses the database tables and XML files provided
with the product in the /examples subdirectory in the DataDirect
XQuery installation directory.

In addition to this tutorial, DataDirect XQuery is shipped with
examples that demonstrate other methods of coding the
functionality shown in this tutorial and other DataDirect XQuery
functionality. These examples are located in the /examples
subdirectory in the DataDirect XQuery installation directory and
explanation of the examples can be found in Appendix H
“Examples” on page 539.
DataDirect XQuery User’s Guide and Reference

60 Chapter 3 Tutorial: Using DataDirect XQuery®
Specifying the XQuery Version
DataDirect XQuery supports both XQuery 1.0 and XQuery 1.1.
You can use a version declaration to indicate whether you want
your XQuery code processed using DataDirect’s XQuery 1.0 or
XQuery 1.1 processing engine. Unless a version is specified
explicitly, XQuery code is processed using the XQuery 1.1
processing engine.

Where to Specify Version

You can specify the XQuery version in two places:

■ In the main query, using query prolog. Setting the XQuery
version in the query prolog affects processing for the entire
query, unless a different version has been set for an individual
module.

■ In one or more modules. Each module can have its own
version setting. A module retains its version setting when it is
imported.

When to Specify Version

Generally speaking, there is no need to specify the XQuery
version because XQuery 1.1 is backwards-compatible with
XQuery 1.0.

However, if you write modules that use XQuery 1.1 functionality –
to use FLWOR expressions for grouping, for example – consider
specifying the version explicitly within that module. Knowing the
XQuery version associated with a module can be useful to others
who import modules into their XQuery code.

DataDirect XQuery User’s Guide and Reference

Configuring Connections 61
If DataDirect XQuery encounters a module with an XQuery 1.0
declaration in the context of a main module whose version is
declared (explicitly or not) as 1.1, DataDirect XQuery uses its
XQuery 1.0 processor for that module and then reverts to using
the 1.1 XQuery processor for the remainder of the query.

How to Specify Version

The syntax for the version declaration is:

xquery version "[1.0 | 1.1]";

Configuring Connections
DataDirect XQuery uses fn:collection() to access relational data.
DataDirect XQuery uses XQJ to specify the required database
connections and associate the names specified by fn:collection()
with the database tables.

Using XQJ, you create a connection from an XQDataSource
instance. The fully qualified class name of the DataDirect XQuery
XQDataSource implementation is:

com.ddtek.xquery.xqj.DDXQDataSource

The following class provides additional properties for
configuring connections to multiple databases:

com.ddtek.xquery.xqj.DDXQJDBCConnection
DataDirect XQuery User’s Guide and Reference

62 Chapter 3 Tutorial: Using DataDirect XQuery®
Specifying Connection Information

You can specify connection information to relational data sources
using either of the methods shown in the following examples.

Example 1: Using a DDXQDataSource Instance to Specify
Connection Information Explicitly

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");

Example 2: Using the Java Naming and Directory Interface (JNDI)

Context ctx = new InitialContext();
DDXQDataSource ds = (DDXQDataSource)ctx.lookup("holdings_ds");
XQConnection conn = ds.getConnection("myuserid", "mypswd");

See the JNDIDataSource example for a complete code sample of
how to save and load a DataDirect XQuery DDXQDataSource
using a JNDI provider.

After specifying connection information using with either
DDXQDataSource or JNDI, the getConnection() method can be
invoked to return an XQJ connection to the database and,
optionally, specify the user name and password for the
connection:

XQConnection conn = ds.getConnection("myuserid", "mypswd");

Executing Queries
Next, we create an XQExpression object, which executes an
XQuery expression that is read from a file and returns a sequence
of results.

First, here is the XQuery expression, flwor.xq:

for $u in fn:collection('users')/users
DataDirect XQuery User’s Guide and Reference

Executing Queries 63
return
 <user>
 <name>{
 $u/firstname,
 $u/lastname
 }</name>
 {
 for $h in collection('holdings')/holdings
 where $h/userid = $u/userid
 return
 <stock>{
 $h/stockticker,
 $h/shares
 }</stock>
 }</user>

An XQConnection can create an XQExpression:

XQExpression xqExpression = conn.createExpression();
FileReader fileReader = new FileReader("flwor.xq");
XQSequence xqSequence = xqExpression.executeQuery(fileReader);

Now that the query results are in a sequence, you can serialize
this sequence using the getSequenceAsString() method.
(Serializing is just one way to handle an XQuery result.)

System.out.println(xqSequence.getSequenceAsString());

The following result sequence contains a single node, the user
element (whitespace has been modified for readability).

<user>
 <name>
 <firstname>Jonathan</firstname>
 <lastname>Robie</lastname>
 </name>
 <stock>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
 </stock>
 <stock>
 <stockticker>EBAY</stockticker>
DataDirect XQuery User’s Guide and Reference

64 Chapter 3 Tutorial: Using DataDirect XQuery®
 <shares>4000</shares>
 </stock>
 <stock>
 <stockticker>IBM</stockticker>
 <shares>2500</shares>
 </stock>
...
</user>

Other similar examples can be found in the XQJExecute example.
DataDirect XQuery User’s Guide and Reference

Querying Data from XML Files or DOM Trees 65
Querying Data from XML Files or DOM Trees
In the previous section, we queried data in a relational database.
Now let's query an XML file.

Querying an XML File

Suppose you want to query holdings for a specific customer
identified by the userid element in a file named holdings.xml,
which looks like this:

<holdings>
 <row>
 <userid>Jonathan</userid>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
 </row>
 <row>
 <userid>Minollo</userid>
 <stockticker>EBAY</stockticker>
 <shares>4000</shares>
 </row>
</holdings>

Here's an XQuery expression that returns holdings for a
customer named Jonathan:

doc("holdings.xml")/holdings/row[userid="Jonathan"]

Suppose we wanted to return holdings for other customers. If
you write an XQuery with an external variable that provides the
name of the customer whose holdings you require, the Java
application can specify the name of the customer before it
executes the query. If you use another external variable to
DataDirect XQuery User’s Guide and Reference

66 Chapter 3 Tutorial: Using DataDirect XQuery®
represent the document, the Java application can pass any
document to the query at runtime. For example:

declare variable $u as xs:string external;
declare variable $d as document-node(element(*, xs:untyped)) external;
$d/holdings/row[userid=$u]

Querying a DOM

Now, let's write Java code to create a DOM tree and bind it to the
variable $d. Use the following code to create a DOM tree.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);

DocumentBuilder parser = factory.newDocumentBuilder();
File xmlFile = new File("holdings.xml");
Document document = parser.parse(xmlFile);

Once you create a DOM tree, you can use XQJ to bind the DOM
tree to a variable and query it. First, you create an expression
object, and then bind the document to the variable $d for this
expression.

XQConnection conn = ds.getConnection();
XQExpression xqExpression = conn.createExpression();
xqExpression.bindNode(new QName("d"), document);

Now, execute the expression and output the result:

FileReader fileReader = new FileReader("flwor.xq");

XQSequence xqSequence = xqExpression.executeQuery(fileReader);
System.out.println(xqSequence.getSequenceAsString());

Other similar examples can be found in the ExternalVariables
example.
DataDirect XQuery User’s Guide and Reference

Joining Data from XML and Relational Sources 67
Querying a Directory

You can also query XML files in a directory. See “Querying
Multiple Files in a Directory” on page 288 for information about
this feature. An example can be found in the XMLQuery
example.

Joining Data from XML and Relational Sources
This tutorial has already explored how XQJ allows XQuery to
operate on relational and XML file data stores. Now let's
leverage that functionality to query both types of data stores at
the same time using a single query.

In this example, we use a Web Service request to provide
parameters for the query, and then query a database to create
the Web Service response. The Web Service request looks like
this:

<request>
 <performance>
 <UserId>Jonathan</UserId>
 <start>2003-01-01</start>
 <end>2003-01-01</end>
 </performance>
</request>

This request contains only the SOAP message payload. (To
simplify the example, the envelope has been omitted.) This
request asks for performance data on a user's portfolio within a
specific date range.

Now we can compose a query that uses the parameters from the
request to create a performance report, which will report the
performance of each stock held by each user during the given
range.
DataDirect XQuery User’s Guide and Reference

68 Chapter 3 Tutorial: Using DataDirect XQuery®
let $request := doc("request.xml")/request
for $user in $request/performance
return
 <portfolio UserID="{$user/UserId}">
 { $request }
 {
 for $h in collection("holdings")/holdings
 where $h/userid = $user/UserId
 return
 <stock>
 {
 $h/stockticker,
 $h/shares
 }
 </stock>
 }
 </portfolio>

First, establish a connection to the data source.

XQConnection conn = ds.getConnection();

Create an XQExpression object that executes the XQuery
expression and returns a sequence of results.

FileReader fileReader = new FileReader("flwor.xq");
XQExpression xqExpression = conn.createExpression();
XQSequence xqSequence = xqExpression.executeQuery(fileReader);

With the query results in a sequence, serialize this sequence using
the getSequenceAsString() method.

System.out.println(xqSequence.getSequenceAsString());

The result looks like this (whitespace has been modified for
readability):

<portfolio UserID="Jonathan">
 <request>
 <performance>
 <UserId>Jonathan</UserId>
 <start>2003-01-01</start>
DataDirect XQuery User’s Guide and Reference

Returning Results with Java XML APIs 69
 <end>2004-06-01</end>
 </performance>
 </request>
 <stock>
 <stockticker>PRGS</stockticker>
 <shares>23</shares>
 </stock>
 <stock>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
 </stock>
 <stock>
 <stockticker>EBAY</stockticker>
 <shares>4000</shares>
 </stock>
 <stock>
 <stockticker>IBM</stockticker>
 <shares>2500</shares>
 <shares>2500</shares>
 </stock>
</portfolio>

Other similar examples can be found in the XQJExecute example.

Returning Results with Java XML APIs
Often, applications need to retrieve XQuery results as DOM,
SAX, or StAX. XQSequence, as shown previously in this tutorial,
allows access to the result as a direct mapping of the XQuery
sequence. Within an XQSequence, XQItem objects represent
each item in an XQuery sequence.

NOTE: Instantiating each item in an XQItem object affects
performance because it requires the processing to create
multiple objects. Use XQItem object judiciously.
DataDirect XQuery User’s Guide and Reference

70 Chapter 3 Tutorial: Using DataDirect XQuery®
Next, we’ll show you how to process an XQuery sequence and
return the output as DOM, SAX, or StAX.

First, create an XQExpression object that executes the XQuery
expression and returns a sequence of results:

DDXQDataSource ds = new DDXQDataSource();
...
XQConnection conn = ds.getConnection("myuserid", "mypswd");
FileReader fileReader = new FileReader("flwor.xq");
XQExpression xqExpression = conn.createExpression();
XQSequence xqSequence = xqExpression.executeQuery(fileReader);

DOM

To return the output from a result sequence as a DOM tree, we
iterate over each DOM node in the XQuery sequence to extract
the DOM content and print the DOM node to the standard
System.out. For example, if you have J2SE 1.4.x, use the following
code, which assumes all items in the result sequence are node
items:

while(xqSequence.next()){
 Node domNode = xqSequence.getNode();
 System.out.println(domNode);
 }

If you have J2SE 1.5 and higher, the method is different; it is
shown in the ResultRetrieval example.
DataDirect XQuery User’s Guide and Reference

Returning Results with Java XML APIs 71
SAX

To return the output from a result sequence as a SAX event
stream rather than a string, create a SAX event handler (named
SimpleSAXEventHandler, in this case) that sends the results to
the standard System.out as shown in the following code:

SimpleSAXEventHandler anEventHandler = new SimpleSAXEventHandler(System.out);
xqSequence.writeSequenceToSAX(anEventHandler);

The complete application can be found in the ResultRetrieval
example.

StAX

To return the output from a result sequence as a StAX event
stream rather than as a string, create a StAX reader as shown in
the following code:

XMLStreamReader reader = xqSequence.getSequenceAsStream();

You can use this StAX reader functionality like any other StAX
stream reader. For example, the following code reads one event
at a time and prints the event type together with the associated
event names.

private static void formatOutput(XMLStreamReader reader) throws
XMLStreamException {
while(true){
 int event = reader.next();
 if(event == XMLStreamConstants.END_DOCUMENT){
 return;
 switch (event) {
 case XMLStreamConstants.START_ELEMENT:
 System.out.println("Start tag: ");
 printNames(reader);
 break;

 case XMLStreamConstants.END_ELEMENT:
DataDirect XQuery User’s Guide and Reference

72 Chapter 3 Tutorial: Using DataDirect XQuery®
 System.out.println("End tag");
 printNames(reader);
 break;

 case XMLStreamConstants.CHARACTERS:
 System.out.println("Text");
 printChars(reader);
 break;
 }
}
...

Other similar examples can be found in the ResultRetrieval
example.

Preparing XQuery Statements
Typically, when a query is executed, the query is parsed and
optimized before it is run. To avoid incurring this overhead each
time the query is used, you can prepare the same query once and
execute it multiple times.

The following is the code for creating a prepared query. Only the
last line differs from the code used to create a query in our
example in “Querying Data from XML Files or DOM Trees” on
page 65.

DDXQDataSource ds = new DDXQDataSource();
XQConnection conn = ds.getConnection();

FileReader fileReader = new FileReader("flwor.xq");

XQPreparedExpression preparedExpression = conn.prepareExpression(fileReader);
DataDirect XQuery User’s Guide and Reference

Preparing XQuery Statements 73
Once the query is prepared, use an executeQuery() call to
execute it.

XQSequence xqSequence = preparedExpression.executeQuery();
System.out.println(xqSequence.getSequenceAsString(null));

Queries can accept parameters that can be changed between
executions. For example, you may want to prepare a query that
selects holdings based on a particular customer. In the following
query, the value of userid changes each time this XQuery is run.
(Each userid is associated with a specific customer.)

declare variable $l as xs:string external;
collection("holdings")/holdings[userid=$l]

The value of $l is set using XQJ. Let's run this twice, each time for
different users.

preparedExpression.bindString(new QName("l"), "Jonathan");
xqSequence xqSequence = preparedExpression.executeQuery();
System.out.println("\n\nHoldings for Jonathan:\n\n");
System.out.println(xqSequence.getSequenceAsString(null));

preparedExpression.bindString(new QName("l"), "Minollo");
xqSequence xqSequence = preparedExpression.executeQuery();
System.out.println("\n\nHoldings for Minollo:\n\n");
System.out.println(xqSequence.getSequenceAsString(null));

Other similar examples can be found in the ResultRetrieval
example.
DataDirect XQuery User’s Guide and Reference

74 Chapter 3 Tutorial: Using DataDirect XQuery®
Updating Data in Relational Databases
You can execute updating expressions using either XQExpression
or XQPreparedExpression objects. The result of an updating
query is always an empty sequence.

The following example executes an updating expression in XQJ
using an XQExpression object. The updating expression inserts
data into the holdings database table.

// import the XQJ classes
import javax.xml.xquery.*;
import com.ddtek.xquery.xqj.DDXQDataSource;

// establish a connection to a relational data source
// specify the URL and the user ID and password
DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
XQConnection conn = ds.getConnection("myuserid", "mypswd");
// create an expression object that is used to execute a query
XQExpression xqExpression = conn.createExpression();

// the query
String es = "ddtek:sql-insert('holdings'," +
 "'userid','Minollo','stockticker','TIVO','shares',200)";

// execute the query
XQResultSequence result = xqExpression.executeQuery(es);

// free all resources
result.close();
xqExpression.close();
conn.close();

Other examples can be found in the RDBMSUpdate example.

See “Updating Relational Data” on page 267 for more
information about updating data in relational databases.
DataDirect XQuery User’s Guide and Reference

75
4 Tutorial: Using XQuery

W3C defines the XML Query (XQuery) language for querying
XML and combining data from documents, databases, Web
pages, and other sources. Some common use cases for XQuery
involve XML publishing to create XML for Web messages,
dynamic web sites, and publishing applications. The source for
query data might be found in XML files, relational databases,
legacy files such as EDI, or from multiple combined sources.

Some of the queries in this tutorial operate on XML stored in
files, some on an XML view of a relational database, and some
work on both. All of the examples in this tutorial have been
tested with DataDirect XQuery. Because not all XQuery
implementations access relational data in the same way, this
tutorial uses fn:collection(), which DataDirect XQuery uses to
access relational tables.

Most XQuery functionality, such as arithmetic operators,
comparisons, function calls, and functions, is familiar to most
programmers. This tutorial focuses on the three major
capabilities that distinguish XQuery, each of which is
fundamental to processing and creating XML:

■ Path expressions, which can locate anything in an XML
document.

■ XML constructors, which can create any XML document.

■ FLWOR expressions (pronounced “flower expressions”),
which allow data to be combined to create new XML
structures. They are similar to SQL Select statements that
have From and Where clauses, but are adapted for XML
processing.
DataDirect XQuery User’s Guide and Reference

76 Chapter 4 Tutorial: Using XQuery
Together, these capabilities make XQuery easier to use than other
languages when processing and creating XML using data from
XML or relational sources.

This chapter covers the following subjects:

■ Finding XML Nodes: Path Expressions

■ Creating XML: XML Constructors

■ Restructuring Data: FLWOR Expressions

■ Grouping Data

■ Summary

Finding XML Nodes: Path Expressions
Just as SQL needs to be able to access any row or column in a
relational table, XQuery needs to be able to access any node in an
XML document. XML structures have both hierarchy and
sequence, and can be quite complex. Path expressions directly
support XML hierarchy and sequence, and allow you to navigate
any XML structure.

In this section, we discuss path expressions using an XML
document, and then show path expressions used on an XML view
of a relational table.

Path Expressions for XML Sources

Let's explore path expressions using the following XML
document, portfolio.xml, which consists of a portfolio element
with name and stocks subelements.

<?xml version="1.0"?>
<portfolio id="Jonathan">

DataDirect XQuery User’s Guide and Reference

Finding XML Nodes: Path Expressions 77
 <name>
 <first>Jonathan</first>
 <last>Robie</last>
 </name>
 <stocks>
 <stock>
 <ticker>AMZN</ticker>
 <shares>3000</shares>
 </stock>
DataDirect XQuery User’s Guide and Reference

78 Chapter 4 Tutorial: Using XQuery
 <stock>
 <ticker>EBAY</ticker>
 <shares>4000</shares>
 </stock>
 <stock>
 <ticker>IBM</ticker>
 <shares>2500</shares>
 </stock>
 <stock>
 <ticker>PRGS</ticker>
 <shares>23</shares>
 </stock>
 </stocks>
</portfolio>

fn:doc() returns a document. The following example shows how
to use fn:doc() with an absolute URI.

doc("file:///c:/data/xml/portfolio.xml")

The following example shows how to use fn:doc() with a relative
URI.

doc("portfolio.xml")

By setting the Base URI, you can set the directory that is used to
resolve relative URIs.

declare base-uri "file:///c:/data/xml/";
doc("portfolio.xml")

A path expression consists of a series of one or more “steps”,
separated by a slash (/) or double slash (//). Every step evaluates
to a sequence of nodes. For example, consider the expression:

doc("portfolio.xml")/portfolio/name

The first step, doc("portfolio.xml"), returns a document node
that represents the portfolio document.
DataDirect XQuery User’s Guide and Reference

Finding XML Nodes: Path Expressions 79
The second step, portfolio, is a name test that specifies the
name of an element; it returns the portfolio element at the top
of the document, which is a child of the document node.

The third step, name, returns the element named “name”, which
is a child of the portfolio element.

Result of the Query Expression

<name>
 <first>Jonathan</first>
 <last>Robie</last>
</name>

If a name test is preceded by the @ character, the name test
matches an attribute rather than an element. For example, the
expression doc("portfolio.xml")/portfolio/@id returns the id
attribute of the portfolio element.

The double slash (//) allows steps to operate on any descendant
of a node. For example, the expression
doc("portfolio.xml")//name matches any element named name,
anywhere in the portfolio document.

Predicates

A predicate can be added to a step to set conditions for
matching nodes. Predicates often set a condition on the children
of a node. For example, the following path matches stock
elements that contain a ticker element with the value “AMZN”.

doc("portfolio.xml")//stock[ticker='AMZN']
DataDirect XQuery User’s Guide and Reference

80 Chapter 4 Tutorial: Using XQuery
Using the sample data, this expression produces the following
result:

<stock>
 <ticker>AMZN</ticker>
 <shares>3000</shares>
</stock>

Conditions in a predicate can be combined using “and“ and “or“,
as in the following expression.

doc("portfolio.xml")//stock[ticker='AMZN' or ticker='EBAY']

Conditions can be negated using fn:not(); for example, the
following expression matches stock elements that do not have a
ticker element with the value “AMZN”:

doc("portfolio.xml")//stock[not(ticker='AMZN')]

One type of predicate is a numeric predicate, which sets a
condition on the position of a node in a sequence. For example,
the following expression finds the first stock element in a
portfolio.

doc("portfolio.xml")//stocks/stock[1]

To understand how numeric predicates work in XQuery, you must
know how XQuery evaluates a slash (/), as described in the
following steps:

1 The expression on the left side of a slash is evaluated to
produce a sequence of nodes.

2 The expression on the right side is evaluated for each context
node drawn from the expression on the left side, and the
results are combined.

3 When the numeric predicate is evaluated, it is evaluated for a
given context node.

For example, in the preceding expression, when the numeric
predicate is evaluated, the context node is a stocks element, the
DataDirect XQuery User’s Guide and Reference

Finding XML Nodes: Path Expressions 81
name test stock evaluates to a sequence of stock elements, and
the numeric predicate matches the first stock in this sequence.

The following expression matches the first ticker element on
each stock element:

doc("portfolio.xml")//stock/ticker[1]

To get the first ticker element in the document, use parentheses
to make the expression on the left of the numeric predicate
evaluate to the sequence of all ticker elements in the document:

(doc("portfolio.xml")//stock/ticker)[1]

Path Expressions for Relational Sources

When XQuery is used to query relational data, relational tables
are treated as though they are XML documents, and path
expressions work the same way as they do for XML. Because
relational tables have a simple structure, path expressions used
for tables are usually simple.

Each XQuery implementation has its own way of accessing a
relational table. DataDirect XQuery uses the fn:collection() to
access a relational table. For example, the following expression
accesses the holdings table:

collection('holdings')

Each XQuery implementation must also decide how to map
relational tables into XML in the XML view. The SQL 2003
standard has defined a standard set of mappings for this
purpose as part of SQL/XML.

Here is a SQL/XML mapping of the holdings table; this mapping
represents each row as a holdings element, and represents each
column of the table (userid, stockticker, shares) as an element
that is a child of the holdings element:

<holdings>
DataDirect XQuery User’s Guide and Reference

82 Chapter 4 Tutorial: Using XQuery
 <userid>Jonathan</userid>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
</holdings>
...
<holdings>
 <userid>Minollo</userid>
 <stockticker>AMZN</stockticker>
 <shares>3000</shares>
</holdings>
...

Once you understand the structure of the XML view, you can
easily see how path expressions are applied to it. For example,
the following expression finds holdings for the user whose userid
is “Minollo”.

collection('holdings')/holdings[userid='Minollo']

DataDirect XQuery Speaks SQL

Because relational data is queried as if it were XML, you might
think that relational tables are actually extracted from the
database, turned into XML documents, and then queried, but this
would be very inefficient.

To the user, DataDirect XQuery makes all data look like XML, but
to a SQL database, the implementation speaks SQL. Before
evaluating the preceding expression, for example, DataDirect
XQuery converts it to a SQL expression similar to this one:

SELECT userid, stockticker, shares
FROM holdings
WHERE userid='Minollo'
DataDirect XQuery User’s Guide and Reference

Creating XML: XML Constructors 83
Creating XML: XML Constructors
Now that we have seen how to locate anything in an XML
document or a relational table, let's learn how to create new
XML structures using XML constructors.

Literal XML constructors

The most simple constructors are literal XML constructors, which
use the same syntax as XML. For example, the following XML
text is also an XQuery expression that creates the equivalent
XML structure.

<stock role='eg'>
 <ticker>AMZN</ticker>
 <shares>3000</shares>
</stock>

This example uses only elements and attributes, but processing
instructions, comments, and CDATA sections can also be used in
XML constructors.

Enclosed Expressions

In literal XML constructors, you can use curly braces ({ }) to add
content that is computed when the query is run. This is called an
enclosed expression. For example, the following expression
creates a date element whose content is the current date, which
is computed when the query is run:

<date>{ current-date() }</date>

The result is an element named date with the current date.
DataDirect XQuery User’s Guide and Reference

84 Chapter 4 Tutorial: Using XQuery
To see why enclosed expressions are necessary, consider the
following expression:

<date> current-date() </date>

This expression evaluates to the following XML element:

<date> current-date() </date>

Path expressions are frequently used in enclosed expressions. The
following expression creates a portfolio element for Minollo, and
then extracts Minollo's holdings from the holdings table:

<portfolio name='Minollo'>
 { collection('holdings')/holdings[userid='Minollo'] }
</portfolio>

Restructuring Data: FLWOR Expressions
The XQuery FLWOR expression is similar to a SQL Select statement
that has From and Where clauses. FLWOR is pronounced
"flower," and is an acronym for the keywords used to introduce
each clause (for, let, where, order by, and return).

Here is a FLWOR expression that returns holdings for AMZN:

for $h in collection('holdings')/holdings
where $h/stockticker = 'AMZN'
order by $h/shares
return $h

In the preceding query, the FLWOR expression performs the
following functions:

■ The for clause binds the variable $h to each holdings element.

■ The where clause filters out bindings of $h for which the
stockticker element does not contain the value AMZN.

■ The order by clause determines the order.
DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions 85
■ The return clause produces a result for each binding of $h.

FLWOR expressions are frequently used to combine related
information. The possible combinations are generated by using
variables in the for clause and using a where clause to filter out
combinations that are not useful. This is known as a "join".
Consider the following expression:

for $u in collection('users')/users,
 $h in collection('holdings')/holdings
where $u/userid=$h/userid
order by $u/lastname, $u/lastname
return
 <holding>
 {
 $u/firstname,
 $u/lastname,
 $h/stockticker,
 $h/shares
 }
 </holding>

This expression finds every pair of users elements and holdings
elements whose userid child element has the same value, and
then builds a holding element that describes the user and his
holdings.

Now, let's look at a FLWOR expression that uses a let clause:

let $h := collection('holdings')/holdings
return count($h)

A let clause binds a variable to a sequence, which often contains
more than one item. In the preceding query, $h is bound to all of
the holdings elements in the collection, and the return clause is
evaluated. Note the difference between a for clause and a let
clause: a for clause always iterates over a sequence, binding a
variable to each item; a let clause simply binds a variable to the
entire sequence.
DataDirect XQuery User’s Guide and Reference

86 Chapter 4 Tutorial: Using XQuery
In the preceding expression, the result is 8. In contrast, if you use
the following for clause:

for $h in collection('holdings')/holdings
return count($h)

The result is a sequence of eight numbers: 1 1 1 1 1 1 1 1.

In some cases, you might find it useful to combine for and let
clauses. In the following expression, these two clauses are
combined to produce a result that counts the number of stock
holdings for each user.

for $u in collection('users')/users
let $h := collection('holdings')/holdings[userid=$u/userid]
order by $u/lastname, $u/firstname

return
 <user nstocks="{count($h)}">
 {
 $u/firstname,
 $u/lastname
 }
 </user>

XML Reporting for Relational Sources

Many applications need to create rich XML structures from
relational sources. For example, Web sites generally create
hierarchical displays of the data found in a relational database,
and Web messages are often very complex hierarchical structures.
For these applications, XQuery can act as an “XML report writer.”
DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions 87
The database tables used in this section are as follows:

■ users Table

userid firstname lastname othername

Minollo Carlo Innocenti
Jonathan Jonathan Robie William

■ holdings Table

userid stockticker shares

Jonathan PRGS 23
Minollo PRGS 4000000
...

■ statistical Table

id companyname ticker percentagechange annualrevenues location

1 Apple Computer, Inc. AAPL -40.80% 5250 Cupertino
2 Accrue Software, Inc. ACRU -57.60% 4.21 Freemont
...
DataDirect XQuery User’s Guide and Reference

88 Chapter 4 Tutorial: Using XQuery
This query creates a portfolio for each user:

<portfolios>
 {
 for $u in collection('users')/users
 order by $u/userid
 return
 <portfolio id="{$u/userid}">
 <name>
 <first>{data($u/firstname)}</first>
 <last>{data($u/lastname)}</last>
 </name>
 <stocks>
 {
 for $h in collection('holdings')/holdings
 where $h/userid = $u/userid
 order by $h/stockticker
 return
 <stock>
 <ticker>{data($h/stockticker)}</ticker>
 <shares>{data($h/shares)}</shares>
 </stock>
 }
 </stocks>
 </portfolio>
 }
</portfolios>
DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions 89
Here is the result of the preceding query.

<portfolios>
 <portfolio id="Jonathan">
 <name>
 <first>Jonathan</first>
 <last>Robie</last>
 </name>
 <stocks>
 <stock>
 <ticker>AMZN</ticker>
 <shares>3000</shares>
 </stock>
 <stock>
 <ticker>EBAY</ticker>
 <shares>4000</shares>
 </stock>
 <stock>
 <ticker>IBM</ticker>
 <shares>2500</shares>
 </stock>
 <stock>
 <ticker>PRGS</ticker>
 <shares>23</shares>
 </stock>
 </stocks>
 </portfolio>
DataDirect XQuery User’s Guide and Reference

90 Chapter 4 Tutorial: Using XQuery
 <portfolio id="Minollo">
 <name>
 <first>Carlo</first>
 <last>Innocenti</last>
 </name>
 <stocks>
 <stock>
 <ticker>AMZN</ticker>
 <shares>3000</shares>
 </stock>
 <stock>
 <ticker>EBAY</ticker>
 <shares>4000</shares>
 </stock>
 <stock>
 <ticker>LU</ticker>
 <shares>40000</shares>
 </stock>
 <stock>
 <ticker>PRGS</ticker>
 <shares>4000000</shares>
 </stock>
 </stocks>
 </portfolio>
</portfolios>

NOTE: The query that created this XML result uses the data
function, which returns only the value of the stockticker column.
Without the data function, the value would be surrounded with
an element named stockticker, resulting in, for example:

<ticker>
 <stockticker>AMZN</stockticker>
</ticker>
DataDirect XQuery User’s Guide and Reference

Restructuring Data: FLWOR Expressions 91
Processing XML and Relational
Together

In some applications, you may need to use XML and relational
data together. For example, a configuration file or an incoming
Web message might provide information needed to
parameterize a query. Suppose you have an XML file that
contains a request for a particular kind of report, and your query
is to produce that report. For example, the following XML file,
request.xml, contains a request to show the performance of
Jonathan's stocks during the period from 2003-01-01 to
2004-06-01.

<?xml version="1.0"?>
<request>
 <performance>
 <UserId>Jonathan</UserId>
 <start>2003-01-01</start>
 <end>2004-06-01</end>
 </performance>
</request>

Here is a query that creates a portfolio for the user specified in a
request file, during the requested period:

declare base-uri "file:///c:/programs/examples/JoinXMLToRelational/";
declare variable $request := doc('request.xml')/request;

for $user in $request/performance/UserId,
 $start in $request/performance/start,
 $end in $request/performance/end
return
 <portfolio UserId="{$user}">
 { $request }
 {
 for $st in collection('holdings')/holdings,
 $stats in collection('statistical')/statistical
 where $st/userid = $user
 and $stats/ticker = $st/stockticker
 return
DataDirect XQuery User’s Guide and Reference

92 Chapter 4 Tutorial: Using XQuery
 <stock>
 { $stats/companyname }
 { $st/stockticker }
 { $st/shares }
 { $stats/annualrevenues }
 {
 let $hist :=
 for $h in collection('historical')/historical
 where $h/ticker = $st/stockticker
 and xs:date($h/datetraded) gt xs:date($start)
 and xs:date($h/datetraded) lt xs:date($end)
 return $h
 return
 <performance>
 <min>{min($hist/adjustedclose)}</min>
 <max>{max($hist/adjustedclose)}</max>
 <daily>
 {
 for $h in $hist
 return <day>{$h/datetraded, $h/adjustedclose }</day>
 }
 </daily>
 </performance>
 }
 </stock>
 }
 </portfolio>

Grouping Data
The previous topic, Restructuring Data: FLWOR Expressions,
described how to use XQuery FLWOR expressions with XML and
relational data sources to restructure data. This topic describes
how to group data using the XQuery FLWOR expression window
clause.
DataDirect XQuery User’s Guide and Reference

Grouping Data 93
 The XQuery FLWOR expression window clause is supported in
XQuery 1.1 only.

This section covers the following topics:

■ What Is Grouping
■ The window Clause
■ Example: Tumbling Windows
■ Example: Positional Grouping
■ Example: Sliding Windows

What Is Grouping

Grouping is a technique that allows you to group XML data and
then perform some sort of query – a transformation, for example
– on the data in that group.

In XQuery 1.1, you can achieve grouping using the window
clause in a FLWOR expression. The window clause is powerful
because it allows you to bind the for clause variable to a group
of elements, instead of to a single element only. In XQuery 1.0,
the for clause variable in FLWOR expressions could be bound to a
single element only.

The window Clause

The window clause in the XQuery FLWOR expression allows you
to group data in sequences of consecutive items; these
sequences are called windows. The start and end of a window
are based on user-defined criteria – the WindowStartCondition
(start $var when ExprSingle) and WindowEndCondition (end
$var when ExprSingle), respectively. To create the window, the
window clause iterates over the sequence, referred to as the
binding sequence. The resulting window contains the binding
sequence’s start item, end item, and all the items in between.
DataDirect XQuery User’s Guide and Reference

94 Chapter 4 Tutorial: Using XQuery
In a window clause, the starting item of the window is
determined by the window type.

Types of Windows

You can use the window clause to create two types of windows:

■ Tumbling – tumbling windows are defined as windows whose
items never overlap. The item that starts one window always
follows the last item of the previous window. Thus, no two
windows drawn from the same binding sequence can contain
the same items.

■ Sliding – sliding windows, on the other hand, are defined as
windows that can overlap. That is, one window might contain
the same item as another window drawn from the same
binding sequence. This can occur because every item in the
binding sequence that makes the WindowStartCondition true
is the starting item for each new window.

Examples of both types of windows appear in the following
sections.

Example: Tumbling Windows

Consider the following XML document, which contains
information customer orders. Note that the document structure is
flat – customer and order elements are intermingled:

<?xml version="1.0"?>
<orders>
 <customer id="1"/>
 <order type="book" id="1" price="10.0"/>
 <order type="DVD" id="3" price="24.0"/>
 <customer id="2"/>
 <order type="game" id="5" price="50.0"/>
</orders>
DataDirect XQuery User’s Guide and Reference

Grouping Data 95
We want to use XQuery to group all orders by customer, like this:

<?xml version="1.0"?>
<orders>
 <customer id="1">
 <order type="book" id="1" price="10.0"/>
 <order type="DVD" id="3" price="24.0"/>
 </customer>
 <customer id="2">
 <order type="game" id="5" price="50.0"/>
 </customer>
</orders>

Using the tumbling windows in XQuery 1.1, the code required to
generate the same output is straightforward and concise. Here,
the XQuery 1.1 code iterates through all of the elements in the
XML document. The start of the binding sequence is an element
customer; the end of the binding sequence occurs when the
element immediately after the context is not an order (that is, in
this example, it is another customer).

<orders>{
 for tumbling window $customer in $data/orders/*
 start $start when $start/self::customer
 end next $next when $next[self::customer]
 return
 <customer>{
 $start/@*,
 subsequence($customer, 2)
 }</customer>
}</orders>

While generating this output is possible in XQuery 1.0, the
recursive function required to process one sibling at a time is
somewhat complex and not especially efficient, as shown here:

declare function local:orders($c as element(*, xs:untyped))
 as element()*
{
 local:next($c/following-sibling::*[1])
};
DataDirect XQuery User’s Guide and Reference

96 Chapter 4 Tutorial: Using XQuery
declare function local:next($o as element(*, xs:untyped)*)
 as element()*
{
 if($o/self::order) then
 ($o, local:next($o/following-sibling::*[1][self::order]))
 else ()
};

<orders>{
for $ele in $data/orders/customer
return
 <customer>{
 $ele/@*,
 local:orders($ele)
 }</customer>
}</orders>
DataDirect XQuery User’s Guide and Reference

Grouping Data 97
Example: Positional Grouping

The XQuery 1.1 window clause also allows you to define
grouping criteria based on position within the XML source.
Imagine, for example, an XML document with the following
structure containing thousands of book elements:

<?xml version="1.0"?>
<books name="My books">
 <book bookid="1" pubdate="03/01/2002">
 <title>Java Web Services</title>
 <authors>
 <author>David A. Chappel</author>
 <author>Tyler Jewell</author>
 </authors>
 <subject>Web Services</subject>
 </book>
 ...
</books>

The XQuery code required to split a single document into
multiple documents of, say, 10 book elements each might look
like this:

declare variable $window_size = 10;

for tumbling window $customer_orders in $books/books/book
start when true()
end at $i when $i mod $window_size = 0
return

serialize-to-url(
 <books>{$customer_orders}</books>
 concat("books", $end_pos div $window_size,".xml", ""))
DataDirect XQuery User’s Guide and Reference

98 Chapter 4 Tutorial: Using XQuery
Example: Sliding Windows

The previous examples showed how to group data using
tumbling windows – that is, windows with adjacent items. Sliding
windows contain items that can overlap.

Consider this example from the XQuery 1.1 W3C Working Draft 3
December 2008. We have a document that contains a list of
colors, like this:

<?xml version="1.0"?>
<doc>
 <data>Green</data>
 <data>Pink</data>
 <data>Lilac</data>
 <data>Turquoise</data>
 <data>Peach</data>
 <data>Opal</data>
 <data>Champagne</data>
</doc>

Using a FLWOR expression with a sliding window clause:

declare option ddtek:serialize "indent=yes";
<root>{
for sliding window $item in doc("arrange_rows.xml")/*/data
 start at $sp when true()
 end at $ep when $ep - $sp = 2
return <window>{$item}</window>
}</root>

We can generate a sequence of items, grouped by three, each
successive group containing two items overlapping those in the
previous group:

<?xml version="1.0"?>
<root>
 <window>
 <data>Green</data>
 <data>Pink</data>
 <data>Lilac</data>
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xquery-11/#id-sliding-windows
http://www.w3.org/TR/xquery-11/#id-sliding-windows

Grouping Data 99
 </window>
 <window>
 <data>Pink</data>
 <data>Lilac</data>
 <data>Turquoise</data>
 </window>
 <window>
 <data>Lilac</data>
 <data>Turquoise</data>
 <data>Peach</data>
 </window>
 <window>
 <data>Turquoise</data>
 <data>Peach</data>
 <data>Opal</data>
 </window>
 <window>
 <data>Peach</data>
 <data>Opal</data>
 <data>Champagne</data>
 </window>
 <window>
 <data>Opal</data>
 <data>Champagne</data>
 </window>
 <window>
 <data>Champagne</data>
 </window>
</root>
DataDirect XQuery User’s Guide and Reference

100 Chapter 4 Tutorial: Using XQuery
Summary
The major capabilities of XQuery that distinguish it from other
programming languages are its ability to:

■ Locate any content in an XML document

■ Create any XML document

■ Combine data to create new XML structures using FLWOR
expressions

For a more extensive XQuery tutorial, refer to XQuery: A Guided
Tour at:
http://www.datadirect.com/developer/xquery/xquerybook/index.ssp

DataDirect XQuery, an implementation of XQuery, allows you to
query both relational and XML sources and combine the data
into one result.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/developer/xquery/xquerybook/index.ssp
http://www.datadirect.com/developer/xquery/xquerybook/index.ssp

101
5 Tutorial: The XQuery Update
Facility

DataDirect XQuery supports the XQuery Update Facility 1.0
(XUF). XUF is an extension of the XQuery language that allows
making changes to data that are manipulated inside the XQuery.

This chapter describes how DataDirect XQuery supports XUF and
provides examples for its use. For more details about the XUF
specification, see the W3C Candidate Recommendation here:

http://www.w3.org/TR/2008/CR-xquery-update-10-20080801/

This chapter covers the following topics:

■ “Support Overview”

■ “XUF Examples”

■ “Storing Query Results”

■ “Replacing Node Values”

■ “Inserting a New Node”

■ “Renaming a Node”

■ “Transforming Query Results”

■ “Updating Data Sources”
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2008/CR-xquery-update-10-20080801/

102 Chapter 5 Tutorial: The XQuery Update Facility
Support Overview
DataDirect XQuery supports the complete XUF specification for

■ Individual XML documents
■ XML streams
■ File collections

Updating Relational Data

DataDirect XQuery does not support XUF for relational data
sources. XUF expressions can operate on nodes containing data
that originates from a relational data source, but these changes
are not propagated to the relational data source. Consider this
example:

let $myName := <name>{collection("USERS")/USERS[USERID="02"]
 /FIRSTNAME/text()}</name>

Here, you can use XUF to modify $myName, but you cannot change
values from the collection() function because those nodes are
retrieved directly from a relational data source.

You can, however, use the ddtek:sql-insert/update/delete
functions to perform update operations directly against an
RDBMS. See “Updating Relational Data” on page 267 for more
information.

XUF Expressions

The XUF specification introduces several new expressions as
extensions to the XQuery specification:

■ Insert
■ Delete
■ Replace

DataDirect XQuery User’s Guide and Reference

XUF Examples 103
■ Rename
■ Transform

These and other expressions and functions that support XUF are
described and illustrated in the examples in the sections that
follow.

XUF Examples
DataDirect XQuery bundles several examples that help you
understand how to use XUF in your XQuery applications. These
examples are located in the \examples\UpdateFacility folder
where you install DataDirect XQuery.

These examples, and the XUF expressions and functions they
illustrate, are described in the sections that follow this one.

Sample Files

Most DataDirect XQuery XUF examples use these sample files:

■ holdings.xml – an XML document that lists stock holding
information. The holdings.xml document has the following
structure:

<table name="HOLDINGS">
 <holdings>
 <UserId>Jonathan</UserId>
 <StockTicker>PRGS</StockTicker>
 <Shares>23</Shares>
 </holdings>
 <holdings>
 <UserId>Minollo</UserId>
 <StockTicker>PRGS</StockTicker>
 <Shares>4000000</Shares>
 </holdings>
DataDirect XQuery User’s Guide and Reference

104 Chapter 5 Tutorial: The XQuery Update Facility
...
</table>

■ users.xml – an XML document that lists individuals’
information. The users.xml document has the following
structure:

<table name="users">
 <users>
 <UserId>Minollo</UserId>
 <FirstName>Carlo</FirstName>
 <LastName>Innocenti</LastName>
 <OtherName/>
 <MemberSince>2004-06-16T00:00:00</MemberSince>
 </users>
...
</table>

Storing Query Results
The XUF specification defines the fn:put() function as

fn:put($node as node(), $uri as xs:string) as empty-sequence()

where:

■ $node can be any node, whether or not it is updated

■ $uri can be any valid URI and is processed in the same way as
a URI provided to the ddtek:serialize-to-url() function

The fn:put() function is similar to the ddtek:serialize-to-url()
function, but it is executed at the end of the XQuery execution,
when all pending updates have been applied – but before control
is returned to the calling application. See “ddtek:serialize-to-url”
on page 420 for more information on that function.
DataDirect XQuery User’s Guide and Reference

Replacing Node Values 105
Example

The following code shows an example of the fn:put() function
being used in an updating XQuery:

declare variable $holding := doc('holdings.xml');
delete nodes $holding/table/holdings[UserId = "Minollo"],
put($holding, "newHolding.xml")

Replacing Node Values
The replace expression is an updating expression that can be
used to replace a node or a node’s value. Its syntax varies based
on the type of replacement.

Example

The change-values.xq example queries holdings.xml. It looks for
a user, Minollo (/table/holdings[UserId eq 'Minollo']), and
increases his stock holdings (<shares>) by 20%, replacing the
current value with the calculated value.
DataDirect XQuery User’s Guide and Reference

106 Chapter 5 Tutorial: The XQuery Update Facility
Results of the query are written to a new XML document,
more-shares.xml, using the fn:put() function:

for $holding in doc("/examples/xml/holdings.xml")
 /table/holdings[UserId eq 'Minollo']
return
replace value of node $holding/Shares with xs:integer($holding/Shares * 1.2),
 put(doc("/examples/xml/holdings.xml"), "/examples/xml/mo-shares.xml")

Inserting a New Node
The insert expression allows you to insert new nodes into XML
documents. The XUF specification defines the insert expression
as

insert (node|nodes) target

where:

■ (node|nodes) can be one or more individual XML nodes; you
can use either word regardless of the number of nodes being
inserted.

■ target is the target expression. You use it both to identify into
what you want the node inserted (an XML document, for
example) and where. New nodes can be inserted at the start
of the target (as first), and the end (as last), or after or
before any node you specify.

Note that if you do not specify placement in the target
expression, DataDirect XQuery inserts new nodes at the end of
the target in document order.
DataDirect XQuery User’s Guide and Reference

Inserting a New Node 107
Example

In this example, for every user in users.xml, insert-nodes.xq adds
1000 shares of DDTEK stock to that user’s holdings. It creates a
new <holdings> node for those users who do not already have
DDTEK – or who are not already listed in the holdings.xml
document – and writes the result to a new XML document. Note
that the insert node expression specifies placement (as last)
within the target document.

for $user in doc("/examples/xml/users.xml")/table/users
let $ddtekShares := doc("/examples/xml/holdings.xml")/table/holdings[UserId
eq $user/UserId and StockTicker eq "DDTEK"]
return
 if($ddtekShares) then
 replace value of node $ddtekShares/Shares with $ddtekShares/Shares + 1000
 else
 insert node
 <holdings>
 <UserId>{$user/UserId/text()}</UserId>
 <StockTicker>DDTEK</StockTicker>
 <Shares>1000</Shares>
 </holdings>
 as last into doc("/examples/xml/holdings.xml")/table,
put(doc("/examples/xml/holdings.xml"),"/examples/xml/more-ddtek-
 holdings.xml")
DataDirect XQuery User’s Guide and Reference

108 Chapter 5 Tutorial: The XQuery Update Facility
Renaming a Node
The rename expression allows you to replace the name property
for a specific node. Attributes and descendants of the specified
node are not affected by the rename operation.

Example

The rename-nodes.xq XQuery changes an XML document by
renaming <UserID> node to <ID> and saving the result to a new
document using the fn:put() function.

for $user in doc("../xml/users.xml")/table/users
return

rename node $user/UserId as QName("", "ID"),
put(doc("../xml/users.xml"), "new_users.xml")

Example – Using XQJ

You can execute XQuery programmatically using XQJ. In this
example, a Java application is used to execute XQuery that uses
the same rename and put XUF expressions to rename nodes in an
XML document and create a new XML document with the
renamed nodes:

// import the XQJ classes
import javax.xml.xquery.*;
import com.ddtek.xquery.xqj.DDXQDataSource;
import com.ddtek.xquery.xqj.DDXQJDBCConnection;

public class XUF {

 public static void main(String[] args) throws Exception {

 XQConnection xqconnection = null;
 XQPreparedExpression xqExpr = null;
DataDirect XQuery User’s Guide and Reference

Transforming Query Results 109
 try {
 DDXQDataSource dataSource = new DDXQDataSource();
 xqconnection = dataSource.getConnection();

 // the query
 String xquery =
 "for $user in doc('../xml/users.xml')/table/users\n"
 + "return\n"
 + "rename node $user/UserId as QName('', 'ID'),\n"
 + "put(doc('../xml/users.xml'), 'new_users.xml')\n";
 xqExpr = xqconnection.prepareExpression(xquery);

 // execute the query
 xqExpr.executeQuery();
 } finally {
 if (xqExpr != null) xqExpr.close();
 if (xqconnection != null) xqconnection.close();
 }
 }
}

To learn more about DataDirect XQuery support for XQJ, see
Appendix G, “XQJ Support”.

Transforming Query Results
Transform expressions are used to create modified copies of
nodes. Using copy, modify, and return clauses, transform
expressions make a copy of an input document and then
perform the XQuery and write the result to memory. Unlike
other XUF update operations, transform expressions do not
modify existing nodes.
DataDirect XQuery User’s Guide and Reference

110 Chapter 5 Tutorial: The XQuery Update Facility
Example – Replacing a Node Value

The transform-change-values.xq XQuery transforms the query
result by increasing the number of <Shares> for user Minollo
($holding/UserId eq 'Minollo') by 20% (replace value of
node... with... ($updatedHolding/Shares * 1.2)). A new root
element, <table>, is created for the modified nodes that result
from this XQuery.

declare option ddtek:serialize "indent=yes";

<table> {
 for $holding in doc("../xml/holdings.xml")/table/holdings
 return
 if($holding/UserId eq 'Minollo') then
 copy $updatedHolding := $holding
 modify
 replace value of node $updatedHolding/Shares with
 xs:integer($updatedHolding/Shares * 1.2)
 return $updatedHolding
 else
 $holding
} </table>
DataDirect XQuery User’s Guide and Reference

Transforming Query Results 111
Example – Inserting a Node

The transform-insert-nodes.xq XQuery performs two update
operations depending on the query result:

■ If a user has DDTEK holdings, the value of the <Shares> node
is increased by 1000

■ If the user has no shares of DDTEK (else), a new <holdings>
node is created for that user with the value of the <Shares>
node set to 1000

declare option ddtek:serialize "indent=yes";
copy $newHoldings := doc("../xml/holdings.xml")
modify
 for $user in doc("../xml/users.xml")/table/users
 let $ddtekShares := $newHoldings/table/holdings[UserId eq $user/UserId and
 StockTicker eq "DDTEK"]
 return
 if($ddtekShares) then
 replace value of node $ddtekShares/Shares with $ddtekShares/Shares + 1000
 else
 insert node
 <holdings>
 <UserId>{$user/UserId/text()}</UserId>
 <StockTicker>DDTEK</StockTicker>
 <Shares>1000</Shares>
 </holdings>
 as last into $newHoldings/table
return $newHoldings
DataDirect XQuery User’s Guide and Reference

112 Chapter 5 Tutorial: The XQuery Update Facility
Updating Data Sources
DataDirect XQuery provides a feature that allows XQuery to
automatically update data sources that are accessed through
doc() and collection() functions. You can use both literal and
computed arguments for these function calls.

Relational data sources cannot be updated using automatic
update.

Enabling Automatic Update

The automatic update feature can be enabled in one of two
ways:

■ Using the ddtek:automatic-update option. The automatic
update feature can be enabled in any XQuery using the
following declaration:

declare option ddtek:automatic-update "yes"

■ Using the -u command line option. See “Using the Command
Line Utility” on page 40 for more information on using the
command line.

The automatic update feature is disabled by default. When it is
enabled, data sources affected by XUF update expressions are
physically modified at the end of the XQuery execution.

In the event of a conflict between command line and XQuery
settings for this feature, the setting specified at the XQuery level
always takes precedence.
DataDirect XQuery User’s Guide and Reference

Updating Data Sources 113
How Updates are Performed

Single data sources specified in a doc() function call are updated
at the end of the XQuery execution. For a collection() function
call that returns n XML documents, each of those n XML
documents whose XDM instance has been modified is
automatically updated.

Modified files are serialized using global serialization options set
through the XQJ API or the ddtek:serialize option. See
Appendix D, “Serialization Support” for more information.

Example

In the following example, the <subject> element in books.xml is
renamed to <topic>. Changes to books.xml are saved
automatically when the XQuery execution is complete:

declare option ddtek:automatic-update "yes";

for $book in doc("file:///c:/myFiles/my_books.xml")/books/book
return
 rename node $book/subject as QName("","topic")
DataDirect XQuery User’s Guide and Reference

114 Chapter 5 Tutorial: The XQuery Update Facility
DataDirect XQuery User’s Guide and Reference

115
6 Understanding Data Sources
and Connections

This chapter describes the XML and relational data sources that
DataDirect XQuery can work with to produce XML results, the
methods available for connecting to these data sources, and
how to configure URIs used to connect to them.

Using Data Sources in Queries
In XQuery, data sources and query results are both represented
using an XML data model. Physical inputs such as XML text files,
DOM trees, and relational databases are mapped into the XML
data model when they are queried. In the case of relational
databases, the mapping is logical, and relational data is not
materialized as XML. These mappings are documented in this
section.

The result of a query (the XML output) is also defined in the XML
data model and must be mapped to a physical format such as
DOM, SAX, StAX, or text in order for an application to use the
results. See “Accessing XML Results” on page 530 for more
information about the mapping of results.

In addition, when you use DataDirect XQuery with DataDirect
XML Converters, you can convert non-XML formats into XML,
including EDI messages, tab-delimited and comma-separated
text files, dBASE files, RTF files, and many more. Once these
non-XML data sources are converted to XML, they are accessed
the same as XML documents.
DataDirect XQuery User’s Guide and Reference

116 Chapter 6 Understanding Data Sources and Connections
XML Data Sources

The XML data sources that DataDirect XQuery can access have the
following physical formats:

■ XML text files/streams. These files/streams can be accessed
using fn:doc(), which supports the http:, ftp:, and file: URI
schemes and DataDirect XML Converters URI schemes.

Here is an example of a file URI scheme:

let $request := doc('file:///c:/request.xml')/request
...

Here is an example of a DataDirect XQuery XML Converters
URI scheme in which the name of the Converter is Base64, the
properties set for the conversion are newline and encoding,
and the file to convert is base_to_xml.bin:

let $request := doc('converter:Base64:newline=crlf:
encoding=utf-8?file///w:/myfiles/base_to_xml.bin')/
request
...

NOTE: Using fn:collection(), DataDirect XQuery also allows
you to make the following types of queries on XML files:
• Query multiple XML files in a directory. See “Querying

Multiple Files in a Directory” on page 288.
• Query XML files archived in ZIP or JAR files. See “Querying

ZIP, JAR, and MS Office Files” on page 292.

DataDirect XQuery User’s Guide and Reference

Using Data Sources in Queries 117
NOTES FOR SPECIFYING URIs:
• You must use forward slashes (/) in the path regardless of

the platform.
• Relative URIs are allowed in the path. For example:

let $request := doc('request.xml')/request
...

• Spaces are allowed in the path. For example:

let $request := doc('file:///c:/DD XQuery/
request.xml')/request
...

If you use a custom URI resolver, the rules enforced for URI
paths are governed by the syntax specified by the custom URI
resolver (see “Document URI Resolvers” on page 295).

■ XML contained in a Java application. This type of XML can be
bound to the initial context item or to external variables in
XQJ and used in XQuery queries. See “Querying Data from
XML Files or DOM Trees” on page 65 for an example.

■ XML stored in columns of any supported relational database
using an XML data type. See Chapter 11 “Support for
Relational Databases” for details.

■ XML stored in character columns of any supported relational
database. See “Querying XML Type Data” on page 263 for
details.

Data Model Representation of XML Documents

For XQuery queries that access XML using fn:doc() or external
variables in the query, DataDirect XQuery implements the
Infoset mapping described in the XQuery 1.0 and XPath 2.0 Data
Model specification located at:
http://www.w3.org/TR/2005/CR-xpath-datamodel-20051103/
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2005/CR-xpath-datamodel-20051103/

118 Chapter 6 Understanding Data Sources and Connections
Relational Data Sources

DataDirect XQuery provides support for the following relational
databases:

■ DB2

■ DB2 Universal Database (UDB)

■ Informix Dynamic Server

■ Microsoft SQL Server

■ MySQL Enterprise

■ Oracle

■ PostgreSQL

■ Sybase Adaptive Server Enterprise

Note: For support for specific versions, see “Supported
Databases” on page 445. This information is also maintained on
the DataDirect web site:

http://www.datadirect.com/support/product_info/
databasesupport/index.ssp

Specifying Relational Database Tables

Using DataDirect XQuery, you specify relational database tables
in a query using fn:collection(). The following example specifies a
database table named holdings:

collection('holdings')

Notes for Specifying Database Table Names

■ Qualified names – You might need to qualify the database
table name in order to specify the exact table you want to
access. The argument to fn:collection() can include any
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/support/product_info/databasesupport/index.ssp

Using Data Sources in Queries 119
combination of JDBC connection name, database catalog, or
database schema in addition to the database table name.

For example, if the database table being accessed is not
owned by the current user or is not located in the current
database or catalog, you can qualify the database table
name with the catalog name and schema name of the
database table. The following example specifies a catalog
name, schema name, and database table name:

collection('financial.joseph.holdings')

If you need to further qualify the database table name, you
can use a JDBC connection name, which identifies a specific
connection to a relational database. The following example
specifies a JDBC connection name, catalog name, schema
name, and database table name:

collection('stocks:financial.joseph.holdings')

■ Escape characters – If the catalog name, schema name, or
table name in the fn:collection() argument contains a period
(.), a colon (:), or a backslash(\), escape the character with a
backslash (\) so that DataDirect XQuery can correctly parse
the argument. For example, if the target table is named
a.holdings and you specify the following query, DataDirect
XQuery parses 'a' as the schema name, not as part of the
table name:

collection('a.holdings')

Escaping the period (.) in the fn:collection() argument using
the backslash character allows DataDirect XQuery to parse
the argument correctly:

collection('a\.holdings')

In addition, XQuery string literal syntax applies to the
fn:collection() argument. If a table name contains double
quotes, for example, a"holdings, and the fn:collection()
argument uses double quote delimiters, you must repeat the
double quotes:

collection("a""holdings")
DataDirect XQuery User’s Guide and Reference

120 Chapter 6 Understanding Data Sources and Connections
Or, you can use:

collection('a"holdings')

See “Path Expressions for Relational Sources” on page 81 for
examples of using fn:collection(). See “Resolving fn:collection
Errors” on page 564 for information about troubleshooting
fn:collection() errors.

Data Model Representation of Relational Tables

In DataDirect XQuery, XML views of relational data are based on
the SQL/XML mappings specified in the SQL 2003 standard. These
are logical XML views, not a physical format.

SQL/XML provides different ways to parameterize views.
DataDirect XQuery uses the XMLFOREST variable to parameterize
views. Using XMLFOREST is sufficient for most applications, but
you can choose not to use it by setting the JdbcSqlXmlForest
property of DDXQDataSource to false (see “DDXQDataSource
and DDXQJDBCConnection Properties” on page 128).

When the value of the JdbcSqlXmlForest property is set to true
(the default), DataDirect XQuery represents each database table
by a sequence of row elements in a document node. The row
elements use the table name as the element name and contain
an element for each non-null column in the row; DataDirect
XQuery uses the column name as the element name for these
elements. For example, when XML FOREST is used, the result for
collection('users') is a document node containing the
following elements:

<users>
 <userid>Minollo</userid>
 <firstname>Carlo</firstname>
 <lastname>Innocenti</lastname>
 <membersince>2004-06-16T00:00:00</membersince>
</users>
<users>
DataDirect XQuery User’s Guide and Reference

Using Data Sources in Queries 121
 <userid>Jonathan</userid>
 <firstname>Jonathan</firstname>
 <lastname>Robie</lastname>
 <othername>William</othername>
 <membersince>2004-03-03T00:00:00</membersince>
</users>

Suppose we wanted to write a FLWOR expression to bind each
row of the preceding table to a variable. In this case, we add an
argument to fn:collection() that defines a path matching the
users elements:

collection('users')/users

Here is a FLWOR expression that iterates over the rows returned
by the preceding path expression:

for $u in collection('users')/users
where $u/lastname = 'Robie'
return $u/membersince

When the XMLFOREST variable is false, the result is a document
node. Inside the document node is a single element that
represents the table. Inside the single element node is a
sequence of elements named row, each representing one row of
the table. For example, when XMLFOREST is not used, a result
for collection('users') might look like this:

<users>
 <row>
 <userid>Minollo</userid>
 <firstname>Carlo</firstname>
 <lastname>Innocenti</lastname>
 <membersince>2004-06-16T00:00:00</membersince>
 </row>
 <row>
 <userid>Jonathan</userid>
 <firstname>Jonathan</firstname>
 <lastname>Robie</lastname>
 <othername>William</othername>
 <membersince>2004-03-03T00:00:00</membersince>
DataDirect XQuery User’s Guide and Reference

122 Chapter 6 Understanding Data Sources and Connections
 </row>
</users>

Suppose we wanted to write a FLWOR expression to bind each
row of the preceding table to a variable. In this case, we would
need to add a path expression to fn:collection(). The following
path expression defines a path that matches the row elements:

collection('users')/users/row

Here is a FLWOR expression that iterates over the rows returned
by the preceding path expression:

for $u in collection('users')/users/row
where $u/lastname = 'Robie'
return $u/membersince

Case Sensitivity

XML element and attribute names are case-sensitive. When SQL
column and table names are mapped into XML elements, the case
depends on a number of factors that can vary by database vendor
and the parameters used to create a database.

The case sensitivity of the argument to fn:collection() depends on
the database.

Data Type Mappings

See “Data Type Mappings” on page 447 for information about
how database data types are mapped to XML schema data types.

Security Features

DataDirect XQuery supports authentication and data encryption
security features for data source connections. For more
information, see Chapter 7, “Securing Data Source Connections.”
DataDirect XQuery User’s Guide and Reference

Choosing a Connection Method 123
Choosing a Connection Method
You can use XQJ to connect to a data source using either of the
following methods:

■ Construct a DDXQDataSource instance in your Java
application explicitly

■ Load a DDXQDataSource object from JNDI

Specifying connection information explicitly in your Java
application using a DDXQDataSource instance requires you to
code the connection information directly in your Java
application. See “Configuring Connections Explicitly” on
page 123 for complete information.

Using a DDXQDataSource object loaded from JNDI can be a
convenient way to manage connections because the connection
information is created and managed outside the applications
that use it. As a result, the effort required to reconfigure your
environment when an infrastructure change occurs is minimal.
For example, if a database is moved to another server and uses a
different port number, you only need to change the relevant
properties of the data source object. An application accessing
the database does not need to change because the application
only references the logical name of the data source object in
JNDI. See “Configuring Connections Using JNDI” on page 127 for
complete information.

Configuring Connections Explicitly
To specify connection information explicitly using XQJ, construct
an XQDataSource instance in your Java application using the
DDXQDataSource class.
DataDirect XQuery User’s Guide and Reference

124 Chapter 6 Understanding Data Sources and Connections
If your Java application contains queries that access an XML file,
you can directly access the file as shown in the following XQJ
code, where the location and name of the XML file is specified as
a parameter of fn:doc(), an XQuery function.

DDXQDataSource ds = new DDXQDataSource();
XQConnection conn = ds.getConnection();
conn.createExpression().executeQuery("doc('path_and_filename')");

How you configure connection information for relational
databases using XQJ depends on whether you are accessing a
single database or multiple databases. If your Java application
contains XQuery queries that access a single database, you can
configure connection information using the DDXQDataSource
class as shown in the following XQJ code:

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
XQConnection conn = ds.getConnection("myuserid", "mypswd");

If your Java application contains XQuery queries that access
multiple databases, use the DDXQJDBCConnection class to
configure connection information for each database connection,
then construct an XQDataSource instance that specifies all
database connections using the DDXQDataSource class as shown
in the following XQJ code. When specifying the URI for multiple
databases, use the DDXQJDBCConnection Url property instead of
the DDXQDataSource jdbcUrl property to set the JDBC URI for
each connection.

DDXQJDBCConnection jc1 = new DDXQJDBCConnection();
jc1.setUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
DDXQJDBCConnection jc2 = new DDXQJDBCConnection();
jc2.setUrl("jdbc:xquery:sqlserver://server2:1433;databaseName=holdings");
DDXQDataSource ds = new DDXQDataSource();
ds.setDdxqJdbcConnection(new DDXQJDBCConnection[] {jc1, jc2});
XQConnection conn = ds.getConnection("myuserid", "mypswd");

In the preceding example, notice that the user name and
password specified in the getConnection() method are used to
establish all underlying JDBC connections. If you require different
DataDirect XQuery User’s Guide and Reference

Configuring Connections Explicitly 125
user names and passwords for each connection, set the user
name and password on each DDXQJDBCConnection as shown in
the following XQJ code:

DDXQJDBCConnection jc1 = new DDXQJDBCConnection();
jc1.setUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
jc1.setUser("myuserid1");
jc1.setPassword("mypswd1");
DDXQJDBCConnection jc2 = new DDXQJDBCConnection();
jc2.setUser("myuserid2");
jc2.setPassword("mypswd2");
jc2.setUrl("jdbc:xquery:sqlserver://server2:1433;databaseName=holdings");
DDXQDataSource ds = new DDXQDataSource();
ds.setDdxqJdbcConnection(new DDXQJDBCConnection[] {jc1, jc2});
XQConnection conn = ds.getConnection();

The following table lists properties of the DDXQDataSource class
and the corresponding properties of the DDXQJDBCConnection
class:

If any of these DDXQJDBCConnection properties is specified for
an individual connection and then specified again using
DDXQDataSource, the latter overrides the former. The following

DDXQDataSource property DDXQJDBCConnection property

JdbcName Name

JdbcOptions Options

JdbcSqlXmlForest SqlXmlForest

JdbcSqlXmlIdentifierEscaping SqlXmlIdentifierEscaping

JdbcTempTableColumns TempTableColumns

JdbcTempTableSuffix TempTableSuffix

JdbcTransactionIsolationLevel TransactionIsolationLevel

JdbcUrl Url

Password Password

User User
DataDirect XQuery User’s Guide and Reference

126 Chapter 6 Understanding Data Sources and Connections
example shows the Options property first specified for the jc1
connection, and specified again using the JdbcOptions property
of DDXQDataSource. In this case, the precision and scale for
xs:decimal specified for DDXQDataSource overrides the precision
and scale for xs:decimal specified for the jc1 connection.

DDXQJDBCConnection jc1 = new DDXQJDBCConnection();
jc1.setUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
jcl.setUser("myuserid1");
jcl.setPassword("mypswd1");
jc1.setOptions("sql-decimal-cast=25,5");
DDXQJDBCConnection jc2 = new DDXQJDBCConnection();
jc2.setUser("myuserid2");
jc2.setPassword("mypswd2");
jc2.setUrl("jdbc:xquery:sqlserver://server2:1433;databaseName=holdings");
DDXQDataSource ds = new DDXQDataSource();
ds.setDdxqJdbcConnection(new DDXQJDBCConnection[] {jc1, jc2});
ds.setJdbcOptions("sql-decimal-cast=35,20");
XQConnection conn = ds.getConnection();

See “DDXQDataSource and DDXQJDBCConnection Properties”
on page 128 for a description of properties you can set using XQJ.
DataDirect XQuery User’s Guide and Reference

Configuring Connections Using JNDI 127
Configuring Connections Using JNDI
To create your own data source object for JNDI to use with
DataDirect XQuery, you can use the example named
JNDIDataSource in the /examples subdirectory in your DataDirect
XQuery installation directory as a template.

Once you have created a data source object, you can register it
with JNDI, as shown in the following XQJ code, where
holdings_ds is the name of the data source object:

DDXQDataSource ds = new DDXQDataSource();
Context ctx = new InitialContext();
ctx.bind("holdings_ds", ds);

The following XQJ code shows how to load a DDXQDataSource
object from JNDI:

Context ctx = new InitialContext();
XQDataSource ds = (XQDataSource)ctx.lookup("holdings_ds");
XQConnection conn = ds.getConnection("myuserid", "mypswd");

In this example, the JNDI environment is first initialized. Next,
the initial naming context is used to find the name of the data
source object (holdings_ds). The Context.lookup() method
returns a reference to a Java object, which is cast to a
com.ddtek.xquery.xqj.DDXQDataSource object. Finally, the
getConnection() method is called to establish the connection.
DataDirect XQuery User’s Guide and Reference

128 Chapter 6 Understanding Data Sources and Connections
DDXQDataSource and DDXQJDBCConnection
Properties

The class name of the DataDirect XQuery XQDataSource
implementation is:

com.ddtek.xquery.xqj.DDXQDataSource

It provides properties that allow you to configure most
DataDirect XQuery settings and data source connections.
Table 6-1 lists the properties supported by the DDXQDataSource
class, DataDirect XQuery’s XQDataSource implementation, and
describes each property.

The following class provides additional properties for configuring
connections to multiple databases:

com.ddtek.xquery.xqj.DDXQJDBCConnection

See Table 6-2 for a list of the additional properties supported by
the DDXQJDBCConnection class.

NOTE: All property names are case-insensitive. For example,
password is the same as Password.

DDXQDataSource Properties

Table 6-1. DDXQDataSource Properties

Property Description

AllowJavaFunctions Specifies whether external Java functions are allowed. By
default, external functions are allowed. To disable external
functions for security reasons, for example, set this property
to false.
DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 129
BaseUri The baseURI property in the XQuery static context, which is
the base URI used to resolve relative URIs in fn:doc(). See
“XML Data Sources” on page 116 for rules governing URIs.

NOTE: You can also specify a base URI in the query prolog.

Collation The collation URI for the default collation to be used by the
Java Virtual Machine. See “Querying Multiple Files in a
Directory” on page 288 for more information.

CollectionUriResolver A Java class that implements the
com.ddtek.xquery.CollectionURIResolver interface to resolve
URIs in fn:collection(). For example, you may want to create a
Java class to resolve custom URLs that point to a directory
that contains your XML files. See “Collection URI Resolvers”
on page 298 for more information.

DocumentUriResolver A Java class that implements the
javax.xml.transform.URIResolver interface to resolve URIs in
fn:doc() and fn:doc-available(). For example, you may want
to create a Java class to resolve custom URLs that point to a
proprietary repository that stores your XML documents such
as an XML database. See “Document URI Resolvers” on
page 295 for more information.

JdbcName The name of the JDBC connection. A JDBC connection name
identifies a specific connection to a relational database.

If specifying a JDBC connection name for multiple databases,
use the Name property of the DDXQJDBCConnection class.

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

130 Chapter 6 Understanding Data Sources and Connections
JdbcOptions Specifies one or multiple option declarations for the
relational database specified by the JdbcUrl property. Valid
option declarations are:

sql-decimal-cast
sql-extra-checks-trailing-spaces
sql-ignore-trailing-spaces
sql-ora10-use-binary-float-double
sql-order-by-on-values
sql-rewrite-algorithm
sql-rewrite-exists-into-count
sql-simple-convert-functions
sql-simple-string-functions
sql-sybase-temptable-index
sql-sybase-use-derived-tables
sql-unicode-strings
sql-varchar-cast

See “Option Declarations” on page 275 for a description of
these option declarations.

The value of this property is a semicolon-separated list of
option declaration name=value pairs:

name=value[;name=value]...

For example:

sql-unicode-strings=yes;sql-decimal-cast=10,5

You also can specify a global option declaration for all XML
and relational data sources using the Options property.

NOTE: You can override this setting in the query.

If specifying an option declaration for multiple databases,
use the Options property of the DDXQJDBCConnection class.

JdbcSqlXmlForest Specifies the format of the XML result that fn:collection()
returns. Valid values are true and false. The default is true.
See “Data Model Representation of Relational Tables” on
page 120 for details about the format of the XML result.

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 131
JdbcSqlXmlIdentifierEscaping Specifies how DataDirect XQuery handles escaping of
identifiers, which is needed because of mismatches that occur
when characters in SQL identifiers are mapped to XML. Valid
values are:

■ none (the default) – No mapping is performed. An error is
raised if a character in a SQL identifier cannot be mapped
to XML.

■ partial – Characters in SQL identifiers that are not XML
characters are escaped using an underscore character (_)
followed by a lowercase x followed by the character’s
Unicode representation in hexadecimal format followed
by an underscore character (_). For example, sales!forecast
becomes sales_x0021_forecast.

■ full – In addition to the escaping performed by partial, the
character x of a SQL identifier that starts with "xml" (in
any combination of upper and lowercase characters) is
escaped. For example, XMLTable becomes
_x0058_MLTable.

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

132 Chapter 6 Understanding Data Sources and Connections
JdbcTempTableColumns xquerytype="value" sqlType="value". Specifies which
SQL type is used for columns when DataDirect XQuery
creates temporary tables for query optimization.

If you do not specify a value for this property, DataDirect
XQuery uses the SQL/XML mappings to determine which SQL
type to use for the columns of temporary tables; however,
this can sometimes cause problems. For example, if your
database table has a case-sensitive collation and the
temporary table is created with a case-insensitive collation,
an error is raised. In this case, use this property to specify that
the temporary tables be created with a case-sensitive
collation.

A value for xqueryType is required and specifies one of the
following values: boolean, byte, date, dateTime, decimal,
double, float, hexBinary, int, integer, long, short, string, or
time.

A value for sqlType is required and determines the database
type declaration that is appended to the column names
when temporary tables are created. The specified data type
must be supported by the database used to create the
temporary tables.

For example:

xqueryType="string" sqlType="nvarchar(2000) collate
SQL_Latin1_General_CP1_CS_AS"

JdbcTempTableSuffix CCSID UNICODE ON COMMIT PRESERVE ROWS. You must
specify this property if you are connecting to a DB2 for z/OS
Unicode database.

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 133
JdbcTransactionIsolationLevel Specifies the transaction isolation level. Valid values are:

■ java.sql.Connection.TRANSACTION_READ_UNCOMMITTED –
Locks are obtained on modifications to the database and
held until end of transaction (EOT). Reading from the
database does not involve any locking.

■ java.sql.Connection.TRANSACTION_READ_COMMITTED –
Locks are acquired for reading and modifying the
database. Locks are released after reading, but locks on
modified objects are held until EOT.

■ java.sql.Connection.TRANSACTION_REPEATABLE_READ –
Locks are obtained for reading and modifying the
database. Locks on all modified objects are held until EOT.
Locks obtained for reading data are held until EOT. Locks
on non-modified access structures (such as indexes and
hashing structures) are released after reading.

■ java.sql.Connection.TRANSACTION_SERIALIZABLE – All
data read or modified is locked until EOT. All access
structures that are modified are locked until EOT. Access
structures used by the query are locked until EOT.

■ java.sql.Connection.TRANSACTION_NONE – Transactions
are not supported.

■ -1 – The default transaction isolation level is used, which is
Read Committed.

The database to which you are connecting may not support
all of these isolation levels. See “Transaction Isolation Levels”
on page 271 for details.
NOTE: Once a connection is made, the transaction isolation
level cannot be changed for that connection (XQConnection
object).

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

134 Chapter 6 Understanding Data Sources and Connections
JdbcUrl The JDBC URL of the database. See “Specifying Connection
URIs” on page 141 for the syntax of URLs.

If specifying a URL for multiple databases, use the Url
property of the DDXQJDBCConnection class.

MaxPooledQueries Specifies the maximum number of queries that can be placed
in the pool when DataDirect XQuery’s internal query pooling
is enabled. When enabled, DataDirect XQuery caches a
certain number of queries executed by an application. For
example, if this property is set to 20, DataDirect XQuery
caches the last 20 queries executed by the application. If the
value set for this property is greater than the number of
queries used by the application, all queries are cached. By
default, query pooling is disabled. See “Using Query Pooling”
on page 192 for more information.

ModuleUriResolver A Java class that implements the
com.ddtek.xquery.ModuleURIResolver interface to resolve
the library module to be imported. For example, you may
want to create a Java class to resolve URLs that point to a
custom repository that stores XQuery modules. See
also“Library Module URI Resolvers” on page 296.

Options Specifies a global option declaration to use as the default for
all XML and relational data sources that are used by XQuery
queries in your Java application. Valid global option
declarations are:

■ detect-XPST0005
■ plan-explain
■ serialize
■ xml-streaming

See “Option Declarations” on page 275 for a description of
these option declarations.

The value of this property is a name=value pair:

name=value

where value is either yes or no. For example:

detect-XPST0005=no

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 135
Password A password used to connect to the database.

If specifying a password for multiple databases, use the
Password property of the DDXQJDBCConnection class.

SpyAttributes Enables and sets attributes for DataDirect Spy, a tool that
logs detailed information about XQJ calls issued by a running
Java application. For example, you may want to log all XQJ
activity to a log file on your local machine.

The format for the value of this property is:

(spy_attribute=value[;spy_attribute=value]...)

where spy_attribute=value is a DataDirect Spy attribute
and a valid value for that attribute. The following example
specifies that DataDirect Spy log all XQJ activity to a log file,
including the content of SAX streams passed through XQJ.

ds.setSpyAttributes("log=(file)/tmp/spy.log;
logSAX=yes")

NOTE: When coding a path in a Java string on Windows, the
backslash character (\) must be preceded by the Java escape
character, which is also a backslash. The Spy parser also uses
the backslash as an escape character, so four slashes must be
used to specify a single backslash in the log path. For
example:

ds.setSpyAttributes("log=
(file)C:\\\\temp\\\\spy.log;logSAX=yes")

Once enabled. you can turn DataDirect Spy on and off at
runtime using the setEnableLogging() method of the
com.ddtek.xquery.xqj.ExtLogControl interface.

See “Logging XQJ Calls with DataDirect Spy™ for XQJ” on
page 553 for instructions on using DataDirect Spy and a list
of supported attributes.

User A user name used to connect to the database.

If specifying a user for multiple databases, use the User
property of the DDXQJDBCConnection class.

Table 6-1. DDXQDataSource Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

136 Chapter 6 Understanding Data Sources and Connections
DDXQJDBCConnection Properties

Table 6-2 lists the properties supported by the
DDXQJDBCConnection class and describes each property (see
Table 6-1 for a list of the properties supported by the
DDXQDataSource class).

Table 6-2. DDXQJDBCConnection Properties

Property Description

Name The name of the JDBC connection. A JDBC connection name
identifies a specific connection to a relational database.

If specifying a JDBC connection name for a single database,
use the JdbcName property of the DDXQDataSource class.
DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 137
Options Specifies one or multiple option declarations for the
relational database specified by the Url property. Valid
option declarations are:

■ sql-decimal-cast
■ sql-extra-checks-trailing-spaces
■ sql-ignore-trailing-spaces
■ sql-ora10-use-binary-float-double
■ sql-order-by-on-values
■ sql-rewrite-algorithm
■ sql-rewrite-exists-into-count
■ sql-simple-convert-functions
■ sql-simple-string-functions
■ sql-sybase-temptable-index
■ sql-sybase-use-derived-tables
■ sql-unicode-strings
■ sql-varchar-cast

See “Option Declarations” on page 275 for a description of
these option declarations.

The value of this property is a semicolon-separated list of
option declaration name=value pairs:

name=value[;name=value]...

For example:

sql-unicode-literals=yes;sql-decimal-cast=10,5

You also can specify a global option declaration for all XML
and relational data sources using the Options property of
the DDXQDataSource class.

NOTE: You can override this setting in the query.

If specifying an option declaration for a single database, use
the JdbcOptions property of the DDXQDataSource class.

Password A password used to connect to the database. A password is
required only if security is enabled on the database. Contact
your system administrator to obtain your password.

If specifying a password for a single database, use the
Password property of the DDXQDataSource class.

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

138 Chapter 6 Understanding Data Sources and Connections
SqlXmlForest Specifies the format of the XML result that fn:collection()
returns. Valid values are true and false. The default is true.
See “Data Model Representation of Relational Tables” on
page 120 for details about the format of the XML result.

SqlXmlIdentifierEscaping Specifies how DataDirect XQuery handles escaping of
identifiers, which is needed because of mismatches that
occur when characters in SQL identifiers are mapped to XML.
Valid values are:

■ none (the default) – No mapping is performed. An error is
raised if a character in a SQL identifier cannot be mapped
to XML.

■ partial – Characters in SQL identifiers that are not XML
characters are escaped using an underscore character (_)
followed by a lowercase x followed by the character’s
Unicode representation in hexadecimal format followed
by an underscore character (_). For example,
sales!forecast becomes sales_x0021_forecast.

■ full – In addition to the escaping performed by partial,
the character x of a SQL identifier that starts with "xml"
(in any combination of upper and lowercase characters) is
escaped. For example, XMLTable becomes
_x0058_MLTable.

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

DDXQDataSource and DDXQJDBCConnection Properties 139
TempTableColumns xquerytype="value" sqlType="value". Specifies which
SQL type is used for columns when DataDirect XQuery
creates temporary tables for query optimization.

If you do not specify a value for this property, DataDirect
XQuery uses the SQL/XML mappings to determine which SQL
type to use for the columns of temporary tables; however,
this can sometimes cause problems. For example, if your
database table has a case-sensitive collation and the
temporary table is created with a case-insensitive collation,
an error is raised. In this case, use this property to specify
that the temporary tables be created with a case-sensitive
collation.

A value for xqueryType is required and specifies one of the
following values: boolean, byte, date, dateTime, decimal,
double, float, hexBinary, int, integer, long, short, string, or
time.

A value for sqlType is required and determines the database
type declaration that is appended to the column names
when temporary tables are created. The specified data type
must be supported by the database used to create the
temporary tables.

For example:

xqueryType="string" sqlType="nvarchar(2000)
collate SQL_Latin1_General_CP1_CS_AS"

TempTableSuffix CCSID UNICODE ON COMMIT PRESERVE ROWS. You must
specify this property if you are connecting to a DB2 for z/OS
Unicode database.

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

140 Chapter 6 Understanding Data Sources and Connections
TransactionIsolationLevel Specifies the transaction isolation level. Valid values are:

■ java.sql.Connection.TRANSACTION_READ_UNCOMMITTED
– Locks are obtained on modifications to the database
and held until end of transaction (EOT). Reading from the
database does not involve any locking.

■ java.sql.Connection.TRANSACTION_READ_COMMITTED –
Locks are acquired for reading and modifying the
database. Locks are released after reading, but locks on
modified objects are held until EOT.

■ java.sql.Connection.TRANSACTION_REPEATABLE_READ –
Locks are obtained for reading and modifying the
database. Locks on all modified objects are held until
EOT. Locks obtained for reading data are held until EOT.
Locks on non-modified access structures (such as indexes
and hashing structures) are released after reading.

■ java.sql.Connection.TRANSACTION_SERIALIZABLE – All
data read or modified is locked until EOT. All access
structures that are modified are locked until EOT. Access
structures used by the query are locked until EOT.

■ java.sql.Connection.TRANSACTION_NONE – Transactions
are not supported.

■ -1 – The default transaction isolation level is used, which
is Read Committed.

The database to which you are connecting may not support
all of these isolation levels. See “Transaction Isolation Levels”
on page 271 for details.
NOTE: Once a connection is made, the transaction isolation
level cannot be changed for that connection (XQConnection
object).

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

Specifying Connection URIs 141
Specifying Connection URIs
DataDirect XQuery provides access to most databases through
built-in JDBC drivers. In addition, you can access specific
databases using third-party JDBC drivers. The format of the
connection URI depends on whether you are using a built-in
JDBC driver or a third-party driver, and the database you are
connecting to.

Connection URIs for Built-In Drivers

DataDirect XQuery provides built-in JDBC drivers to access the
following databases:

■ DB2 for Linux/UNIX/Windows
■ DB2 for z/OS
■ DB2 for iSeries
■ Informix Dynamic Server
■ MySQL Enterprise
■ Oracle
■ Microsoft SQL Server
■ Sybase Adaptive Server Enterprise

Url The JDBC URL of the database. See “Specifying Connection
URIs” on page 141 for the syntax of URLs.

If specifying a URL for a single database, use the JdbcUrl
property of the DDXQDataSource class.

User A user name used to connect to the database.

If specifying a user name for a single database, use the User
property of the DDXQDataSource class.

Table 6-2. DDXQJDBCConnection Properties (cont.)

Property Description
DataDirect XQuery User’s Guide and Reference

142 Chapter 6 Understanding Data Sources and Connections
The format of the connection URI is:

jdbc:xquery:dbtype://server_name:port;property=value[;...]

where:

The following URLs show examples of the minimum information,
including any required connection properties, that must be
specified in a connection URL.

DB2 for Linux/UNIX/Windows

jdbc:xquery:db2://server_name:50000;databaseName=your_database

DB2 for z/OS and iSeries

jdbc:xquery:db2://server_name:446;locationName=db2_location

Informix

jdbc:xquery:informix://server_name;1526;InformixServer=dbserver_name

dbtype Valid values are db2, informix, mysql, oracle,
sqlserver, and sybase.

server_name The TCP/IP address or TCP/IP host name of the
database server to which you are connecting
(See following NOTE).

port The number of the TCP/IP port.

property=value Connection properties. For a list of connection
properties, ordered by database, see
“Database Connection Properties” on
page 460. For some databases, particular
connection properties are required in the URL
as shown in the following examples.

All connection property names are
case-insensitive. For example, password is the
same as Password.

NOTE FOR ORACLE USERS: See “Using Oracle tnsnames.ora Files”
on page 476 for instructions on retrieving connection
information from an Oracle tnsnames.ora file.
DataDirect XQuery User’s Guide and Reference

Specifying Connection URIs 143
Microsoft SQL Server

jdbc:xquery:sqlserver://server_name:1433

MySQL Enterprise

jdbc:xquery:mysql://server_name:[port]

Oracle

jdbc:xquery:oracle://server_name:1521

Sybase

jdbc:xquery:sybase://server_name:5000

Connection URIs for Third-Party Drivers

You can access the PostgreSQL database using the PostgreSQL
JDBC driver from:

http://jdbc.postgresql.org/

Connection URI Format

The format of the connection URI is:

jdbc:postgresql:database

or

jdbc:postgresql://[server_name][:port]/database[?property=value]
[&property=value[...]]
DataDirect XQuery User’s Guide and Reference

http://jdbc.postgresql.org/

144 Chapter 6 Understanding Data Sources and Connections
where:

The following URI is an example of the minimum information
that must be specified in the URI:

jdbc:postgresql:your_database

server_name The TCP/IP address or TCP/IP host name of
the database server to which you are
connecting. If an IPv6 TCP/IP address is
specified, it must be enclosed within
brackets. For example:

jdbc:postgresql://[::1]:5432/accounting

If an address or a host name is not
specified, the value defaults to a host name
of localhost.

port The number of the TCP/IP port. If a port is
not specified, the value defaults to 5432.

database The name of the database you are
connecting to.

property=value Connection properties. Refer to your
PostgreSQL JDBC driver documentation for
information about the connection
properties supported by the driver.
DataDirect XQuery User’s Guide and Reference

145
7 Securing Data Source
Connections

DataDirect XQuery supports these security methods:

■ Authentication

■ Data encryption

This chapter describes these methods and how to implement
them. It covers the following topics:

■ About Authentication

■ Using Kerberos Authentication

■ Using NTLM Authentication

■ Data Encryption Across the Network

About Authentication
On most computer systems, a password is used to prove
(authenticate) a user's identity. This password often is
transmitted over the network and can possibly be intercepted by
malicious hackers. Because this password is the one secret piece
DataDirect XQuery User’s Guide and Reference

146 Chapter 7 Securing Data Source Connections
of information that identifies a user, anyone knowing a user's
password can effectively be that user.

Authentication methods protect the identity of the user.
DataDirect XQuery supports the following authentication
methods:

■ User ID/password authentication authenticates the user to the
database using a database user name and password.

■ Kerberos is a trusted third-party authentication service. The
drivers support both Windows Active Directory Kerberos and
MIT Kerberos implementations for DB2, Oracle, and Sybase.
For Microsoft SQL Server, the driver supports Windows Active
Directory Kerberos only.

■ Client authentication uses the user ID of the user logged onto
the system on which the driver is running to authenticate the
user to the database. The database server relies on the client
to authenticate the user and does not provide additional
authentication.

■ NTLM authentication is a single sign-on authentication
method for Windows environments. This method provides
authentication from Windows clients only.

Table 7-1 shows the authentication methods supported by
DataDirect XQuery.

Table 7-1. Authentication Methods Supported by DataDirect XQuery

Driver
User ID/
Password Kerberosa Client NTLM

DB2 for Linux/UNIX/Windows X X X

DB2 for z/OS X X X

DB2 for iSeries X X

Informix X

MySQL X

Oracle X X X X

DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication 147
Using Kerberos Authentication
Kerberos authentication is a trusted third-party authentication
service. Kerberos authentication can take advantage of the user
name and password maintained by the operating system to
authenticate users to the database or use another set of user
credentials specified by the application.

DataDirect XQuery supports Kerberos authentication for the
following databases:

■ DB2
■ Oracle
■ Microsoft SQL Server
■ Sybase

Verify that your environment meets the requirements listed in
Table 7-2 before you configure DataDirect XQuery for Kerberos
authentication.

Microsoft SQL Server X Xb X

Sybase X X

a. For DB2, Oracle, and Sybase, the drivers support the Windows Active Directory KDC and MIT Ker-
beros KDC. For Microsoft SQL Server, the driver supports the Windows Active Directory KDC only.

b. Supported for Microsoft SQL Server 2000 and higher.

Table 7-1. Authentication Methods Supported by DataDirect XQuery

Driver
User ID/
Password Kerberosa Client NTLM
DataDirect XQuery User’s Guide and Reference

148 Chapter 7 Securing Data Source Connections
Table 7-2. Kerberos Authentication Requirements

Component Requirements

Database server The database server must be running one of the following
databases:

DB2:

■ DB2 v8.1 or higher for Linux/UNIX/Windows

Oracle:

■ Oracle 11g
■ Oracle 10g (R1 and R2)

Microsoft SQL Server:

■ Microsoft SQL Server 2008
■ Microsoft SQL Server 2005
■ Microsoft SQL Server 2000
■ Microsoft SQL Server 2000 Enterprise Edition (64-bit)

Service Pack 2 or higher

Sybase:

■ Sybase 12.5.1 or higher
DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication 149
Configuring Kerberos Authentication

During installation, DataDirect XQuery installs the following files
required for Kerberos authentication in the /lib subdirectory of
your DataDirect XQuery installation directory:

■ krb5.conf is a Kerberos configuration file containing values
for the Kerberos realm and the KDC name for that realm.
DataDirect XQuery installs a generic file that you must
modify for your environment.

■ JDBCDriverLogin.conf file is a configuration file that specifies
which Java Authentication and Authorization Service (JAAS)
login module to use for Kerberos authentication. This file is

Kerberos server The Kerberos server is the machine where the user IDs for
authentication are administered. The Kerberos server is also the
location of the Kerberos Key Distribution Center (KDC). If using
Windows Active Directory, this machine is also the domain
controller.

DB2, Oracle, and Sybase:

Network authentication must be provided by one of the following
methods:

■ Windows Active Directory on one of the following operating
systems:
• Windows Server 2003
• Windows 2000 Server Service Pack 3 or higher

■ MIT Kerberos 1.4.2 or higher

Microsoft SQL Server:

Network authentication must be provided by Windows Active
Directory on one of the following operating systems:

■ Windows Server 2003
■ Windows 2000 Server Service Pack 3 or higher

Table 7-2. Kerberos Authentication Requirements(cont.)

Component Requirements
DataDirect XQuery User’s Guide and Reference

150 Chapter 7 Securing Data Source Connections
configured to load automatically unless the
java.security.auth.login.config system property is set to load
another configuration file. You can modify this file, but
DataDirect XQuery must be able to find the JDBC_DRIVER_01
entry in this file or another specified login configuration file
to configure the JAAS login module. Refer to your J2SE
documentation for information about setting configuration
options in this file

To configure DataDirect XQuery:

1 Set the AuthenticationMethod connection property to
kerberos. See the DB2, Oracle, Microsoft SQL Server, and
Sybase connection properties tables in “Database Connection
Properties” on page 460 for more information about setting a
value for this property.

2 Modify the krb5.conf file to contain your Kerberos realm
name and the KDC name for that Kerberos realm by editing
the file with a text editor or by specifying the system
properties, java.security.krb5.realm and java.security.krb5.kdc.

NOTE: If using Windows Active Directory, the Kerberos realm
name is the Windows domain name and the KDC name is the
Windows domain controller name.

For example, if your Kerberos realm name is XYZ.COM and
your KDC name is kdc1, your krb5.conf file would look like
this:

[libdefaults]
 default_realm = XYZ.COM

[realms]
 XYZ.COM = {
 kdc = kdc1
 }
DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication 151
If the krb5.conf file does not contain a valid Kerberos realm
and KDC name, an exception is thrown.

3 If using Kerberos authentication with a Security Manager on
a Java 2 Platform, you must grant security permissions to the
application and DataDirect XQuery. See “Permissions for
Kerberos Authentication” on page 151 for an example.

Permissions for Kerberos Authentication

Using DataDirect XQuery on a Java 2 Platform with the standard
Security Manager enabled requires certain permissions to be set
in the security policy file of the Java 2 Platform. This security
policy file can be found in the jre/lib/security subdirectory of the
Java 2 Platform installation directory.

NOTE: Web browser applets running in the Java 2 plug-in are
always running in a JVM with the standard Security Manager
enabled.

To run an application on a Java 2 Platform with the standard
Security Manager, use the following command:

"java -Djava.security.manager application_class_name"

where application_class_name is the class name of the
application.

Refer to your Java 2 Platform documentation for more
information about setting permissions in the security policy file.

To use Kerberos authentication with DataDirect XQuery, the
application and code bases must be granted security permissions
in the security policy file of the Java 2 Platform as shown in the
following examples.
DataDirect XQuery User’s Guide and Reference

152 Chapter 7 Securing Data Source Connections
DB2

grant codeBase "file:/install_dir/lib/-" {
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.util.PropertyPermission "java.security.krb5.conf", "read";
 permission java.util.PropertyPermission "java.security.auth.login.config",
 "read", "write";
 permission javax.security.auth.AuthPermission
 "createLoginContext.JDBC_DRIVER_01";
 permission javax.security.auth.AuthPermission
 "createLoginContext.DDTEK-JDBC";
 permission javax.security.auth.AuthPermission "doAs";
 permission javax.security.auth.kerberos.ServicePermission
 "krbtgt/your_realm@your_realm", "initiate";
 permission javax.security.auth.kerberos.ServicePermission
 "principal_name/db_hostname@your_realm", "initiate";
};

where:

install_dir is the DataDirect XQuery installation directory.

principal_name is the service principal name registered with the
Kerberos Key Distribution Center (KDC) that identifies the
database service.

your_realm is the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

db_hostname is the host name of the machine running the
database.
DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication 153
Oracle

grant codeBase "file:/install_dir/lib/-" {
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.util.PropertyPermission "java.security.krb5.conf", "read";
 permission java.util.PropertyPermission "java.security.auth.login.config",
 "read", "write";
 permission javax.security.auth.AuthPermission
 "createLoginContext.JDBC_DRIVER_01";
 permission javax.security.auth.AuthPermission
 "createLoginContext.DDTEK-JDBC";
 permission javax.security.auth.AuthPermission "doAs";
 permission javax.security.auth.kerberos.ServicePermission
 "krbtgt/your_realm@your_realm", "initiate";
 permission javax.security.auth.kerberos.ServicePermission
 "principal_name/db_hostname@your_realm", "initiate";
};

where:

install_dir is the DataDirect XQuery installation directory.

your_realm is the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

principal_name is the service principal name registered with the
Kerberos Key Distribution Center (KDC) that identifies the
database service.

db_hostname is the host name of the machine running the
database.
DataDirect XQuery User’s Guide and Reference

154 Chapter 7 Securing Data Source Connections
Microsoft SQL Server

grant codeBase "file:/install_dir/lib/-" {
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.util.PropertyPermission "java.security.krb5.conf", "read";
 permission java.util.PropertyPermission "java.security.auth.login.config",
 "read", "write";
 permission javax.security.auth.AuthPermission
 "createLoginContext.JDBC_DRIVER_01";
 permission javax.security.auth.AuthPermission
 "createLoginContext.DDTEK-JDBC";
 permission javax.security.auth.AuthPermission "doAs";
 permission javax.security.auth.kerberos.ServicePermission
 "krbtgt/your_realm@your_realm", "initiate";
 permission javax.security.auth.kerberos.ServicePermission
 "MSSQLSvc/db_hostname:SQLServer_port@your_realm", "initiate";
};

where:

install_dir is the DataDirect XQuery installation directory.

your_realm is the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

db_hostname is the host name of the machine running the
database.

SQLServer_port is the TCP/IP port on which the Microsoft
SQL Server instance is listening.
DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication 155
Sybase

grant codeBase "file:/install_dir/lib/-" {
permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.util.PropertyPermission "java.security.krb5.conf", "read";
 permission java.util.PropertyPermission "java.security.auth.login.config",
 "read", "write";
 permission javax.security.auth.AuthPermission
 "createLoginContext.JDBC_DRIVER_01";
 permission javax.security.auth.AuthPermission
 "createLoginContext.DDTEK-JDBC";
 permission javax.security.auth.AuthPermission "doAs";
 permission javax.security.auth.kerberos.ServicePermission
 "krbtgt/your_realm@your_realm", "initiate";
 permission javax.security.auth.kerberos.ServicePermission
 "principal_name/db_hostname@your_realm", "initiate";
};

where:

install_dir is the DataDirect XQuery installation directory.

your_realm is the Kerberos realm (or Windows Domain) to which
the database host machine belongs.

principal_name is the service principal name registered with the
KDC that identifies the database service.

db_hostname is the host name of the machine running the
database.
DataDirect XQuery User’s Guide and Reference

156 Chapter 7 Securing Data Source Connections
Specifying User Credentials with
Kerberos Authentication

By default, when Kerberos authentication is used, DataDirect
XQuery takes advantage of the user name and password
maintained by the operating system to authenticate users to the
database. By allowing the database to share the user name and
password used for the operating system, users with a valid
operating system account can log into the database without
supplying a user name and password.

There may be times when you want to use another set of user
credentials. For example, many application servers or Web servers
act on behalf of the client user logged on the machine on which
the application is running, rather than the server user.

If you want to use user credentials other than the server user’s
operating system credentials, include code in your application to
obtain and pass a javax.security.auth.Subject used for
authentication as shown in the following example.

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import javax.xml.xquery.*;
import com.ddtek.xquery.xqj.DDXQDataSource;

// The following code creates a javax.security.auth.Subject instance
// used for authentication. Refer to the Java Authentication
// and Authorization Service documentation for details on using a
// LoginContext to obtain a Subject.

LoginContext lc = null;
Subject subject = null;

try {
 lc = new LoginContext("JaasSample", new TextCallbackHandler());
 lc.login();
 subject = lc.getSubject();
DataDirect XQuery User’s Guide and Reference

Using Kerberos Authentication 157
}
catch (Exception le) {
 ... // display login error
}

DDXQDataSource xqDataSource = new DDXQDataSource();

// This application passes the javax.security.auth.Subject
// to the driver by executing the driver code as the subject

XQConnection con =
 (XQConnection) Subject.doAs(subject, new PrivilegedExceptionAction() {
 public Object run() {
 XQConnection con = null;
 try {
 xqDataSource.setProperty(DDXQDataSource.JDBCURL,
 "jdbc:xquery:db2://myServer:50000;databaseName=jdbc");
 con = xqDataSource.getConnection();
 }
 catch (Exception except) {
 ... //log the connection error
 return null;
 }

 return con;
 }
 });

// This application now has a connection that was authenticated with
// the subject. The application can now use the connection.

XQExpression xqExpression = con.createExpression();
String xquery = "for $holding in collection('holdings')/holdings
 return $holding";
XQSequence xqSequence = xqExpression.executeQuery(xquery);

... // do something with the results
DataDirect XQuery User’s Guide and Reference

158 Chapter 7 Securing Data Source Connections
Obtaining a Kerberos Ticket Granting
Ticket

To use Kerberos authentication, the application user first must
obtain a Kerberos Ticket Granting Ticket (TGT) from the Kerberos
server. The Kerberos server verifies the identity of the user and
controls access to services using the credentials contained in the
TGT.

If the application uses Kerberos authentication from a Windows
client, the application user does not need to explicitly obtain a
TGT. Windows Active Directory automatically obtains a TGT for
the user.

If the application uses Kerberos authentication from a UNIX or
Linux client, the user must explicitly obtain a TGT. To explicitly
obtain a TGT, the user must log onto the Kerberos server using
the kinit command. For example, the following command
requests a TGT from the server with a lifetime of 10 hours, which
is renewable for 5 days:

kinit -l 10h -r 5d user

where user is the application user.

Refer to your Kerberos documentation for more information
about using the kinit command and obtaining TGTs for users.
DataDirect XQuery User’s Guide and Reference

Using NTLM Authentication 159
Using NTLM Authentication
NTLM authentication is a single sign-on OS authentication
method. This method provides authentication from Windows
clients only and requires minimal configuration.

DataDirect XQuery supports NTLM authentication for the
following databases:

■ Oracle
■ Microsoft SQL Server

Verify that your environment meets the requirements listed in
Table 7-3 before you configure the driver for NTLM
authentication.

Table 7-3. NTLM Authentication Requirements

Component Requirements

Database server The database server must be administered by the same domain
controller that administers the client and must be running one of
the following databases:

Oracle:

■ Oracle 11g
■ Oracle 10g (R1 and R2)
■ Oracle 9i (R1 and R2)

Microsoft SQL Server:

■ Microsoft SQL Server 2008
■ Microsoft SQL Server 2005
■ Microsoft SQL Server 2000 Service Pack 3 or higher
■ Microsoft SQL Server 2000 Enterprise Edition (64-bit)

Service Pack 2 or higher

Domain controller The domain controller must administer both the database server
and the client. Network authentication must be provided by
NTLM on one of the following operating systems:

■ Windows Server 2003
■ Windows 2000 Server Service Pack 3 or higher
DataDirect XQuery User’s Guide and Reference

160 Chapter 7 Securing Data Source Connections
Configuring NTLM Authentication

DataDirect XQuery provides three NTLM authentication DLLs:

■ DDJDBCAuthxx.dll (32-bit)
■ DDJDBC64Authxx.dll (Itanium 64-bit)
■ DDJDBCx64Authxx.dll (AMD64 and Intel EM64T 64-bit)

where xx is a two-digit number.

The DLLs are located in the install_dir/lib directory (where
install_dir is your DataDirect XQuery installation directory). If the
application using NTLM authentication is running in a 32-bit JVM,
DataDirect XQuery automatically uses DDJDBCAuthxx.dll.
Similarly, if the application is running in a 64-bit JVM,
DDJDBC64Authxx.dll or DDJDBCx64Authxx.dll is used.

Client The client must be administered by the same domain controller
that administers the database server and must be running on one
of the following operating systems:

■ Windows Vista
■ Windows Server 2003
■ Windows XP Service Pack 1 or higher
■ Windows 2000 Service Pack 4 or higher
■ Windows NT 4.0

Table 7-3. NTLM Authentication Requirements

Component Requirements
DataDirect XQuery User’s Guide and Reference

Using NTLM Authentication 161
To configure DataDirect XQuery:

1 Set the AuthenticationMethod connection property to auto
(the default) or ntlm. See the Oracle and Microsoft SQL
Server connection properties tables in “Database Connection
Properties” on page 460 for more information about setting
a value for this property.

2 By default, DataDirect XQuery looks for the NTLM
authentication DLLs in a directory on the Windows system
path defined by the PATH environment variable. If you install
DataDirect XQuery in a directory that is not on the Windows
system path, perform one of the following actions to ensure
the DDLs can be loaded:

■ Add the install_dir/lib directory to the Windows system
path, where install_dir is the DataDirect XQuery
installation directory.

■ Copy the NTLM authentication DLLs from install_dir/lib to
a directory that is on the Windows system path, where
install_dir is the DataDirect XQuery installation directory.

■ Set the LoadLibraryPath connection property to specify
the location of the NTLM authentication DLLs. For
example, if you install DataDirect XQuery in a directory
named "DataDirect" that is not on the Windows system
path, you can use the LoadLibraryPath connection
property to specify the directory containing the NTLM
authentication DLLs. For example, for SQL Server:

jdbc:xquery:sqlserver://server3:1521;
databaseName=test;LoadLibraryPath=C:\DataDirect\lib;
User=test;Password=secret

See the database connection properties tables in
“Specifying Connection URIs” on page 141 for more
information about setting a value for this property.

3 If using NTLM authentication with a Security Manager on a
Java 2 Platform, security permissions must be granted to
allow DataDirect XQuery to establish connections. See
DataDirect XQuery User’s Guide and Reference

162 Chapter 7 Securing Data Source Connections
“Permissions for Establishing Connections” on page 162 for
an example.

Permissions for Establishing Connections

Using DataDirect XQuery on a Java 2 Platform with the standard
Security Manager enabled requires certain permissions to be set
in the security policy file of the Java 2 Platform. This security
policy file can be found in the jre/lib/security subdirectory of the
Java 2 Platform installation directory.

NOTE: Web browser applets running in the Java 2 plug-in are
always running in a JVM with the standard Security Manager
enabled.

To run an application on a Java 2 Platform with the standard
Security Manager, use the following command:

java -Djava.security.manager application_class_name

where application_class_name is the class name of the
application.

Refer to your Java 2 Platform documentation for more
information about setting permissions in the security policy file.

To establish a connection to the database server, DataDirect
XQuery must be granted the permissions as shown in the
following example:

grant codeBase "file:/install_dir/lib/-" {
 permission java.net.SocketPermission "*", "connect";
};

where install_dir is the DataDirect XQuery installation
directory.
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 163
In addition, if Microsoft SQL Server named instances are used,
permission must be granted for the listen and accept actions as
shown in the following example:

grant codeBase "file:/install_dir/lib/-" {
 permission java.net.SocketPermission "*", "listen, connect, accept";
};

where install_dir is the DataDirect XQuery installation
directory.

Data Encryption Across the Network
If your database connection is not configured to use data
encryption, data is sent across the network in a format that is
designed for fast transmission. This format does not provide
complete protection from hackers, and it can be decoded given
some time and effort.

To address data security concerns, you might want to use data
encryption to provide a more secure transmission of data.
Consider using data encryption in the following scenarios:

■ You have offices that share confidential information over an
intranet.

■ You send sensitive data, such as credit card numbers, over a
database connection.

■ You need to comply with government or industry privacy and
security requirements.

NOTE: Data encryption can adversely affect performance
because of the additional overhead (mainly CPU usage) required
to encrypt and decrypt data.
DataDirect XQuery User’s Guide and Reference

164 Chapter 7 Securing Data Source Connections
This section covers the following topics:

■ “Supported Encryption Methods” on page 164

■ “Database-Specific Data Encryption” on page 165

■ “SSL Encryption” on page 166

■ “Configuring SSL for DB2” on page 170

■ “Configuring SSL for Oracle” on page 171

■ “Configuring SSL for Microsoft SQL Server” on page 172

■ “Configuring SSL for Sybase” on page 175

Supported Encryption Methods

DataDirect XQuery supports the following encryption methods:

■ Database-specific encryption. DB2 defines its own encryption
protocol for DB2 for Linux/UNIX/Windows and DB2 for z/OS
only. See “Database-Specific Data Encryption” on page 165
for more information.

■ Secure Sockets Layer (SSL). SSL is an industry-standard
protocol for sending encrypted data over database
connections. SSL secures the integrity of your data by
encrypting information and providing client/server
authentication. See “SSL Encryption” on page 166 for more
information.

Table 7-4 summarizes the data encryption methods supported by
DataDirect XQuery.

Table 7-4. Data Encryption Methods Supported by DataDirect XQuery

Driver Database-Specific SSL

DB2 for Linux/UNIX/Windows X Xa

DB2 for z/OS X Xb
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 165
Database-Specific Data Encryption

The DB2 driver supports a proprietary data encryption protocol
for the following DB2 databases:

■ DB2 for Linux/UNIX/Windows

■ DB2 for z/OS

Configuring Data Encryption for DB2

To configure data encryption for a DB2 database:

1 Set the AuthenticationMethod property to clearText,
encryptedPassword, or encryptedUIDPassword.

2 Set the EncryptionMethod property to DBEncryption or
RequestDBEncryption.

DB2 for iSeries Xc

Informix

MySQL

Oracle X

Microsoft SQL Server Xd

Sybase X

a. Supported for V9.1 Fixpack 2 and higher for Linux/UNIX/Windows.
b. Supported for DB2 v9.1 for z/OS.
c. Supported for DB2 V5R3 and higher for iSeries.
d. Supported for Microsoft SQL Server 2000 and higher.

Table 7-4. Data Encryption Methods Supported by DataDirect XQuery

Driver Database-Specific SSL
DataDirect XQuery User’s Guide and Reference

166 Chapter 7 Securing Data Source Connections
SSL Encryption

SSL works by allowing the client and server to send each other
encrypted data that only they can decrypt. SSL negotiates the
terms of the encryption in a sequence of events known as the
SSL handshake. The handshake involves the following types of
authentication:

■ SSL server authentication requires the server to authenticate
itself to the client.

■ SSL client authentication is optional and requires the client to
authenticate itself to the server after the server has
authenticated itself to the client.

NOTE: DB2 and Oracle are the only databases supported by
DataDirect Connect for JDBC that support SSL client
authentication.

The version of SSL that is used and which SSL cryptographic
algorithm is used depends on which JVM you are using. Refer to
your JVM documentation for more information about its SSL
support.

Procedures for configuring SSL vary for the databases that
support it. See the individual driver chapters for details about
configuring SSL:

■ DB2 – “Configuring SSL for DB2” on page 170.
■ Oracle – “Configuring SSL for Oracle” on page 171
■ Microsoft SQL Server – “Configuring SSL for Microsoft SQL

Server” on page 172
■ Sybase – “Configuring SSL for Sybase” on page 175

SSL Server Authentication

When the client makes a connection request, the server presents
its public certificate for the client to accept or deny. The client
checks the issuer of the certificate against a list of trusted
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 167
Certificate Authorities (CAs) that resides in an encrypted file on
the client known as a truststore. Optionally, the client may check
the subject (owner) of the certificate. If the certificate matches a
trusted CA in the truststore (and the certificate’s subject matches
the value that the application expects), an encrypted connection
is established between the client and server. If the certificate
does not match, the connection fails and the driver throws an
exception.

To check the issuer of the certificate against the contents of the
truststore, the driver must be able to locate the truststore and
unlock the truststore with the appropriate password. You can
specify truststore information in either of the following ways:

■ Specify values for the Java system properties
javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword.
For example:

java -Djavax.net.ssl.trustStore=
C:\Certificates\MyTruststore

and

java -Djavax.net.ssl.trustStorePassword=
MyTruststorePassword

This method sets values for all SSL sockets created in the JVM.

■ Specify values for the connection properties TrustStore and
TrustStorePassword. For example:

TrustStore=C:\Certficates\MyTruststore

and

TrustStorePassword=MyTruststorePassword

Any values specified by the TrustStore and
TrustStorePassword properties override values specified by
the Java system properties. This allows you to choose which
truststore file you want to use for a particular connection.
DataDirect XQuery User’s Guide and Reference

168 Chapter 7 Securing Data Source Connections
Alternatively, you can configure the DataDirect Connect for JDBC
drivers to trust any certificate sent by the server, even if the issuer
is not a trusted CA. Allowing a driver to trust any certificate sent
from the server is useful in test environments because it
eliminates the need to specify truststore information on each
client in the test environment. If the driver is configured to trust
any certificate sent from the server, the issuer information in the
certificate is ignored.

SSL Client Authentication (DB2 and Oracle)

If the server is configured for SSL client authentication, the server
asks the client to verify its identity after the server has proved its
identity. Similar to SSL server authentication, the client sends a
public certificate to the server to accept or deny. The client stores
its public certificate in an encrypted file known as a keystore.

The driver must be able to locate the keystore and unlock the
keystore with the appropriate keystore password. Depending on
the type of keystore used, the driver also may need to unlock the
keystore entry with a password to gain access to the certificate
and its private key.

DataDirect XQuery can use the following types of keystores:

■ Java Keystore (JKS) contains a collection of certificates. Each
entry is identified by an alias. The value of each entry is a
certificate and the certificate’s private key. Each keystore
entry can have the same password as the keystore password
or a different password. If a keystore entry has a password
different than the keystore password, the driver must provide
this password to unlock the entry and gain access to the
certificate and its private key.

■ PKCS #12 keystore contains only one certificate. To gain access
to the certificate and its private key, the driver must provide
only the keystore password. The file extension of the keystore
must be .pfx or .p12.
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 169
 You can specify this information in either of the following ways:

■ Specify values for the Java system properties
javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword. For
example:

java -Djavax.net.ssl.keyStore=
C:\Certificates\MyKeystore

and

java -Djavax.net.ssl.keyStorePassword=
MyKeystorePassword

This method sets values for all SSL sockets created in the JVM.

NOTE: If the keystore specified by the javax.net.ssl.keyStore
Java system property is a JKS and the keystore entry has a
password different than the keystore password, the
KeyPassword connection property must specify the password
of the keystore entry. For example:

KeyPassword=MyKeyPassword

■ Specify values for the connection properties KeyStore and
KeyStorePassword. For example:

KeyStore=C:\Certficates\MyKeyStore

and

KeyStorePassword=MyKeystorePassword

NOTE: If the keystore specified by the KeyStore connection
property is a JKS and the keystore entry has a password
different than the keystore password, the KeyPassword
connection property must specify the password of the
keystore entry. For example:

KeyPassword=MyKeyPassword

Any values specified by the KeyStore and KeyStorePassword
properties override values specified by the Java system
DataDirect XQuery User’s Guide and Reference

170 Chapter 7 Securing Data Source Connections
properties. This allows you to choose which keystore file you
want to use for a particular connection.

Configuring SSL for DB2

The DB2 driver supports SSL encryption for the following
databases:

■ DB2 V9.1 Fixpack 2 and higher for Linux/UNIX/Windows
■ DB2 v9.1 for z/OS
■ DB2 V5R3 and higher for iSeries

NOTE: Connection hangs can occur when the driver is configured
for SSL and the database server does not support SSL. You may
want to set a login timeout using the LoginTimeout property to
avoid problems when connecting to a server that does not
support SSL.

To configure SSL encryption:

1 Set the EncryptionMethod property to SSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

4 Optionally, set the HostNameInCertificate property to a host
name to be used to validate the certificate. The
HostNameInCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 171
5 If your database server is configured for SSL client
authentication, configure your keystore information:

a Specify the location and password of the keystore file.
Either set the KeyStore and KeyStore properties or their
corresponding Java system properties
(javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword, respectively).

b If any key entry in the keystore file is password-protected,
set the KeyPassword property to the key password.

Configuring SSL for Oracle

The Oracle driver supports SSL encryption for the following
databases:

■ Oracle 11g (R1)
■ Oracle 10g (R1 and R2)
■ Oracle 9i (R1 and R2)

Oracle Advanced Security must be enabled on the database
server to support SSL.

NOTE: Connection hangs can occur when the driver is configured
for SSL and the database server does not support SSL. You may
want to set a login timeout using the LoginTimeout property to
avoid problems when connecting to a server that does not
support SSL.

To configure SSL encryption:

1 Set the EncryptionMethod property to SSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).
DataDirect XQuery User’s Guide and Reference

172 Chapter 7 Securing Data Source Connections
3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

4 Optionally, set the HostNameInCertificate property to a host
name to be used to validate the certificate. The
HostNameInCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

5 If your database server is configured for SSL client
authentication, configure your keystore information:

a Specify the location and password of the keystore file.
Either set the KeyStore and KeyStore properties or their
corresponding Java system properties
(javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword,
respectively).

b If any key entry in the keystore file is password-protected,
set the KeyPassword property to the key password.

Configuring SSL for Microsoft SQL
Server

The SQL Server driver supports SSL encryption for the following
databases:

■ Microsoft SQL Server 2000 or higher
■ Microsoft SQL Server 2000 Enterprise Edition (64-bit) or

higher

Depending on your Microsoft SQL Server configuration, you can
choose to encrypt all data, including the login request, or encrypt
the login request only. Encrypting login requests, but not data, is
useful for the following scenarios:
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 173
■ When your application needs security, but cannot afford to
pay the performance penalty for encrypting data transferred
between the driver and server.

■ When the server is not configured for SSL, but your
application still requires a minimum degree of security.
(Applicable to Microsoft SQL Server 2005 and higher only.)

NOTE: When SSL is enabled, the driver communicates with
database protocol packets set by the server’s default packet size.
Any value set by the PacketSize property is ignored.

Using SSL with Microsoft SQL Server

If your Microsoft SQL Server database server has been
configured with an SSL certificate signed by a trusted CA, the
server can be configured so that SSL encryption is either optional
or required. When required, connections from clients that do
support SSL encryption fail.

Although a signed trusted SSL certificate is recommended for
the best degree of security, Microsoft SQL Server 2005 and
higher can provide limited security protection even if an SSL
certificate has not been configured on the server. If a trusted
certificate is not installed, the server will use a self-signed
certificate to encrypt the login request, but not the data.

Table 7-5 shows how the different EncryptionMethod property
values behave with different Microsoft SQL Server
configurations.

Table 7-5. EncryptionMethod Property and Microsoft SQL Server Configurations

Value No SSL Certificate SSL Optional SSL Required

noEncryption Login request and
data are not
encrypted.

Login request and
data are not
encrypted.

Connection attempt
fails.
DataDirect XQuery User’s Guide and Reference

174 Chapter 7 Securing Data Source Connections
How to Configure SSL for Microsoft SQL Server

To configure SSL encryption for Microsoft SQL Server:

1 Choose the type of encryption for your application:

■ If you want the driver to encrypt all data, including the
login request, set the EncryptionMethod property to SSL
or requestSSL.

■ If you want the driver to encrypt only the login request,
set the EncryptionMethod property to loginSSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.

SSL Connection attempt
fails.

Login request and
data are encrypted.

Login request and
data are encrypted.

requestSSL Login request and
data are not
encrypted.

Login request and
data are encrypted.

Login request and
data are encrypted.

loginSSL Microsoft SQL Server
2005 and higher:
Login request is
encrypted; data is
not.

Microsoft SQL Server
2000: Connection
attempt fails.

Login request is
encrypted; data is
not.

Login request and
data are encrypted.

Table 7-5. EncryptionMethod Property and Microsoft SQL Server Configurations

Value No SSL Certificate SSL Optional SSL Required
DataDirect XQuery User’s Guide and Reference

Data Encryption Across the Network 175
4 Optionally, set the HostNameInCertificate property to a host
name to be used to validate the certificate. The
HostNameInCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.

Configuring SSL for Sybase

The Sybase driver supports SSL encryption for the following
databases:

■ Sybase Adaptive Server Enterprise 15.0

■ Sybase Adaptive Server Enterprise 12.5, 12.5.1, 12.5.2, 12.5.3,
and 12.5.4

In addition, the Sybase Security and Directory Services package,
ASE_SECDIR, is required.

NOTE: Connection hangs can occur when the driver is configured
for SSL and the database server does not support SSL. You may
want to set a login timeout using the LoginTimeout property to
avoid problems when connecting to a server that does not
support SSL.

To configure SSL encryption:

1 Set the EncryptionMethod property to SSL.

2 Specify the location and password of the truststore file used
for SSL server authentication. Either set the TrustStore and
TrustStore properties or their corresponding Java system
properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword, respectively).

3 To validate certificates sent by the database server, set the
ValidateServerCertificate property to true.
DataDirect XQuery User’s Guide and Reference

176 Chapter 7 Securing Data Source Connections
4 Optionally, set the HostNameInCertificate property to a host
name to be used to validate the certificate. The
HostNameInCertificate property provides additional security
against man-in-the-middle (MITM) attacks by ensuring that
the server the driver is connecting to is the server that was
requested.
DataDirect XQuery User’s Guide and Reference

177
8 Improving Performance

This chapter provides information and techniques you can use to
enhance the performance or your DataDirect XQuery
applications. This chapter covers the following topics:

■ “Querying Large XML Documents” on page 177
■ “Using Comparisons” on page 189
■ “Understanding Compensation” on page 191
■ “Using Query Pooling” on page 192
■ “Using Connection Pooling” on page 193

If you work with relational databases, see “Using DataDirect
XQuery SQL Generation Algorithms” on page 260 to learn about
different ways DataDirect XQuery can generate translations of
XQuery code to SQL statements.

Querying Large XML Documents
Querying large XML documents can present processing
challenges, both in terms of query performance and memory
resources. The DataDirect XQuery Streaming XML feature
provides an efficient way to process XQuery, especially against
large documents.

This section describes what the Streaming XML feature is, how to
use it, and provides several examples. It covers the following
topics:

■ “What is Streaming XML?” on page 178
■ “Enabling Streaming XML” on page 178
■ “Data Sources” on page 180
■ “Using Plan Explain” on page 181
DataDirect XQuery User’s Guide and Reference

178 Chapter 8 Improving Performance
■ “Taking Advantage of Streaming XML” on page 182
■ “Streaming XML Examples” on page 185

What is Streaming XML?

The DataDirect XQuery engine supports a processing technique
known as Streaming XML. Streaming XML processes a document
sequentially, discarding portions of the document that are no
longer needed to produce further query results. This technique
reduces memory usage because only the portion of a document
needed at a given stage of query processing is instantiated in
memory – it simultaneously parses the XML document, executes
the query, and sends the data to the application as needed.

The Streaming XML feature operates on a per XML document
basis. For example, in a single query, the Streaming XML feature
might be used for XML document A and not for XML document
B. See “Streaming XML Is Not Always Used” on page 179 for
more information on this topic.

Enabling Streaming XML

The Streaming XML feature is enabled by default. You can
override the default behavior in one of two ways:

■ Set ddtek:xml-streaming="no" in the query prolog. See
“Using Option Declarations and Extension Expressions” on
page 275 for more information on this topic.

■ Set the "streaming" attribute in the <request> element to no.
See “HTTP Functions <request> Element” on page 433 for
more information on this topic.

DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents 179
Streaming XML Is Not Always Used

When Streaming XML is enabled, the DataDirect XQuery engine
makes the determination to use it when the XQuery is executed.
There are certain circumstances, however, in which Streaming
XML is not used, even if it is enabled:

■ If the XML document possibly needs to be parsed more than
once. For example, the following two circumstances require
an XML document to be parsed more than once:

• If the query includes fn:doc() without literal arguments.
In this case, the documents to be queried are determined
at runtime and, therefore, might be parsed twice.

• If the fn:doc() expression is used in multiple for clauses in
a FLWOR expression. For example:

for $a in doc("A.XML")/A/B/C
return
 for $b in doc("X.XML")/X/Y/Z
 return
 ...

In this case, Streaming XML is used for A.XML, but not for
X.XML.

■ If nodes from the XML document are accessed with a reverse
or optional axis, or with any function that is based indirectly
on such an axis: fn:root(), fn:id(), and fn:idref().

When Streaming XML is not used, the DataDirect XQuery engine
loads the entire XML document in memory and creates an
optimized in-memory representation of it. The in-memory
representation is used during query execution and then
discarded. In general, this technique requires more memory than
Streaming XML, but it can be more efficient (in terms of
processing time) for certain XQuery.
DataDirect XQuery User’s Guide and Reference

180 Chapter 8 Improving Performance
Streaming Can Be Interrupted

In the following circumstances, some expressions can cause the
Streaming XML feature to stop processing the current node:

■ A node is used in a function or operator, including effective
boolean value calculations. For example:

...
if(doc("foo.xml")/a/b/c
...

In this example, Streaming XML is used for the a and b nodes,
but the c nodes and all of its children are instantiated in
memory.

■ Multiple path expressions are evaluated on a node. For
example:

...
doc("foo.xml")/a/b/(c|d)
...

In this example, Streaming XML is used for the a nodes, but
the b nodes and all of its children are instantiated in memory.

■ A node is referenced multiple times in the query.

You can easily see whether or not Streaming XML is being used to
process an XQuery using DataDirect XQuery Plan Explain. See
“Using Plan Explain” on page 181 for more information.

Data Sources

DataDirect XQuery supports Streaming XML on XML documents
accessed through:

■ fn:doc()

■ fn:collection() when using the extensions that allow querying
of directories (see “Querying Multiple Files in a Directory” on
page 288)
DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents 181
■ External variables and initial context item. For the input
values to be streamed, they must be defined as XQSequence,
java.io.Reader, java.io.InputStream, StAX, or a SAXSource
containing only an InputSource property (that is, not
XMLReader). For streaming to work with external variables
when not using prepared queries, DataDirect XQuery must
be using deferred binding (see “Support of Deferred
Binding” on page 532).

■ External Java functions. For the return values to be streamed,
they must be defined as
javax.xml.transform.stream.StreamSource,
javax.xml.transform.stax.StAXSource (for JVM 1.6 only), or
com.ddtek.xquery.StAXSource.

Using Plan Explain

Plan Explain allows you to generate an XQuery execution plan
that lets you see how DataDirect XQuery will execute your query.
Among other information about your XQuery, Plan Explain
shows you whether or not the DataDirect XQuery engine will use
Streaming XML, as shown in the following illustration:

See “Generating XQuery Execution Plans” on page 307 to learn
more about Plan Explain.
DataDirect XQuery User’s Guide and Reference

182 Chapter 8 Improving Performance
Taking Advantage of Streaming XML

Depending on the task performed by your XQuery, it is possible
to make small changes to your XQuery to take advantage of the
performance benefits provided by Streaming XML.

Working with XML Headers

Streaming XML can be useful when parts of an input document
are used to create a header in the result, and numerous
transformations are performed on the rest of the result.
Streaming XML can be especially beneficial when dealing with
large input documents.

Consider the following XML document, which lists numerous
stock holdings for an individual (imagine <holding> elements
numbering in the hundreds or even thousands).

<?xml version="1.0"?>
 <person>
 <first-name>John</first-name>
 <last-name>Smith</last-name>
 <holdings>
 <holding ticker="PRGS">1000</holding>
 <holding ticker="STOCK1">2000</holding>
 <holding ticker="STOCK2">3000</holding>
 <!-- ... -->
 </holdings>
 </person>

Your XQuery needs to create a separate XML document for each
stock holding, using the header information to create a <person>
element and then listing holding information, like this:

<person lastName="Smith" name="John">
<holding ticker="PRGS">1000</holding>

</person>

The XQuery used to provide this XML output could look like this:
DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents 183
let $firstName := doc("header.xml")/person/first-name
let $lastName := doc("header.xml")/person/last-name
for $holding at $pos in
doc("header.xml")/person/holdings/holding
return
 ddtek:serialize-to-url(
 <person name="{$firstName}" lastName=
"{$lastName}">{$holding}</person>,
 concat("output-", $pos, ".xml"), "indent=yes"
)

In this case, though, the Streaming XML feature is not used
where it will provide the most benefit. Indeed, it is used only for
minor formatting operations performed on the XQuery output.

Making a simple change to the XQuery (shown in bold in the
following code sample) ensures that Streaming XML is used
throughout the XQuery – most importantly in the loop formed
by the FLWOR expression:

let $firstName as element() := doc("header.xml")/person/first-name
let $lastName as element() := doc("header.xml")/person/last-name
for $holding at $pos in doc("header.xml")/person/holdings/holding
return
 ddtek:serialize-to-url(
 <person name="{$firstName}" lastName="{$lastName}">{$holding}</person>,
 concat("output-", $pos, ".xml"), "indent=yes"
)

The as element() declarations tell DataDirect XQuery that the
first-name and last-name elements in the source document are
singletons, which allows the DataDirect XQuery engine to use
Streaming XML on the FLWOR expression.

Aggregation Functions

XQuery aggregation functions – functions that count elements
in an XML document, for example – can take advantage of the
efficiencies made available by the Streaming XML feature.
Aggregation functions include:
DataDirect XQuery User’s Guide and Reference

184 Chapter 8 Improving Performance
■ fcn:count()
■ fn:min()
■ fn:max()
■ fn:sum()
■ fn:avg()

Example

Consider the following XQuery; imagine that inventory.xml
contains thousands of <item> elements:

count(doc('inventory.xml')//item)

Here, the count() function is simply counting the number of
<item> elements in the inventory.xml document. Examining the
XQuery using Plan Explain, we can see that Streaming XML is
used in two let clauses:

If we make the XQuery slightly more complicated, by returning
the number of <item> elements per <region>:

for $b in doc('inventory.xml')/site/regions/*
return count($b//item)

XML Streaming is still used to process this XQuery, but note that
the XQuery uses a let- and for- clause, rather than two let-
clauses, as in the previous example:
DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents 185
Streaming XML Examples

This section provides several examples of the Streaming XML
feature, including examples of when it is not used by the
DataDirect XQuery engine to process the XQuery. The examples
are commented, allowing you to easily copy/paste them into test
applications.

When Streaming XML Is Used

The following show examples of XQuery in which Streaming
XML is used.

Simple Path Expressions

(:
A simple path expression.
The complete document can be processed in streaming mode.
:)
doc("file.xml")/a/b/c

(:
A simple path expression.
The complete document can be processed in streaming mode.
If a c element is a descendent of a parent c element, it is
memorized.
:)
doc("file.xml")/a/b//c
DataDirect XQuery User’s Guide and Reference

186 Chapter 8 Improving Performance
Path Expression with Predicate

(:
A path expression with predicate.
The document is queried using the Streaming XML feature.
Only the values of d that match the predicate are
materialized; all c’s and x’s are materialized and
discarded one by one.
:)
doc("file.xml")/a/b/c[x eq 1]/d

Path Expression with Attribute Predicate

(:
A path expression with attribute predicate.
The document is queried using the Streaming XML feature.
No materialization is performed. Only general comparisons
with attribute tests are supported.
:)
doc("file.xml")//ITEMS[@ITEMNO eq '1004']

XQuery Expression with fn:data

(:
The document is queried using the Streaming XML feature.
Atomization on streaming results is supported.
ITEMNO elements are not first materialized and then
atomized.
:)
fn:data(doc("file.xml")//ITEMS/ITEMNO

XQuery Expression with Function on Node

(:
The document is queried using the Streaming XML feature.
Functions on nodes (fn:name(), fn:node-name(),
fn:local-name(), etc.) are supported.
:)
doc("file.xml")//ITEMS/element()[fn:local-name(.)
eq 'ITEMNO']
DataDirect XQuery User’s Guide and Reference

Querying Large XML Documents 187
XQuery Expression with exists

(:
The document is queried using the Streaming XML feature.
Existentional tests are supported.
:)
doc("file.xml")//ITEMS[exists(@ITEMNO)]
doc("file.xml")//ITEMS[exists(ITEMNO)]
doc("file.xml")//ITEMS/ITEMNO[exists(.)]

Two XML Documents

(:
Two different documents in a sequence. Both are queried
with the Streaming XML feature.
:)
doc("file1.xml")/a/b/c,

doc("file2.xml")/x/y/z

Complex Example Using the Streaming XML Feature

(:
The document is queried using the Streaming XML feature.
:)
<orders>{
 for $order in doc("orders.xml")//orders
 for $customer in collection("CUSTOMER")/CUSTOMER[CUST_ID = $order/customer]
 return
 <order id="{$order/@id}">
 <customer>
 <name>{$customer/CUST_NAME/data(.)}</name>
 <address>{$customer/CUST_ADDRESS/data(.)}</address>
 </customer>
 </order>
}</orders>

(:
If the for clauses are switched, the orders.xml document is queried multiple
times; therefore, streaming is not used and the document is instantiated.
:)
DataDirect XQuery User’s Guide and Reference

188 Chapter 8 Improving Performance
<orders>{
 for $customer in collection("CUSTOMER")/CUSTOMER
 for $order in doc("orders.xml")//orders
 where $customer /CUST_ID = $order/customer
 return
 <order id="{$order/@id}">
 <customer>
 <name>{$customer/CUST_NAME/data(.)}</name>
 <address>{$customer/CUST_ADDRESS/data(.)}</address>
 </customer>
 </order>
}</orders>

When Streaming XML Is Not Used

The following show examples of XQuery in which Streaming XML
is not used.

Reverse Axis

(:
The Streaming XML feature is not used due to the reverse
axis.
:)
doc("file.xml")/a/b/c/../d

(:
This query could have been written as follows, in which
case the b elements are materialized one by one.
:)

doc("file.xml")/a/b[c]/d

Optional Axis

(:
The Streaming XML feature is not used due to the
preceding-sibling optional axis.
:)
doc("file.xml")/a/b[c=5]/preceding-sibling::*[1]
DataDirect XQuery User’s Guide and Reference

Using Comparisons 189
Two Documents

(:
Two documents, not queried with the Streaming XML feature
as the same document. These documents are possibly queried
twice.
:)
declare variable $file as xs:string external;
doc("file1.xml")/a/b/c,

doc($file)/x/y/z

Using Comparisons
When DataDirect XQuery encounters comparisons in where
clauses or in predicate expressions and an operand is bound to
data in an XML data source, performance can be significantly
improved if this operand is known by DataDirect XQuery to be a
single item.

Consider the following query:

for $request in doc('file:///c:/in/request.xml')/request
let $ticker := $request/performance/ticker,
 $start := $request/performance/start,
 $end := $request/performance/end
for $h in collection('historical')/historical
where $h/ticker = $ticker
return $h

DataDirect XQuery does not know how many ticker, start, or end
elements may occur in the XML source, so it restricts its rewrites
in case there are more than one of each of these elements.
DataDirect XQuery User’s Guide and Reference

190 Chapter 8 Improving Performance
Using value comparisons – for example, eq, as shown in the
following code – instead of general comparisons makes this
query run faster:

for $request in doc('file:///c:/in/request.xml')/request
let $ticker := $request/performance/ticker,
 $start := $request/performance/start,
 $end := $request/performance/end
for $h in collection('historical')/historical
where $h/ticker eq $ticker
return $h

However, this does not work for all data types because eq is
restrictive in the types it accepts and does less implicit casting.

Generally, using value comparisons (eq, ne, lt, le, gt, ge) instead
of general comparisons (=, !=, <, <=, >, >=) improves
performance. When using general comparison against sequences,
the result of the expression is true if any combination of the
items contained in the sequences satisfies the comparison. Value
comparison only applies to operands that are single items, and
the expression returns true if the single items compared with the
value comparison operator (for example, eq) match. If one of the
two operands is not a single item, the use of eq raises an error. In
the preceding example, the query behavior perceived by the user
does not differ when using = or eq because $h/ticker and $ticker
are always single items. But, typically, using eq instead of =
significantly improves performance.
DataDirect XQuery User’s Guide and Reference

Understanding Compensation 191
Understanding Compensation
XQuery contains expressions, functions, and operators that
cannot be directly translated into SQL. For example,
fn:tokenize() has no SQL equivalent. When an XQuery
expression cannot be translated to SQL, DataDirect XQuery
"compensates" the expression; that is, it executes the expression
in the DataDirect XQuery Engine using data retrieved from the
database. Compensation provides full-featured XQuery
functionality, but it is is often slower than executing an
expression in the database.

Sometimes, the same result can be obtained by using an
expression that does not require compensation. For example,
suppose you need to perform string comparisons with data that
contains trailing spaces. You could use the XQuery function
normalize-space(), which removes leading and trailing spaces:

for $h in collection('stocks.dbo.historical')/historical
where normalize-space($h/ticker) = 'AMZN'
return $h

However, the normalize-space() function is compensated, which
means that the where clause is evaluated in the DataDirect
XQuery engine rather than in the database, which slows
performance. As shown in the following example, the most
efficient solution is to use the function rtrim(), which is available
for XML documents and all supported databases:

for $h in collection('historical')/historical
where ddtek:rtrim($h/ticker) = 'AMZN'
return $h

See Appendix A “XQuery Support” on page 339 for details
about which expressions, functions, and operators are
compensated.
DataDirect XQuery User’s Guide and Reference

192 Chapter 8 Improving Performance
Using Query Pooling
Query pooling allows an application to reuse queries that have
been executed. If your Java application executes the same query
more than once, you can improve performance by enabling
DataDirect XQuery’s internal query pooling. When query pooling
is enabled, DataDirect XQuery caches a specified number of
queries executed by an application. DataDirect XQuery pools
queries executed using XQExpression and XQPreparedExpression.

Using XQJ, you can enable query pooling by specifying the
DDXQDataSource MaxPooledQueries property. For example, if
the DDXQDataSource MaxPooledQueries property is set to 20,
DataDirect XQuery caches the last 20 queries executed by the
application. If the value set for this property is greater than the
number of queries used by the application, all queries are cached.
See “DDXQDataSource and DDXQJDBCConnection Properties”
on page 128 for more information.
DataDirect XQuery User’s Guide and Reference

Using Connection Pooling 193
Using Connection Pooling
Connection pooling allows your application to reuse
connections. DataDirect XQuery supports connection pooling
through JDBC and supports JDBC connection pool managers in
the following application server environments:

■ Tomcat 5.x and 6.x
■ JBoss 4.x and 5.x
■ BEA WebLogic Platform 9.x and 10.x
■ IBM WebSphere Application Server V6.1
■ Oracle Application Server 10g

For the most current information about which application server
environments are supported, go to:

http://www.datadirect.com/developer/data-integration/tutorials/
examples/connection-pooling/index.ssp

DataDirect XQuery has a JDBC driver that allows your
application to use connection pooling with an application
server’s JDBC pool manager. See “Configuring Connection
Pooling” on page 196 for information about this driver.

DataDirect XQuery provides three classes for support of
connection pooling:

■ com.ddtek.xquery.jdbc.XQueryDriver. This is the driver class
for the DataDirect XQuery JDBC driver, which is used to
configure a pooled connection through the JDBC Driver
Manager. See “Configuring a Connection Through the JDBC
Driver Manager” on page 194.

■ com.ddtek.xquery.jdbc.XQueryConnectionPoolDataSource.
This class is used to configure a pooled connection through a
data source. See “Configuring a Connection Through a Data
Source” on page 195.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/developer/data-integration/tutorials/examples/connection-pooling/index.ssp

194 Chapter 8 Improving Performance
■ com.ddtek.xquery.jdbc.XQueryConnection. This class is used
to convert a JDBC connection into an XQJ connection. See the
example in “Configuring Connection Pooling” on page 196.

Configuring a Connection Through the
JDBC Driver Manager

The com.ddtek.xquery.jdbc.XQueryDriver class is an
implementation of the JDBC driver interface (java.sql.Driver) and
is used to configure a pooled connection through the JDBC Driver
Manager.

The syntax of the JDBC URL required by this class depends on if
you are connecting to one relational data source or multiple
relational data sources.

If you are connecting to one relational data source the syntax is:

jdbc:datadirect:xquery://JdbcUrl={url}[;optionalProperty=value[;...]]

where:

url is a URL, as documented in “Specifying Connection URIs” on
page 141.

optionalProperty is any of the DDXQDataSource properties, as
documented in Table 6-1, “DDXQDataSource Properties,” on
page 128.

value is determined by the DDXQDataSource property you are
specifying.

In the following example, the JDBC URL is defined in the first set
of braces {} and the baseURI is a property of DDXQDataSource:

jdbc:datadirect:xquery://JdbcUrl={jdbc:xquery:sqlserver://localhost:1433;
databaseName=holdings;User=myuserID;Password=mypwd};
baseURI={file:///C:/xmldocuments/};
DataDirect XQuery User’s Guide and Reference

Using Connection Pooling 195
If you are connecting to multiple relational data sources the
syntax is:

jdbc:datadirect:xquery://jdbcConnections={Url={url}[;optionalProperty=value
[;...]]},...

where:

url is a URL, as documented in “Specifying Connection URIs” on
page 141.

optionalProperty is any of the DDXQJDBCConnection
properties, as documented in Table 6-2, “DDXQJDBCConnection
Properties,” on page 136.

value is determined by the DDXQJDBCConnection property you
are specifying.

In the following example, two JDBC URLs are specified and the
user ID and password are specified using the User and Password
properties of DDXQJDBCConnection; they are not specified
within the URL:

jdbc:datadirect:xquery://jdbcConnections=
{Url={jdbc:xquery:sqlserver://server1:1433;databaseName=stocks};User=myuserID;
Password=mypwd}, {Url={jdbc:xquery:sqlserver://server2:1433;databaseName=
holdings};
User=myuserID2;Password=mypwd2}

Configuring a Connection Through a
Data Source

The com.ddtek.xquery.jdbc.XQueryConnectionPoolDataSource
class is an implementation of the JDBC interface
javax.sql.ConnectionPoolDataSource and is used to configure a
connection pool connection through a data source.
DataDirect XQuery User’s Guide and Reference

196 Chapter 8 Improving Performance
Some application servers, such as IBM WebSphere, require a data
source to configure pooled connections and provide the
infrastructure for you to create the ConnectionPoolDataSource
objects you need to configure connection pooling.

The only property defined for this class is connectionURL. The
value for this property is a URL, which is documented in
“Configuring a Connection Through the JDBC Driver Manager”
on page 194.

Configuring Connection Pooling
1 The DataDirect XQuery JDBC driver must be registered in the

application server and a connection pool must be created.
This step makes the pooled connections available to your
application code through JNDI. For example:

Context evnContext =
(Context)initContext.lookup("java:/comp/env");
DataSource jdbc_ds =
(DataSource)envContext.lookup("jdbc/DDXQExample");
Connection jdbc_c = jdbc_ds.getConnection();

Now, a JDBC connection is available.

2 Convert the JDBC connection into an XQJ connection. For
example:

XQConnection xqj_c =
XQueryConnection.getXQConnection(jdbc_c);

NOTE: DataDirect XQuery provides a class,
com.ddtek.xquery.jdbc.XQueryConnection, to convert the
JDBC connection into an XQJ connection.

Now, an XQJ connection is available and can be used with
XQJ. For example:

XQPreparedExpression xqj_p =
xqj_c.prepareExpression("fn:doc(’foo.xml’)//abc");
DataDirect XQuery User’s Guide and Reference

Using Connection Pooling 197
3 To make a connection available again for pooling, you must
close the JDBC connection, not the XQJ connection. For
example:

jdbc_c.close()

For information about how to configure DataDirect XQuery to
use connection pooling in the supported application server
environments, go to:

http://www.datadirect.com/developer/data-integration/tutorials/
examples/connection-pooling/index.ssp

Example of Servlet Using Connection
Pooling

The following code is a fully functional example for a Java
Servlet.

import java.io.IOException;
import java.io.PrintWriter;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;
import javax.xml.xquery.XQConnection;
import javax.xml.xquery.XQException;
import javax.xml.xquery.XQExpression;
import javax.xml.xquery.XQSequence;

import com.ddtek.xquery.jdbc.XQueryConnection;
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/developer/data-integration/tutorials/examples/connection-pooling/index.ssp

198 Chapter 8 Improving Performance
/**
 * DataDirect Servlet example demonstrating the integration with
 * JDBC Connection Pooling
 */
public class DDXQServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 Connection jdbc_c = null;
 XQExpression xqj_e = null;

 try {
 Context initContext = new InitialContext();
 Context envContext = (Context)initContext.lookup("java:/comp/env");
 DataSource jdbc_ds =(DataSource)envContext.lookup("jdbc/DDXQExample");
 jdbc_c = jdbc_ds.getConnection();

 PrintWriter out = response.getWriter();

 XQConnection xqj_c = XQueryConnection.getXQConnection(jdbc_c);

 xqj_e = xqj_c.createExpression();
 XQSequence xqj_s = xqj_e.executeQuery(
 " Current date: ,current-date(),
," +
 " Current time: ,current-time(), " +
 " <table border='1'> "+
 " <tr> "+
 " <th>User</th> "+
 " <th>Stock</th> "+
 " <th>Shares</th> "+
 " </tr> "+
 " { "+
 " for $item in collection('holdings')/holdings "+
 " return "+
 " <tr> "+
 " <td>{$item/userid/data(.)}</td> "+
 " <td>{$item/stockticker/data(.)}</td> "+
 " <td>{$item/shares/data(.)}</td> "+
 " </tr> "+
 " } "+
 " </table> ");
DataDirect XQuery User’s Guide and Reference

Using Connection Pooling 199
 xqj_s.writeSequence(out, new Properties());

 out.close();
 }
 catch(Exception e){
 throw new ServletException(e);
 }
 finally {
 if (xqj_e != null) try{xqj_e.close();} catch (XQException e) {}
 if (jdbc_c != null) try{jdbc_c.close();} catch (SQLException e) {}
 }
 }
}

DataDirect XQuery User’s Guide and Reference

200 Chapter 8 Improving Performance
DataDirect XQuery User’s Guide and Reference

201
9 Building a Web Service

This chapter provides an overview of the XQueryWebService
framework and describes how to use it to build a Web service. It
covers the following topics:

■ “XQueryWebService Framework Overview” on page 201
■ “XQueryWebService Framework Architecture” on page 204
■ “Example – Employee Lookup” on page 211
■ “Specifying a Database Connection” on page 213
■ “Choosing an Interface for Web Service Access” on page 216
■ “Tools for Testing Web Service Operations” on page 219
■ “Generating WSDL” on page 221
■ “Using WSDL Service References” on page 223

XQueryWebService Framework Overview
XQueryWebService is a framework that allows you to expose an
XQuery as a Web service. Implemented as a library for Java
classes, XQueryWebService is designed to simplify the design and
implementation of Web Servlet Applications. The jar file for this
library, xquerywebservice.jar, is located in the \lib directory
where you install DataDirect XQuery.

The XQueryWebService framework provides a Servlet
implementation to expose as a Web service XQuery stored in a
specific directory. Each XQuery exposes one operation; this
operation is expressed in the query body through a function that
takes the name of the XQuery file without the extension. For
example, the file emp.xquery provides the emp operation.
Parameters (external variables) expressed in the XQuery, if any,
are reflected in the operation’s prototype.
DataDirect XQuery User’s Guide and Reference

202 Chapter 9 Building a Web Service
XQuery modules cannot be published as Web services. A module
can be parsed only indirectly when imported by another query.

An XQuery is compiled using lazy evaulation on the first request;
after that it is compiled only if the XQuery source on the disk
changes.

Third Party Dependencies

The XQueryWebService framework does not require any
additional Java library; it relies only on built-in classes, like JAXP
to manipulate XML, which are available from Java 1.4.2 and later.

Web Service Interfaces

The Web Service Description Language (WSDL) specification
allows a Web service to be exposed through several types of
bindings: HTTP GET, HTTP POST and SOAP over HTTP. This section
describes these bindings in greater detail.

DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/wsdl

XQueryWebService Framework Overview 203
HTTP GET

The simplest binding is HTTP GET, often described as REST
(Representational State Transfer), in which the Web service call is
represented by a URL with all its parameters inline. Consider the
following URI:

 http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

Here, employee-lookup is the service name, emp is the operation
name, and what follows after the question mark is a name/value
pair of parameters (id=A-C71970F).

HTTP GET is very simple to invoke – it is equivalent to accessing
an HTML page on a Web server; any internet browser can invoke
an XQuery Web service this way. However, only simple types such
as strings or numbers can be passed through HTTP GET, limiting
this approach to Remote Procedure Calling (RPC) style Web
services. Web service responses from a REST binding are always
XML fragments.

HTTP POST

HTTP POST allows you to design Web services with sophisticated
request messages in the form of XML fragments. The drawback
to HTTP POST is that the XQuery language does not provide a
standard function to perform this type of binding.

SOAP

SOAP over HTTP is layered on HTTP POST, with the addition of an
XML-based wire protocol that describes what the
request/response looks like and provides a tighter integration
with XML Schema. The SOAP protocol defines an optional
element called Header to carry information like user/password or
session id.
DataDirect XQuery User’s Guide and Reference

204 Chapter 9 Building a Web Service
For more information on Web service interfaces, see
“XQueryWebService Framework Architecture” on page 204.

XQueryWebService Framework Architecture
A high-level illustration of the XQueryWebService framework
architecture looks like this:

To start, an HTTP request is submitted to a Web server (a Tomcat
Web Server in this case). The URI used to invoke the Web service
takes the following form:

 http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

where:

■ http://examples.xquery.com/employee-lookup/emp.xquery is
the location of the XQuery Web service. The Web service was
created by saving an XQuery to the employee-lookup
directory where the Tomcat Web Server is running.

■ id=A-C71970F is a parameter passed to the XQuery. This
parameter, as you will see in a moment, is defined in the
XQuery.
DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

XQueryWebService Framework Architecture 205
When the XQuery is finished, it returns a value using HTTP
response, as shown in the following illustration.

Let’s take a closer look inside the DataDirect XQueryWebService
directory on the Web server (DDXQWS).

The browser (or an application) submits the Web service request
using SOAP or HTTP GET for the XQuery stored on the Web
server. Next, DataDirect XQuery unpacks the Web service request
and binds its parameters, if any, to the XQuery. In our example,
the parameter passed with the Web service request is an ID. The
XQuery is then executed and its result (an XML document) is
returned to the client.
DataDirect XQuery User’s Guide and Reference

206 Chapter 9 Building a Web Service
Example XQuery

To gain a more detailed understanding of what is happening
inside the Web service, consider an XQuery, emp.xquery. This
XQuery retrieves employee data given a unique ID. The query
defines a parameter called id; the query body is just a single
FLWOR expression:

declare variable $id as xs:string external;
<root>{

for $employee in collection("employee")/employee
where $employee/emp_id = $id
return $employee

}</root>

In the following section, “Example – Employee Lookup” on
page 211, you’ll see how to implement this XQuery as a Web
service on your local machine.

The Web Service Description Language
(WSDL)

The Web Service Description Language (WSDL) is a language for
describing Web services. If we copy the emp.xquery to a directory,
say employee-lookup, where our Java servlet container is
running, we can use the following URI to access a WSDL
document that describes the Web service that results from our
XQuery:

http://examples.xquery.com/employee-lookup/WSDL

Using this tool, we can take a closer look at how our XQuery is
described by the WSDL document.
DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/WSDL

XQueryWebService Framework Architecture 207
Service Element

The service element – only one per WSDL document – is named
after the query file name without its extension. The service
contains two port definitions that always have the same name:
SOAPPort and HTTPGETPort, respectively; one for SOAP over HTTP,
one for HTTP GET.

<wsdl:service name="Service">
<wsdl:port binding="dd:SOAPBinding" name="SOAPPort">

<wsdlsoap:address
 location="http://examples.xquery.com/employee-lookup/WSDL"/>

</wsdl:port>
<wsdl:port binding="dd:HTTPGETBinding" name="HTTPGETPort">

<http:address
 location="http://examples.xquery.com/employee-lookup/WSDL"/>

</wsdl:port>
</wsdl:service>

Notice that the service address or end point is the same for both
ports.

For each element wsdl:port under the element wsdl:service
there is an attribute called binding=; the attribute value matches
the value of attribute name= of one of the binding elements.

HTTPGETBinding

The HTTPGETBinding describes the HTTP verb (in this case it is
GET), which operations are exposed, and how the input/output
are encoded. The attribute location= in the element
wsdl:operation is particularly important – it represents the query
function to invoke in our query; in this case emp means the query
body.

<wsdl:binding name="HTTPGETBinding" type="dd:HTTPGETPort">
 <http:binding verb:"GET"/>

<wsdl:operation name="emp">
 <http:operation location="/emp"/>
DataDirect XQuery User’s Guide and Reference

208 Chapter 9 Building a Web Service
<wsdl:input>
 <http:urlEncoded/>
</wsdl:input>
<wsdl:output>
 <mime:mimeXML part="Body"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

SOAPBinding

The SOAPBinding (in the following code sample) describes the
encoding style that will be used by the service; the value can be
either document or rpc (in our case it is always document). The style
document is completely driven by the schema definition associated
with the message, so the resulting XML fragment is more
elegant. The style rpc assumes the creation of a wrapper element
that matches the underlying function name to encapsulate the
function arguments. The XML on the wire might look the same,
but it is conceptually different.

Each wsdlsoap:operation defines the attribute soapAction= that,
similar to the attribute location= in http:operation, represents
the function name; soapAction= must be encoded as an HTTP
header in the Web service request.

The attribute use= in the element wsdlsoap:body can be either
literal or encoded. (In the generated WSDL it will be always
literal, as suggested by the OASIS WS Basic Profile 1.0, to
improve interoperability between different client
implementations.) The message representation on the wire has
the child element of the element wsdlsoap:body, which matches
the global element defined in the XML Schema and is declared in
the related message part.
DataDirect XQuery User’s Guide and Reference

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16649056

XQueryWebService Framework Architecture 209
The attribute type= in the element binding matches the attribute
name= of one of the element portType. The element portType
associates one message for the input and one for the output to
each operation.

<wsdl:binding name="SOAPBinding" type="dd:SOAPPort">
<wsdlsoap:binding transport="http://schemas.xmlsoap.org/soap/http"

 style="document"/>
<wsdl:operation name="emp">
 <wsdlsoap:operation soapAction="emp.xquery" style="document"/>

<wsdl:input>
 <wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output>
 <wsdlsoap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

For each query function there is a pair of messages (input and
output) for each binding (SOAPPort and HTTPGETPort). Having
different messages for each binding allows, for instance, simple
types like xs:string or xs:integer to be used for HTTP GET, which
can be easily expressed inline as a URI.

<wsdl:portType name="SOAPPort">
<wsdl:operation name="emp">

<wsdl:input message="dd:empInputMsg"/>
<wsdl:output message="dd:OutputMsg"/>
<wsdl:fault name="nmtoken" message="dd:FaultMsg"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:portType name="HTTPGETPort">
<wsdl:operation name="emp">

<wsdl:input message="dd:empInputMsg"/>
<wsdl:output message="dd:OutputMsg"/>
<wsdl:fault name="nmtoken" message="dd:FaultMsg"/>

</wsdl:operation>
</wsdl:portType>
DataDirect XQuery User’s Guide and Reference

210 Chapter 9 Building a Web Service
The element wsdl:message may have multiple sub-elements called
wsdl:part; each part references either an XML Schema global
type or global element. OASIS WS Basic Profile 1.0 suggests using
only one part and a global element. To mimic the validation
process against an XML Schema, the validation always starts from
a global element – the document root.

<wsdl:message name="empInputMsg">
<wsdl:part name="parameters" element="dd:emp"/>

</wsdl:message>

<wsdl:message name="OutputMsg">
<wsdl:part name="Output" element="dd:Output"/>

</wsdl:message>

<wsdl:message name="FaultMsg"/>

Finally, the WSDL describes the element types where the XML
Schema types are defined. For each message, the XML Schema
defines two global elements – one for the input and one for the
output.

<wsdl:types>
<wsdl:types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.datadirect.com"
attributeFormDefault="unqualified"
elementFormDefault="qualified">

<xs:import schemaLocation="employee.xsd"
 namespace="http://www.employee.com"/>

<xs:element name="emp">
<xs:complexType>

<xs:all>
<xs:element type="xs:string" name="id"/>

</xs:all>
</xs:complexType>

</xs:element>
<xs:element type="xs:anyType" name="Output"/>

</xs:schema>
</wsdl:types>
DataDirect XQuery User’s Guide and Reference

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Example – Employee Lookup 211
Example – Employee Lookup
The application described in the following sections is a simple
employee lookup query designed to illustrate some of the
features of the XQueryWebService framework. When complete,
the query returns information such as first and last name, job
level, date of hire, and so on based on the employee ID you
enter.

Other Examples

You can find other examples of the XQueryWebService
framework on the DataDirect XQuery web site, here:

http://www.datadirect.com/developer/data-integration/tutorials/
examples/xquerywebservice/index.ssp

Before You Begin

If you want to run the employee lookup example, you need the
following:

■ An XQuery editor – An XQuery editor, like Stylus Studio or
the DataDirect XQuery Editor for Eclipse, is needed to author
the XQuery you wish to expose as a Web service.

■ A Java servlet container – The XQueryWebService framework
has been tested with several Java servlet containers,
including

• Apache Tomcat
• JBoss
• IBM WebSphere
• BEA WebLogic
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/developer/data-integration/tutorials/examples/xquerywebservice/index.ssp
http://www.stylusstudio.com/learn_xquery.html#
http://www.xquery.com/xml%5Ftools/eclipse/
http://tomcat.apache.org/
http://www.jboss.org/
http://www-01.ibm.com/software/websphere/
http://www.oracle.com/bea/index.html

212 Chapter 9 Building a Web Service
You can use any Java servlet container you like; we used the open
source Apache Tomcat for this example. If you plan to run the
example on a different servlet container, you will need to follow
its specific deployment procedure.

Setting Up

Once you have your XQuery editor and Java servlet container, you
can set up the files needed to write your own employee lookup
XQueryWebService framework application. Here’s how to get
started:

1 Copy the all DataDirect XQuery jar files to your Java servlet
container \lib directory (<Tomcat_dir>\lib, for example). The
jar files are located in the \lib directory where you install
DataDirect XQuery.

2 Create an employee-lookup directory under the Java servlet
container \webapps directory
(<Tomcat_dir>\webapps\employee-lookup, for example).

3 Create a WEB-INF directory under the newly created
\employee-lookup directory
(<Tomcat_dir>\webapps\employee-lookup\WEB-INF, for
example).

4 Create the following configuration file as web.xml and save it
to the WEB-INF directory:

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/
 j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <description>Employee lookup</description>
 <display-name>Employee-lookup</display-name>
DataDirect XQuery User’s Guide and Reference

Specifying a Database Connection 213
 <servlet>
 <servlet-name>XQueryWebService</servlet-name>
 <servlet-class>com.ddtek.xquery.webservice.XQServlet</servlet-class>
 <init-param>
 <param-name>JNDIDataSourceName</param-name>
 <param-value>jdbc/employee-lookup</param-value>
 </init-param>
 </servlet>

 <resource-ref>
 <res-ref-name>jdbc/employee-lookup</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <servlet-mapping>
 <servlet-name>XQueryWebService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Next Steps

Once you have taken care of the basics, you can begin specifying
relational data sources, as described in the following section.

Specifying a Database Connection
If your queries access relational data, you need to register the
database connection with the Java servlet container. The
XQueryWebService supports

■ Single database connections
■ Database connection pooling
DataDirect XQuery User’s Guide and Reference

214 Chapter 9 Building a Web Service
Specifying a Single Connection

You can use the Web Application configuration file (web.xml) to
specify the database connection. This example specifies a
connection to Microsoft SQL Server:

<init-param>
 <param-name>DDXQJDBCConnection1</param-name>
 <param-value>jdbc:xquery:sqlserver://localhost;user=sa;DatabaseName=pubs
 </param-value>
</init-param>

The name of the <param-name> element can be any string you like.

Single database connections are created and then discarded with
each request, which can add to an application’s processing
overhead. A more efficient technique is database connection
pooling, which is discussed next.

Database Connection Pooling

Connection pooling is a technique for specifying database
connections that allows a Web application to create a database
connection on demand, and then return it to a pool when it is no
longer need, rather than discarding it. Connection pooling can
improve response time and help preserve database resources.
Web server requests are locked if no connection is available in the
pool.

Another benefit of using connection pooling is that it allows for
connection recovery in the event that the connection is lost – if
the server times out, for example. Dropped or disrupted
connections are automatically replaced once the server is
returned to service.

All popular Java servlet containers offer a connection pooling
framework, and DataDirect XQuery can be plugged into most of
them (Apache Tomcat, BEA WebLogic, IBM WebSphere, JBoss,
DataDirect XQuery User’s Guide and Reference

Specifying a Database Connection 215
and Oracle for example). See “Using Connection Pooling” on
page 193 for more information.

Creating a Connection Pool – Example

Here's how to create a connection pool in Apache Tomcat:

1 Create a META-INF directory under the \employee-lookup
directory (<Tomcat_dir>\webapps\employee-lookup
\META-INF, for example).

2 Place the following configuration file, context.xml, in that
directory:

<Context path="/employee-lookup" docBase="employee-lookup"
 crossContext="false" reloadable="true" debug="0">

<Resource name="jdbc/employee-lookup"
 auth="Container"
 type="javax.sql.DataSource"
 username="root"
 password="sa"
 driverClassName="com.ddtek.xquery3.jdbc.XQueryDriver"
 url="jdbc:datadirect:xquery3://JdbcUrl=
 {jdbc:mysql://localhost:3306/pubs_dbo?}"
 initialSize="1"
 accessToUnderlyingConnectionAllowed="true"
 validationQuery="SELECT * FROM users"/>
</Context>

Note that the name= attribute of the <Resource> element has
to match the <res-ref-name> element (here it is
"jdbc/employee-lookup") in the web.xml configuration file
we described previously. This is the name that the Java servlet
uses to perform the Java Naming and Directory Interface
(JNDI) lookup required to retrieve the connection pool.
DataDirect XQuery User’s Guide and Reference

216 Chapter 9 Building a Web Service
Creating a Connection Pool for Other Servers

As mentioned previously, DataDirect XQuery supports several
other servers in addition to Tomcat, including JBoss, BEA
WebLogic, IBM WebSphere Application Server, and Oracle
Application Server. You can learn more about support for
connection pools for these servers here: “Using Connection
Pooling” on page 193.

Next Steps

Once you have specified your relational database connection, you
can start to think about the technology you want to use to access
the Web services based on your XQuery. Two popular
technologies – SOAP and REST – are described in the following
section.

Choosing an Interface for Web Service Access
Data services – that is, your XQuery exposed as a Web service –
deployed on the XQueryWebService framework can be accessed
using two techniques:

■ Simple Object Access Protocol (SOAP)
■ Representational State Transfer (REST)

SOAP is a W3C Recommendation and has been around for nearly
a decade. SOAP is usually the more appropriate of the two
techniques for complex processing or when security (exposing
sensitive data) is an issue. But REST is gaining popularity for a
couple of reasons, including minimal requirements on the client,
and an interface – the URI – that is straightforward and
well-understood.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

Choosing an Interface for Web Service Access 217
Sample XQuery

Let's take a look at emp.xquery, which we have saved to our
local XQuery directory (c:\MyQueryDir, as defined in web.xml).

declare variable $id as xs:string external;

<root>
{
 for $employee in collection("pubs.dbo.employee")/employee
 where $employee/emp_id = $id
 return $employee
}
</root>

When run against the SQL Server pubs sample database, this
XQuery returns an employee record given an ID ("A-C71970F").

Using REST

Using REST, this XQuery can be executed from any Internet
browser using just this URI:

 http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

Notice that with REST, the employee ID ("id=A-C71970F") is
visible in the URI.

The result looks something like this:

<dd:Output xmlns:dd="http://www.datadirect.com">
 <root>
 <employee>
 <emp_id>A-C71970F</emp_id>
 <fname>Aria</fname>
 <minit/>
 <lname>Cruz</lname>
 <job_id>10</job_id>
 <job_lvl>87</job_lvl>
 <pub_id>1389</pub_id>
DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/emp.xquery?id=A-C71970F

218 Chapter 9 Building a Web Service
 <hire_date>1991-10-26T00:00:00</hire_date>
 </employee>
 </root>
</dd:Output>

Using SOAP

Using SOAP, on the other hand, requires submitting the following
SOAP request (XML):

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <dd:emp xmlns:dd="http://www.datadirect.com">
 <dd:id>A-C71970F</dd:id>
 </dd:emp>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The result, shown here, is pretty much the same as the one
returned using REST, only now it is “wrapped” in the SOAP
envelope:

<SOAP-ENV:Envelope xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <dd:Output xmlns:dd="http://www.datadirect.com">
 <root>
 <employee>
 <emp_id>A-C71970F</emp_id>
 <fname>Aria</fname>
 <minit>
 </minit>
 <lname>Cruz</lname>
 <job_id>10</job_id>
 <job_lvl>87</job_lvl>
 <pub_id>1389</pub_id>
 <hire_date>1991-10-26T00:00:00</hire_date>
 </employee>
 </root>
DataDirect XQuery User’s Guide and Reference

Tools for Testing Web Service Operations 219
 </dd:Output>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Next Steps

The XQueryWebService framework includes some simple tools
that let you test the Web service operations you include in your
applications. These tools are covered in the next section.

Tools for Testing Web Service Operations
The XQueryWebService framework dynamically lists all the
operations exposed by the Web service created from the XQuery
in your Java servlet container's XQuery directory. This page, for
example, was generated by the Employee Lookup example:

To display this page, just point your browser to the
XQueryWebService root –
http://examples.xquery.com/employee-lookup/, for example.
DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/

220 Chapter 9 Building a Web Service
This HTML form is dynamically created by parsing the XQuery.
Clicking one of the exposed Web service operations (in our
example, emp) displays another HTML form you can use to
provide values for testing purposes.

The HTML Test Interface

A simple HTML interface allows you to test an operation. For
example, if we click the “emp” operation, the following HTML
page is generated:

To test the operation, simply provide the requested value and
click the Invoke button. Again, the testing interface is generated
dynamically, so the form itself varies based on the operation – if
an operation does not require a parameter, it is invoked as soon
as you select it. This functionality is supported by the REST
technology only.

Next Steps

If you choose to use the SOAP transport mechanism in your Web
application, you might want to take advantage of the
XQueryWebService framework’s ability to generate a WSDL
DataDirect XQuery User’s Guide and Reference

Generating WSDL 221
document. (A WSDL document can be used to create a set of
classes that allows you to manipulate a data service as if it was a
local library.) Learn about generating a WSDL document in the
next section.

Generating WSDL
XQueryWebService automatically generates a Web Service
Desctiption Language (WSDL) document based on the XQuery in
your Java servlet container's XQuery directory. The WSDL
document describes the services that are exposed by a given
XQuery. This information can be useful if you plan to provide
programmatic access to one or more of those services.

To take a look at the WSDL document generated – in real-time –
for the Employee Lookup example, click here:

http://examples.xquery.com/employee-lookup/WSDL
DataDirect XQuery User’s Guide and Reference

http://examples.xquery.com/employee-lookup/WSDL

222 Chapter 9 Building a Web Service
If we take a closer look, we see that the WSDL document defines
a single service (<wsdl:service>), exposed through two ports:
SOAP and HTTPGET.

Each query is exposed as a WSDL operation (<wsdl:operation>),
with each query's external variables exposed as operation
parameters. Further, all built-in schema types are preserved in the
parameter declaration.

Consider the following external variable declared in our example
XQuery:

declare variable $id as xs:string external;

The following global element appears in the <wsdl:types>
section of the generated WSDL document:

<xs:element name="emp">
 <xs:complexType>
 <xs:all>
 <xs:element name="id" type="xs:string"/>
 </xs:all>
 </xs:complexType>
</xs:element>

The input message references the global element, "emp":

<wsdl:message name="empInputMsg">
 <wsdl:part element="dd:emp" name="parameters"/>
</wsdl:message>

Currently, XQueryWebService does not support user-defined
types for external variables.

Next Steps

You can use a WSDL document to create a set of classes that can
be used to manipulate the data service as if it was a local library.
Learn more about using WSDL service references in the next
section.
DataDirect XQuery User’s Guide and Reference

Using WSDL Service References 223
Using WSDL Service References
Modern IDEs like Microsoft Visual Studio and Eclipse provide
complete support for consuming Web services – for most of
them, making the WSDL document available to the IDE is all that
is needed to generate a set of classes that can be used to
manipulate the Web service as if it was a local library.

For example, when we open the Employee Lookup WSDL in
Microsoft Visual Studio as a Service Reference, the emp and
empxsd operations are exposed, as shown in the following
illustration.
DataDirect XQuery User’s Guide and Reference

224 Chapter 9 Building a Web Service
Such a binding framework works extremely well when the WSDL
document makes use of XML Schema to describe the SOAP
message payloads.

Consider the following simple C# application, which uses the
empxsd operation, as shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using TestWS.ServiceReference1;

namespace TestWS
{
 class Program
 {
 static void Main(string[] args)
 {
 SOAPPortClient client = new SOAPPortClient();
 rootEmployee ret = client.empxsd("A-C71970F");
 Console.WriteLine(ret.lname);
 }
 }
}

As seen in the following illustration, schema information about
the employee element – employee ID, first and last name, hire
date, and so on – is exposed to the IDE, simplifying and enriching
the application development process.
DataDirect XQuery User’s Guide and Reference

Using WSDL Service References 225
If we run this application in debug mode inside Microsoft Visual
Studio, we can see that the variables (first name, last name, and
so on) are initialized with values from the Web service.
DataDirect XQuery User’s Guide and Reference

226 Chapter 9 Building a Web Service
Augmenting WSDL with External XML
Schema

To illustrate how XML Schema can be used to augment a data
service WSDL, let's revisit the Employee Lookup XQuery
(emp.xquery), and make a few modifications, as shown:

declare variable $id as xs:string external;

<ns:root xmlns:ns="http://www.employee.com">
{
 for $employee in
 collection("pubs.dbo.employee")/employee
DataDirect XQuery User’s Guide and Reference

Using WSDL Service References 227
 where $employee/emp_id = $id
 return $employee
}
</ns:root>

This query is almost identical to the one introduced earlier in this
example, except that the root element (<ns:root>) is now placed
in a different namespace. Accordingly, we need to create an
XML Schema – we’ll call it employee.xsd – that describes what
the <ns:root> element looks like. We'll also put this XML Schema
in the same directory as emp.xquery and empxsd.xquery:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.employee.com"
 xmlns:ns="http://www.employee.com"
 elementFormDefault="qualified">
 <xs:element name="root">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="employee" form="unqualified">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="emp_id" form="unqualified" type=
 "xs:NCName"/>
 <xs:element name="fname" form="unqualified" type=
 "xs:NCName"/>
 <xs:element name="minit" form="unqualified"/>
 <xs:element name="lname" form="unqualified" type=
 "xs:NCName"/>
 <xs:element name="job_id" form="unqualified" type=
 "xs:integer"/>
 <xs:element name="job_lvl" form="unqualified" type=
 "xs:integer"/>
 <xs:element name="pub_id" form="unqualified" type=
 "xs:integer"/>
 <xs:element name="hire_date" form="unqualified" type=
 "xs:NMTOKEN"/>
 </xs:sequence>
 </xs:complexType>
DataDirect XQuery User’s Guide and Reference

228 Chapter 9 Building a Web Service
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

If we now open our WSDL URL, we can see that the embedded
XML Schema contains an import statement referencing the XML
Schema associated with our WSDL:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.datadirect.com"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xs:import schemaLocation="employee.xsd"
 namespace="http://www.employee.com"/>
 <xs:element name="empxsd">
 <xs:complexType>
 <xs:all>
 <xs:element name="id" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="Output" type="xs:anyType"/>
</xs:schema>

Now, the SOAP message that describes the operation's return
types references the global element <ns:root> defined in the
WSDL XML Schema:

<wsdl:message name="empxsdOutputMsg">
 <wsdl:part element="ns:root" name="parameters"/>
</wsdl:message>
DataDirect XQuery User’s Guide and Reference

229
10 Building a Web Service Client

The previous chapter, Chapter 9, “Building a Web Service,”
described how to use the XQueryWebService framework to
expose an XQuery as a Web service on an application server. This
chapter describes how to use DataDirect XQuery built-in
functions to build a Web service client.

This chapter covers the following topics:

■ “Overview” on page 229
■ “DataDirect HTTP Functions” on page 231
■ “Example: Web Service Client Comparison” on page 244
■ “HTTP Function Request and Response XML Schemas” on

page 247

Overview
A Web service client is a client-side application that accesses a
Web service hosted on a server. Communication between the
client machine and host server typically occurs over the Internet
using the HTTP protocol. Communication can be direct, or client
requests and server responses can be routed through a series of
gateways, proxy servers, and tunnels.

DataDirect XQuery provides two types of built-in functions to
help you write Web service clients – ddtek:wscall and DataDirect
HTTP functions.

■ ddtek:wscall allows you to invoke a Web service operation
synchronously using the SOAP protocol over HTTP.
DataDirect XQuery User’s Guide and Reference

230 Chapter 10 Building a Web Service Client
■ DataDirect XQuery provides full implementation of all HTTP
methods like GET, POST, PUT, and DELETE. DataDirect XQuery
HTTP functions provide a superset of the functionality
available with ddtek:wscall, allowing more control at a lower
level than is possible with ddtek:wscall.

Choosing a Function Type

Deciding whether to use ddtek:wscall or HTTP functions for your
XQuery Web service client depends on a number of factors, the
most basic of which is understanding which protocols the Web
service supports. For example, if the XQuery Web service supports
HTTP, then you must write the XQuery Web service client using
HTTP functions. On the other hand, if the XQuery Web service
supports SOAP, then you can use either HTTP functions or
ddtek:wscall.

Other factors you should consider when designing your XQuery
Web service client application include:

■ Streaming – HTTP functions support streaming of both
client-side requests and server-side responses. Streaming is an
important consideration for Web service client applications
that involve processing large XML documents – when
streaming is not used, all data is read into memory before the
function is invoked.

See “Data Streaming” on page 237 for more information on
this topic.

■ Client-server connection – The DataDirect XQuery
implementation of HTTP functions allows a level of control
over the parameters that affect the client-server connection
that is not possible using ddtek:wscall. Examples of these
parameters include specifying the number of retries, socket
timeout, and cookie policy management.

See “HTTP Functions <request> Element” on page 433 for
more information about specific HTTP parameters.

DataDirect XQuery User’s Guide and Reference

DataDirect HTTP Functions 231
If the origin server uses REST or plain XML, or if you require
direct control over the Web service payload or client-server
connection, consider using the DataDirect XQuery HTTP
functions to build your XQuery Web service client.

DataDirect HTTP Functions
This section describes the DataDirect XQuery HTTP functions you
can use to implement an XQuery Web service client, including
how to take advantage of some of the low-level connection
functionality provided by the HTTP functions that is not
available with ddtek:wscall.

This section covers the following topics:

■ “Function Overview” on page 231
■ “Connection Authentication” on page 233
■ “Managing Connections and Sockets” on page 235
■ “Data Streaming” on page 237
■ “Response Encoding” on page 238
■ “Managing Cookies” on page 242

Function Overview

DataDirect XQuery provides function declarations to support the
following HTTP methods on HTTP 1.0 and 1.1:

■ DELETE (“ddtek:http-delete”) – requests that the server
delete the specified resource

■ GET (“ddtek:http-get”) – retrieves from the server the
resource specified in the URI

■ HEAD (“ddtek:http-head”) – requests that the server return
only header information for the specified resource

■ OPTIONS (“ddtek:http-options”) – a request for available
DataDirect XQuery User’s Guide and Reference

232 Chapter 10 Building a Web Service Client
communication options
■ POST (“ddtek:http-post”) – typically used to submit a resource

to the server for additional processing
■ PUT (“ddtek:http-put”) – typically used to insert or replace a

server resource
■ TRACE (“ddtek:http-trace”) – requests that the server echo

back the request it received

For more information on these functions, including function
declaration overloads, see “DataDirect XQuery Built-In
Functions” on page 389.

Example – ddtek:http-get

This example shows a simple use of ddtek:http-get. Here, the
XQuery requests the resource hello.txt on
http://examples.xquery.com:

ddtek:http-get("http://examples.xquery.com/upload/hello.txt")

The result is returned in a <response> element, with the data in
the <response-body>:

<response http-version="HTTP/1.1" status-code="200" reason="OK">
<response-header>

<header name="ETag" value='W/"5-1243350649093"'/>
<header name="Date" value="Wed, 24 Jun 2009 20:40:25 GMT"/>
<header name="Content-Length" value="5"/>
<header name="Last-Modified" value="Tue, 26 May 2009 15:10:49 GMT"/>
<header name="Content-Type" value="text/plain"/>
<header name="Server" value="Apache-Coyote/1.1"/>

</response-header>
<response-body>hello</response-body>

</response>

For more information about the response header, see “Response
Encoding” on page 238.
DataDirect XQuery User’s Guide and Reference

DataDirect HTTP Functions 233
Connection Authentication

Before a Web service client application can be run, the client
must connect to the origin server. Each connection is
authenticated by the Web server. DataDirect XQuery supports
these authentication methods for HTTP functions:

■ Basic (Basic Access Authentication)
■ Digest (Digest Access Authentication)
■ NTLM (NT LAN Manager)

These authentication methods are separate from any that might
be used by applications to access relational database tables using
the collection function. See Chapter 7 “Securing Data Source
Connections” to learn about establishing secure connections
using NTLM and Kerberos.

The Authentication Process

The type of authentication performed is established by the
origin or proxy server. Consider the following example of an
invocation of the ddtek:http-get function:

ddtek:http-get(
 'http://examples.xquery.com/secure/members/books.xml',
 <request username="ddtek" password="ddtek"/>
)

Note that the invocation does not specify which authentication
method to use, even though the <request> element specifies
username= and password= attributes, which suggests an
awareness of the need to provide the server with this
information. (See “Specifying HTTP Client-Server Options” on
page 244 to learn more about the <request> element.)

Rather, the required authentication method is provided by the
server through a series of challenges to and responses from the
XQuery Web service client, as shown in the following simplified
exchange:
DataDirect XQuery User’s Guide and Reference

234 Chapter 10 Building a Web Service Client
DataDirect XQuery Request

The ddtek:http-get function attempts to connect to a resource on
http://examples.xquery.com:

GET http://examples.xquery.com/secure/members/books.xml HTTP/1.1
Host: examples.xquery.com

HTTP Server Response

The server denies the request. Included in the response is the
authentication method it requires:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="Authentication Test",
qop="auth", nonce="4b3ab6dd951a22816cd32c763ea415e6",
opaque="d14db1a1aba28fd461ce63a8dac78069"

DataDirect XQuery Request

The request is sent again, this time including the information
required by the server – the authorization method, the realm,
and a password encrypted using that authentication method:

GET http://examples.xquery.com/secure/members/books.xml HTTP/1.1
Authorization: Digest username="ddtek",
realm="Authentication Test",
nonce="4b3ab6dd951a22816cd32c763ea415e6",
uri="/secure/members/books.xml"

HTTP Server Response

Once the authorization succeeds, the server responds with an OK
and the XQuery can be executed.

HTTP/1.1 200 OK

This entire exchange, after the initial request by the
ddtek:http-get, takes place without intervention from the user.
DataDirect XQuery User’s Guide and Reference

DataDirect HTTP Functions 235
Supported Encryptions

DataDirect XQuery supports encryption with the HTTPS (HTTP
over SSL) protocol. No additional parameter is required to use
SSL (Secure Sockets Layer) – it is indicated by the URI scheme
HTTPS.

Consider the following example, which connects to the Verisign®
secure Web site:

declare option ddtek:serialize "indent=yes";
ddtek:http-get("https://www.verisign.com/")

This query generates the following result (the response body has
been omitted for formatting considerations):

<response http-version="HTTP/1.1" status-code="200" reason="OK">
 <response-header>
 <header name="Content-type" value="text/html"/>
 <header name="Date" value="Mon, 01 Jun 2009 15:39:19 GMT"/>
 <header name="Set-Cookie" value="v1st=4A23F627FE4EFAD6; path=/;
 expires=Wed, 19 Feb 2020 14:28:00 GMT; domain=.verisign.com"/>
 <header name="Connection" value="close"/>
 <header name="Server" value="Netscape-Enterprise/4.1"/>
 </response-header>
 <response-body>...</response-body>
</response>

Managing Connections and Sockets

Each DataDirect XQuery HTTP function is associated with an
underlying connection manager. Each connection manager can
keep one, and only one, connection open.

When a sequence of calls is directed to the same host, the
connection is reused. For example, the following XQuery code
executes a sequence of HTTP PUT functions in order to upload a
set of XML files from a local directory (c:/docs) to a WebDAV
server (http://examples.xquery.com/upload/):
DataDirect XQuery User’s Guide and Reference

236 Chapter 10 Building a Web Service Client
declare variable $host := "http://examples.xquery.com/upload/";

<result>{
for $d in collection("file:///c:/docs?select=*.xml")
let $filname := tokenize(document-uri($d), '/')[last()]
return
 ddtek:http-put(concat($host, $filname),$d)
}</result>

Contrast the previous example with this one, which uses two
connections because it is uploading the same document
(books.xml) to two different servers (http://localhost and
http://remotehost):

<result>{
ddtek:http-put(
 "http://localhost/books.xml", doc("file:///c:/books.xml")),
ddtek:http-put(
 "http://remotehost/books.xml", doc("file:///c:/books.xml"))
</result>

Settings for Connections and Sockets

DataDirect XQuery provides numerous settings that allow you
more direct control over the connections and sockets associated
with your XQuery Web service client. Examples of connection and
socket settings you can specify include connection and socket
timeout values and the number of retries.

You specify connection and socket settings as attributes of the
<request> element, which can be included as an additional
parameter of the DataDirect XQuery HTTP function you are
invoking, as shown in the following example:

ddtek:http-get(

 "http://examples.xquery.com/upload/dis-logo.psd",
 <request response-data-type="base64" retries="4"/>)

Here, the <request> element defined as part of the
ddtek:http-get function specifies that Base64 should be used for
DataDirect XQuery User’s Guide and Reference

DataDirect HTTP Functions 237
the response encoding, and that the HTTP call should be tried a
maximum of four times.

The <request> element attributes you can use to manage
connection and sockes settings are:

■ connection-timeout
■ password
■ protocol-head-body-timeout
■ protocol-reject-head-body
■ proxy-host
■ proxy-password
■ proxy-port
■ proxy-username
■ retries
■ socket-linger
■ socket-receivebuffer
■ socket-sendbuffer
■ socket-timeout
■ username

See “Specifying HTTP Client-Server Options” on page 244 to
learn more about the <request> element. For a description of
these settings as well as a complete list of <request> element
attributes, see “HTTP Functions <request> Element” on
page 433.

Data Streaming

All DataDirect XQuery HTTP functions are designed to support
Streaming XML, a DataDirect technique that processes data
sequentially, allowing efficient transmission of data input and
output during query execution.

There might be times, however, when you want to turn off
streaming in order to preserve resources on the origin server.
When a query invokes a large number of HTTP calls, for example,
DataDirect XQuery User’s Guide and Reference

238 Chapter 10 Building a Web Service Client
each call opens a dedicated connection which can ultimately lead
to degraded performance.

Disabling Streaming XML

There are two ways to disable Streaming XML in DataDirect
XQuery:

■ Set ddtek:xml-streaming="no" in the query prolog. See
“Using Option Declarations and Extension Expressions” on
page 275 for more information on this topic.

■ Set the "streaming" attribute in the <request> element to no.
See “Specifying HTTP Client-Server Options” on page 244 to
learn more about the <request> element.

Parameter Values and Streaming XML

In contrast to data, which might or might not be streamed,
parameter values are always fully materialized before the calling
function is invoked. If a query function uses a document as its
input, for example, the entire document is loaded in memory
before the function is invoked.

See “Querying Large XML Documents” on page 177 for more
information on Streaming XML.

Response Encoding

DataDirect XQuery automatically encodes the raw data streams
returned by ddtek:http-get and ddtek:http-post functions. The
encoded service response is placed in an element referred to as
the payload for consumption by the XQuery code.

Consider the following simple example. This XQuery:
DataDirect XQuery User’s Guide and Reference

DataDirect HTTP Functions 239
ddtek:http-get("http://examples.xquery.com/upload/hello.txt")

returns the following result:

<response http-version="HTTP/1.1" status-code="200" reason="OK">
<response-header>

<header name="ETag" value='W/"5-1243350649093"'/>
<header name="Date" value="Wed, 24 Jun 2009 20:40:25 GMT"/>
<header name="Content-Length" value="5"/>
<header name="Last-Modified" value="Tue, 26 May 2009 15:10:49 GMT"/>
<header name="Content-Type" value="text/plain"/>
<header name="Server" value="Apache-Coyote/1.1"/>

</response-header>
<response-body>hello</response-body>

</response>

The response-header provides information about the resource
being queried (in this case, a file called hello.txt), including its
Content-Type (which is "text/plain").

The response-body ("hello") represents the data returned by the
service, which has been encoded by the DataDirect XQuery Web
service client.

Encoding Rules

The method used to encode the service response depends on a
number of factors, the most important of which is the
Content-Type in the response header – if DataDirect recognizes
the mime type value in the Content-Type provided in the
response header, it provides a suitable encoding method.
Otherwise text encoding is used.

The complete set of encoding rules is summarized here:

■ If the origin server does not return a Content-Type in the
response header, or if the mime type is not recognized, the
response value is encoded as text.
DataDirect XQuery User’s Guide and Reference

240 Chapter 10 Building a Web Service Client
■ If the origin server returns a Content-Type in the response
header that contains a mime type recognized by DataDirect
XQuery, one of the following encoding method is used, as
appropriate: text, xml, or base64. (See “Recognized Mime
Types” on page 241 for a complete list of types and associated
encodings.)

■ If the Content-Type is a text mime type (text/html, for
example) and it includes a charset parameter, as shown in the
following example, the charset is used to interpret the bytes
in the response:

Content-Type: text/html; charset=utf-8

If the charset parameter is missing, DataDirect XQuery uses
ISO-8859-1.

Overriding the Default Encoding

You can override the default encodings used by DataDirect
XQuery. You might want to do this, for example, when the
Content-Type is not specified in the response header but you
know what it is.

Consider the following example. Here, we are using the HTTP
GET function to query a file:

ddtek:http-get(
 "http://examples.xquery.com/upload/dis-logo.psd")

The .psd extension indicates that it is a graphics file, which has a
mime type of image/x-photoshop. Because this mime type is not
recognized by DataDirect XQuery, the default encoding method –
text – is used. This ultimately causes the query to fail as the text
encoding results in the creation of characters like , which
are not valid XML.

To avoid this problem, we can override the default encoding
using the response-data-type attribute of the <request> element,
as shown here:
DataDirect XQuery User’s Guide and Reference

DataDirect HTTP Functions 241
ddtek:http-get(
 "http://examples.xquery.com/upload/dis-logo.psd",
 <request response-data-type="base64"/>)

With the response encoding set to a binary type, the query can
now be executed successfully:

<response http-version="HTTP/1.1" status-code="200" reason="OK">
<response-header>

<header name="ETag" value='W/"18016-1243352017406"'/>
<header name="Date" value="Tue, 23 Jun 2009 21:02:19 GMT"/>
<header name="Content-Length" value="18016"/>
<header name="Last-Modified" value="Tue, 26 May 2009 15:33:37 GMT"/>
<header name="Content-Type" value="image/x-photoshop"/>
<header name="Server" value="Apache-Coyote/1.1"/>

</response-header>
<response-body>OEJQUw...</response-body>

</response>

Note that the response body (which has been abbreviated here
for formatting considerations) is the base64 encoding of the
binary file format.

See “Specifying HTTP Client-Server Options” on page 244 to
learn more about the <request> element.

Recognized Mime Types

The following table summarizes the mime types recognized by
DataDirect XQuery and the associated method used encode the
response.

Table 10-1. Recognized Mime Types and Associated Encodings

Mime Type Encoding

application/atom+xml xml

application/base64 base64

application/mathml+xml xml
DataDirect XQuery User’s Guide and Reference

242 Chapter 10 Building a Web Service Client
Managing Cookies

Cookies are messages exchanged between a Web server and
client that are used to manage HTTP state. Cookies commonly
store information about visits to a Web site such as a user name,
password, the last time a site was visited, and so on. There are
several standards for cookies. Some, like RFC2109 and RFC2965,
were drafted by the W3C; others, like the Netscape cookie
specification, are vendor-specific.

application/rss+xml xml

application/xhtml+xml xml

application/xml xml

application/xslt+xml xml

application/zip base64

image/svg+xml xml

image/bmp base64

image/gif base64

image/jpeg base64

image/png base64

image/tiff base64

text/html text

text/plain text

text/richtext text

text/xml xml

x-gzip base64

x-compress base64

Table 10-1. Recognized Mime Types and Associated Encodings

Mime Type Encoding
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/Protocols/rfc2109/rfc2109.txt

DataDirect HTTP Functions 243
By default, DataDirect XQuery supports the RFC2109 standard,
but you can use the cookie-policy attribute of the <request>
element to specify how you want your XQuery application to
manage cookies. Available cookie management policies are
summarized in the following table.

Table 10-2. <request> Element cookie-policy Parameters

Value Description

RFC2109 RFC2109 was the first W3C cookies
specification. Although widely used, RFC2109
is sometimes too strict for servers supporting
other specifications. If you encounter
compatibility issues with RFC2109, consider
using RFC2965.

RFC2965 RFC2965 is the second version of the W3C
RFC2109 cookies specification, intended to
loosen some of the restrictions that made
RFC2109 incompatible with some servers.

Some of the key difference of RFC2965
include:

■ RFC2965 cookies are port-sensitive

■ Servers that send RFC2965 cookies will use
both Set-Cookie2 and Set-Cookie headers;
other cookie implementations use only
Set-Cookie

netscape The Netscape cookie specification formed the
basis for RFC2109. However, differences
between the two might require the use of
Netscape specification on some servers.

ignore_cookies This setting ignores all cookies – cookies are
neither sent nor accepted when the
cookie-policy attribute is set to
ignore_cookies.
DataDirect XQuery User’s Guide and Reference

http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.w3.org/Protocols/rfc2109/rfc2109.txt
http://www.ietf.org/rfc/rfc2965.txt

244 Chapter 10 Building a Web Service Client
See “Specifying HTTP Client-Server Options” on page 244 to learn
more about the <request> element.

Specifying HTTP Client-Server Options

Every DataDirect XQuery HTTP function allows you to specify
client-server options using a <request> element, as shown in the
following example:

ddtek:http-get(
 "http://examples.xquery.com/upload/dis-logo.psd",
 <request response-data-type="base64"/>)

Here, the response-data-type attribute is being used to specify
the encoding method to be used for the graphics file
dis-logo.psd, which is being queried using the ddtek:http-get
function.

Other examples of <request> element attributes include
connection and socket timeout values, the number of retries, and
HTTP version.

See “HTTP Functions <request> Element” on page 433 for a
complete list of <request> element parameters and their values.

Example: Web Service Client Comparison
This section uses a simple stock quote Web service to illustrate
how you might build an XQuery Web service client using both the
ddtek:wscall and ddtek:http-* functions.
DataDirect XQuery User’s Guide and Reference

Example: Web Service Client Comparison 245
Using HTTP Functions

Here is how you might use DataDirect XQuery HTTP functions to
build an XQuery Web service client application. You start by
declaring three variables – $host, $payload, and $options.

The $host variable is used to specify the endpoint for the Web
service – specifically, the URI of the Web Service Description
Language (WSDL) that defines the getQuotes operation made
available by this Web service:

declare variable
$host := "http://examples.xquery.com/stock-quotes/WSDL";

The $payload variable is used to specify the SOAP message that
is submitted to the Web service by the XQuery Web service
client. In this example, the SOAP message contains the ticker
value (here, it is PRGS).

declare variable $payload :=
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <dd:getQuotes xmlns:dd="http://www.datadirect.com">
 <dd:tickers>PRGS</dd:tickers>
 </dd:getQuotes>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>;

The $options variable is used to specify the name of the SOAP
action (getQuotes.xquery) that is performed by the SOAP
operations (getQuotes) exposed by the XQuery Web service.

declare variable $options :=
 <request>
 <request-header>
 <header name="SOAPAction" value="getQuotes.xquery"/>
 </request-header>
 </request>;
DataDirect XQuery User’s Guide and Reference

246 Chapter 10 Building a Web Service Client
Once the $host, $payload, and $options variables is defined, you
can use them to invoke the ddtek:http-post function, as shown
here:

let $http-response := ddtek:http-post($host, $payload, $options)/response
return
 if($http-response/@status-code eq '200') then
 $http-response/response-body/*
 else $http-response

Using ddtek:wscall

Here is the same application written using ddtek:wscall:

declare variable $host :=
<ddtek:location
 address="http://examples.xquery.com/stock-quotes//WSDL"
 soapaction="getQuotes.xquery"/>;

declare variable $payload :=
<ddtek:getQuotes>
 <ddtek:tickers>PRGS</ddtek:tickers>
</ddtek:getQuotes>;

ddtek:wscall($host, $payload)

The declarations of the $host and $payload variables using the
ddtek:wscall function are similar to those using ddtek:http-post,
with a few differences:

■ The Web service operation, getQuotes, is specified as part of
the Web service endpoint in the $host declaration, and not as
a separate variable ($options)

■ The $payload variable does not need to include the
description of the SOAP envelope.

■

DataDirect XQuery User’s Guide and Reference

HTTP Function Request and Response XML Schemas 247
HTTP Function Request and Response XML
Schemas

This section documents the ddtek-http-request.xsd and
ddtek-http-response.xsd XML Schema.

Request XML Schema

If your XQuery Web service client uses a request element (to
specify a connection time out or retries, for exmple), it should
conform to the ddtek-http-request.xsd XML Schema.

The request header contains all header info that is to be sent to
the server. This includes all request headers as specified in the
http protocol, as well as server/service specific headers. The
parameters are configuration settings. Except for authentication
credentials, none of the parameter info provided is transmitted
to the server.

If no value is specified for a parameter, the default setting is
used.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:schema elementFormDefault="qualified">-
 <xsd:element name="request">-
 <xsd:complexType>-
 <xsd:sequence>-
 <xsd:element name="request-header" minOccurs="0" maxOccurs="1">-
 <xsd:complexType>-
 <xsd:sequence>-
 <xsd:element name="header" minOccurs="0"
 maxOccurs="unbounded">-
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"
 use="required"/>
DataDirect XQuery User’s Guide and Reference

248 Chapter 10 Building a Web Service Client
 <xsd:attribute name="value" type="xsd:string"
 use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="streaming" type="YesNo" use="optional"
 default="yes"/>
 <xsd:attribute name="http-version" type="HttpVersion" use="optional"
 default="http_1_1"/>
 <xsd:attribute name="connection-timeout" type="xsd:int"
 use="optional"/>
 <xsd:attribute name="socket-timeout" type="xsd:int" use="optional"/>
 <xsd:attribute name="socket-linger" type="xsd:int" use="optional"/>
 <xsd:attribute name="socket-sendbuffer" type="xsd:int"
 use="optional"/>
 <xsd:attribute name="socket-receivebuffer" type="xsd:int"
 use="optional"/>
 <xsd:attribute name="tcp-nodelay" type="xsd:int" use="optional"/>
 <xsd:attribute name="username" type="xsd:string" use="optional"/>
 <xsd:attribute name="password" type="xsd:string" use="optional"/>
 <xsd:attribute name="proxy-username" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="proxy-password" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="response-data-type" type="ResponseDataType"
 use="optional"/>
 <xsd:attribute name="cookie-policy" type="CookiePolicy"
 use="optional" default="RFC_2109"/>
 <xsd:attribute name="proxy-host" type="xsd:string" use="optional"/>
 <xsd:attribute name="proxy-port" type="xsd:int" use="optional"/>
 <xsd:attribute name="wrap-exception" type="YesNo" use="optional"/>
 <xsd:attribute name="retries" type="xsd:int" use="optional"/>
 <xsd:attribute name="protocol-reject-head-body" type="YesNo"
 use="optional"/>
 <xsd:attribute name="protocol-head-body-timeout" type="xsd:int"
 use="optional"/>
 <xsd:attribute name="serialize" type="xsd:string" use="optional"/>
 </xsd:complexType>
DataDirect XQuery User’s Guide and Reference

HTTP Function Request and Response XML Schemas 249
 </xsd:element>-
 <xsd:simpleType name="YesNo">-
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>-
 <xsd:simpleType name="HttpVersion">-
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="http_1_0"/>
 <xsd:enumeration value="http_1_1"/>
 </xsd:restriction>
 </xsd:simpleType>-
 <xsd:simpleType name="ResponseDataType">-
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="xml"/>
 <xsd:enumeration value="text"/>
 <xsd:enumeration value="base64"/>
 </xsd:restriction>
 </xsd:simpleType>-
 <xsd:simpleType name="CookiePolicy">-
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="netscape"/>
 <xsd:enumeration value="RFC_2109"/>
 <xsd:enumeration value="RFC_2965"/>
 <xsd:enumeration value="ignore_cookies"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
</xsd:schema>

Response XML Schema

Response elements returned by DataDirect XQuery HTTP
functions (like ddtek:http-put, for example) conform to the
following XML Schema, ddtek-http-response.xsd.

The top level attributes from the response element contain the
status information returned by the server as outlined in the HTTP
DataDirect XQuery User’s Guide and Reference

250 Chapter 10 Building a Web Service Client
protocol. The attributes include the version information, the
status code, and the reason phrase, respectively.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:schema elementFormDefault="qualified">-
 <xsd:element name="response">-

 <xsd:complexType>-
 <xsd:sequence>-
 <xsd:element name="response-header" minOccurs="0" maxOccurs="1">-

<xsd:complexType>-
<xsd:sequence>-

<xsd:element name="header" minOccurs="0"
 maxOccurs="unbounded">-

<xsd:complexType>
<xsd:attribute name="name" type="xsd:string"
 use="required"/>
<xsd:attribute name="value" type="xsd:string"
 use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
 <xsd:element name="response-body" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>

 <xsd:attribute name="http-version" type="xsd:string" use="required"/>
 <xsd:attribute name="status-code" type="xsd:string" use="required"/>
 <xsd:attribute name="reason" type="xsd:string" use="required"/>

 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
</xsd:schema>
DataDirect XQuery User’s Guide and Reference

251
11 Support for Relational
Databases

This chapter explains DataDirect XQuery’s support for relational
databases. It covers the following topics:

■ “Querying Relational Data”
■ “Querying XML Type Data”
■ “Updating Relational Data”
■ “Understanding the Transactional Behavior of DataDirect

XQuery Updates”

See also Appendix E, “Database Support”for reference
information about relational database support in DataDirect
XQuery, including version support and data-base specific query
functions.

Querying Relational Data
In order to query relational data, DataDirect XQuery uses the
SQL Adaptor to translate XQuery into one or more SQL
statements that can be understood – and executed – by the
database engine. Where possible, DataDirect XQuery leaves
intact those XQuery expressions and constructs that are
understood by the database engine. In other cases, DataDirect
XQuery compensates for XQuery expressions and constructs for
which there is no direct SQL translation.

Consider the following XQuery, which queries the pub relational
database for the title element of the book whose bookid
attribute equals 1:
DataDirect XQuery User’s Guide and Reference

252 Chapter 11 Support for Relational Databases
<root>
{
 for $book in

 collection("pub.dbo.bookshop")/bookshop/publication/book
 where $book/@bookid = 1
 return $book/title
}
</root>

When translated by DataDirect XQuery, the result is a single
XQuery fragment embedded in the SQL statement, shown here
using the Plan Explain feature:

(For more information on Plan Explain, see “Generating XQuery
Execution Plans” on page 307.)

Notice that while the syntax between the XQuery expression and
the SQL statement differs, the semantics are the same – the
FLWOR expression’s for clause has been translated as part of the
SELECT FROM statement; the where clause has been translated as
the predicate; and so on.

But database engines might not always support XQuery functions
one-to-one. Consider the following XQuery – it is similar to the
preceding XQuery example in that it is querying the pub
relational database, but the FLWOR expression where clause uses
the XQuery contains function:

 declare variable $title_fragment as xs:string external;
 for $book in
collection("pub.dbo.bookshop")/bookshop/publication/book
 where contains($book/title, $title_fragment)
 return $book

While the result is still a single SQL statement, not all of the
original XQuery is embedded. If we look at the SQL translation,

DataDirect XQuery User’s Guide and Reference

Querying Relational Data 253
we see that the XQuery contains function has been replaced by
the SQL LOCATE function:

When XQuery functions are translated to SQL but are not
embedded in the XQuery fragment, it is possible that some
processing efficiencies, like indexes on the data, are lost. This can
happen, for example, when the query results are placed in a
transient table for additional processing.

XML and SQL Data Structures

Another difference that must be taken into account when using
XQuery to query relational data is structure – the output of a
SQL statement is a table (a flat structure), but the typical XML
value is a tree. To achieve the required transformation of the
result from a flat structure to a tree structure, DataDirect XQuery
translates the query into two parts: an XML construction part
and a SQL part. The XML construction part adds XML tags to the
results retrieved from the database to create the hierarchy
requested in the query.

Simplifying Generated SQL

The SQL statements that are translated from XQuery can be
complex, but DataDirect XQuery supports options that create
less complex Select statements. These simplified Select
statements can improve performance in some cases.
DataDirect XQuery User’s Guide and Reference

254 Chapter 11 Support for Relational Databases
The options discussed in this section affect only XQuery
expressions that are executed by the SQL Adaptor, which
translates the query into SQL.

String Comparisons and Trailing Spaces

Unlike XQuery string comparison, SQL character comparison is
not sensitive to differences in trailing spaces. To accommodate
this semantic difference, the SQL statements that DataDirect
XQuery executes compare both the strings and the length of the
strings.

For example, when comparing an Oracle fixed-width character
column with a constant value, DataDirect XQuery executes a SQL
statement that contains:

CHARCOL='constant' AND LENGTH(CHARCOL)=LENGTH('constant')

The length comparison can be avoided by adding the following
option declaration to the query prolog:

declare option ddtek:sql-ignore-trailing-spaces "yes";

Using this option declaration is also convenient when two
fixed-width character columns with different lengths are used in
a join condition. For example, assume the following two tables
with a fixed-width character column that have different lengths:

table1(col char(10))
table2(col char(20))

and the following query

for $t1 in collection('table1')/table1
for $t2 in collection('table2')/table2
where $t1/col = $t2/col
return
...

Even when table1 and table2 contain rows where the col column
contains the same value, by default, the values never match
DataDirect XQuery User’s Guide and Reference

Querying Relational Data 255
because the lengths are different. Adding ignore-trailing-spaces
to the query prolog avoids this possible issue.

String Functions

While many XQuery functions that operate on strings have an
equivalent SQL function, XQuery and SQL semantics often differ
slightly. The most important differences are how the following
string conditions are handled in XQuery functions versus SQL
functions:

■ Values of empty sequence or empty string arguments
■ Trailing spaces

The result of these differences is that the generated SQL for
string functions is complex. If both empty sequence and trailing
space behaviors are not relevant, complexity can be avoided by
adding the following option declaration to the XQuery prolog:

declare option ddtek:sql-simple-string-functions "yes";

The result of using this option declaration is that DataDirect
XQuery generates SQL that translates the XQuery function to
the equivalent SQL function without taking into account trailing
spaces, or empty sequence or empty string arguments.

Following is an overview of the XQuery string functions that are
affected by the sql-simple-string-functions option declaration.
The following examples assume that the expression is a part of a
query that is being executed by the SQL Adaptor. Most of these
examples apply to Microsoft SQL Server; however, similar
considerations hold true for other databases.

Example: fn:string-length

■ Trailing spaces are ignored, for example:

fn:string-length("a ") returns 1 instead of 2.

■ An empty sequence argument is not handled correctly, for
example:
DataDirect XQuery User’s Guide and Reference

256 Chapter 11 Support for Relational Databases
fn:string-length(()) returns () instead of 0.

Example: fn:ends-with

■ Trailing spaces are not handled correctly, for example:

fn:ends-with('abc ','bc ') returns false instead of true.

■ Empty sequence arguments are not handled correctly, for
example:

fn:ends-with((),'') returns false instead of true.

Example: fn:substring-after

■ Trailing spaces are not handled correctly, for example:

fn:substring-after('abc def', 'abc ') returns def with a
leading space.

■ Empty string arguments are not handled correctly, for
example:

fn:substring-after('test', '') returns () instead of ''.

■ Empty sequence arguments are not handled correctly, for
example:

fn:substring-after('test', ()) returns () instead of ''.

Example: fn:upper-case and fn:lower-case

■ An empty sequence argument is not handled correctly, for
example:

fn:upper-case(()) returns () instead of ''.

Example: fn:substring

■ Empty sequence arguments are not handled correctly, for
example:

fn:substring((),1,1) returns results in a SQL exception.

■ Non positive integer values for start and length argument
result in an error.
DataDirect XQuery User’s Guide and Reference

Querying Relational Data 257
Example: fn:concat

■ Empty sequence arguments are not handled correctly, for
example:

fn:concat('a',(),'c') returns () instead of ''.

Example: fn:contains

■ If second argument is an empty string, for example:

fn:contains('ab','') returns false instead of true.

DB2 Decimal to String Cast

The default casting of DB2 decimal values to string values can
result in strings with leading 0s, which is not XQuery-compliant.
DataDirect XQuery generates SQL that removes these 0s. The
resulting SQL gets fairly complex. This can be avoided by adding
the following option declaration to the XQuery prolog:

declare option ddtek:sql-simple-convert-functions "yes";

This allows some casts of decimal values to strings to return
strings with leading 0s.

Using an Order By Clause

Due to limitations of some SQL databases, it is not always
possible to order a SQL result set on an expression that is not
part of the Select list. DataDirect XQuery supports an option
declaration that allows you to choose whether Order By clauses
in the generated SQL are explicitly added to the Select list.

The option can be set by adding the following option
declaration to the XQuery prolog:
DataDirect XQuery User’s Guide and Reference

258 Chapter 11 Support for Relational Databases
declare option ddtek:sql-order-by-on-values "no|yes|noSubquery";

■ When set to yes, expressions on which to sort are not
explicitly added to the Select list of generated SQL Select
statements.

■ When set to no, values or expressions on which to sort are
always added to the Select list; although this typically
decreases performance it is required by some databases.

■ When set to noSubquery, the behavior is equivalent to yes
except when the expression on which to sort is a subquery. In
this case, the value noSubquery behaves as if no is specified.

The default value is database dependent:

There should be no reason to change the value for Microsoft
SQL Server, Oracle, MySQL, or PostgreSQL; however, for DB2,
Informix, and Sybase, many queries perform faster when the
value is changed to yes.

NOTE: The noSubquery value can optimize the performance of
some queries with DB2. When using this value, make sure you set
the rewrite-exists-into-count option declaration to inCase (see
“Using a SQL EXISTS Subclause in DB2” on page 259).

Example

Database Default

DB2 no

Informix noSubquery

MySQL yes

Oracle yes

PostgreSQL yes

Microsoft SQL Server yes

Sybase noSubquery
DataDirect XQuery User’s Guide and Reference

Querying Relational Data 259
For example, assume the XQuery expression below is executed
against a Microsoft SQL Server database:

for $x in collection('users')/users
order by $x/userid
return $x/name

When order-by-on-values is set to no, the SQL statement
executed is:

SELECT ALL name AS racol1,userid AS racol2
FROM users
WHERE name IS NOT NULL
ORDER BY racol2 ASC

When order-by-on-values is set to yes, the SQL statement
executed is:

SELECT ALL name AS racol1
FROM users
WHERE name IS NOT NULL
ORDER BY userid ASC

Using a SQL EXISTS Subclause in DB2

The different DB2 systems impose limitations on the usage of the
SQL EXISTS subclause. This option specifies whether to change
an EXISTS subclause into a count() > 0 subclause. The option can
be set by adding the following option declaration to the XQuery
prolog:

declare option ddtek:sql-rewrite-exists-into-count "no|yes|inCase";

■ When set to no, EXISTS subclauses are not rewritten.

■ When set to yes (the default for DB2 for z/OS), EXISTS
subclauses are always rewritten.

■ When set to inCase (the default for DB2 for iSeries), EXISTS
subclauses in conditional expressions are rewritten.
DataDirect XQuery User’s Guide and Reference

260 Chapter 11 Support for Relational Databases
Typically, you should not change the default setting, but some
XQuery expressions executed against DB2 for z/OS and DB2 for
iSeries perform better when this option is set to no. In addition, if
order-by-on-values is set to noSubquery for DB2 for
Linux/UNIX/Windows, you will get the best performance for the
broadest set of queries if you set rewrite-exists-into-count to
inCase.

Using BINARY_DOUBLE and
BINARY_FLOAT Data Types (Oracle 10g
and higher)

By default, DataDirect XQuery uses the Oracle NUMBER data type
when converting to or constructing XQuery floats or doubles.
You can change this behavior for Oracle 10g and higher by
adding the following option declaration to the XQuery prolog:

declare option ddtek:ora10-use-binary-float-double "yes|no";

When this option declaration is set to yes, DataDirect XQuery
uses the BINARY_FLOAT and BINARY_DOUBLE data types.

Using DataDirect XQuery
SQL Generation Algorithms

DataDirect XQuery uses four SQL generation algorithms, which
result in different SQL statements when translating XQuery to
SQL. Each algorithm takes a different approach to construct the
requested XML hierarchy from the results returned from the SQL
statements.

■ Merge join
■ Nested loop
■ Outer join
■ Sorted outer union
DataDirect XQuery User’s Guide and Reference

Querying Relational Data 261
By default, DataDirect XQuery uses the merge join algorithm,
which typically gives the best performance. However, when the
XML structure is not too deeply nested, the outer join or sorted
outer union algorithms give better performance. As a guideline,
consider using either outer join or sorted outer union in cases
where the XML nesting level is limited to four or less.

See “Improving Performance” on page 177 for additional
information about performance.

Merge Join

To construct a correct parent/child relationship, the merge join
algorithm creates a first SQL statement that selects all parent
values and sorts them on the unique columns of the parents.
Then, a second SQL statement joins parent with child values and
sorts them again on the unique columns of the parents. The
results are processed by moving forward through the results of
both SQL statements, linking parent with child node values
based on the values of the unique columns.

The merge join algorithm typically gives the best performance. It
is the default SQL generation algorithm.

Nested Loop

The nested loop algorithm creates a first SQL statement that
selects all values for the parent nodes and a second SQL
statement that, for each parent node, selects the values for the
associated child nodes.

Use this algorithm when the parent nodes are not uniquely
identifiable. In this case, the nested loop algorithm is the only
one that returns correct results.
DataDirect XQuery User’s Guide and Reference

262 Chapter 11 Support for Relational Databases
Outer Join

The outer join algorithm creates a single SQL statement that
outer joins parent with child node values. The advantage of using
this algorithm is that only a single SQL statement is created. The
disadvantage is that this single SQL statement can be very
complex, as when deeply nested XML structures must be created,
for example. In addition, this algorithm requires that for each set
of child node values all parent node values are selected as well,
which results in redundant information being communicated
between the database server and the application.

As a guideline, consider using the outer join algorithm in cases
where the XML nesting level is limited to four or less.

Sorted Outer Union

The sorted outer union algorithm creates a single SQL statement
that is the union of multiple SQL statements (one for each level in
the XML hierarchy). The first SQL statement in the union selects
parent node values; the second selects the unique values of the
parents joined with the child node values. This approach is
recursively applied for each level in the XML hierarchy.

The advantage of using this algorithm is that only a single SQL
statement is created. The disadvantage is that this single SQL
statement can be very complex and that SQL engines are typically
not well-tuned for complex union statements.

As a guideline, consider using the sorted outer union algorithm
in cases where the XML nesting level is limited to four or less.

Specifying an Algorithm

You can specify the algorithm to use for a given connection or for
an individual query.
DataDirect XQuery User’s Guide and Reference

Querying XML Type Data 263
To specify an algorithm for a given connection, configure the
JdbcOptions property of DDXQDataSource or the Options
property of DDXQJDBCConnection. For example:

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcOptions("sql-rewrite-algorithm=nested-loop");

See “DDXQDataSource and DDXQJDBCConnection Properties”
on page 128.

To specify an algorithm for an individual query, add the
sql-rewrite-algorithm option declaration to the Query prolog.
For example:

declare option ddtek:sql-rewrite-algorithm "outer-join";

Querying XML Type Data
DB2, Microsoft SQL Server, and Oracle support a native XML data
type, XML Type. DataDirect XQuery allows you to access XML
Type data stored in relational databases using standard XQuery.

Consider a relational database, pub. It contains a table,
bookshop, with a publication column; the publication column is
defined with the XML Type data type. Data in the publication
column is stored as XML – there is a book element with a bookid
attribute, and a title subelement.
DataDirect XQuery User’s Guide and Reference

264 Chapter 11 Support for Relational Databases
Once you know the structure of the XML in the relational tables
you want to query, writing the XQuery is simple. DataDirect
XQuery’s support of XML Type lets you use XQuery to query XML
data stored in relational databases. For example, this XQuery
returns the title element of the book element whose bookid
attribute equals 1:

<root>
{
 for $book in

 collection("pub.dbo.bookshop")/bookshop/publication/book
 where $book/@bookid = 1
 return $book/title
}
</root>

Let’s take a closer look at DataDirect XQuery’s support of XML
Type. As shown in the following illustration, the collection
function identifies the resource to be queried – in this case, the
table bookshop on the relational database pub. The arrows
depict how the XQuery expression following the collection
function is used to navigate the XML stored in the table
bookshop
DataDirect XQuery User’s Guide and Reference

Querying XML Type Data 265
The rest of this section provides additional information about
using DataDirect XQuery to query XML Type data.

Supported Databases

DataDirect XQuery is able to directly query database tables with
XML Type columns for the following database versions:

■ DB2 for Linux, UNIX and Windows v9.1* and higher

■ Microsoft SQL Server 2005 and 2008

■ Oracle 10gR2 and higher

*XML Type is supported only for these versions of DB2 that use
pureXML storage. XML Type is not supported for DB2 databases
that use XML Extender.

For more information about how DataDirect XQuery translates
XQuery into SQL for execution by the database engine, see
“Querying Relational Data” on page 251.

Evaluating Queries in Memory

Not all relational databases support XQuery, even if they do
support XML Type (versions of Oracle prior to 10gR2, for
example). Consider the following example, a simple XQuery that
uses the collection function to query a relational table:

collection("PurchaseOrder1")/PurchaseOrder1/COLXML/PurchaseOrder[test eq '1']

If this XQuery is executed against a relational database that does
not support XQuery, DataDirect XQuery throws the following
error:

[DataDirect][XQuery]Error at line 1, column 52. The XMLType
column "COLXML" can only be used as return expression or
argument of a ddtek-sql function.
DataDirect XQuery User’s Guide and Reference

266 Chapter 11 Support for Relational Databases

re>

>

Similarly, you cannot use XPath expressions, except for the node()
or * steps, or other XQuery expressions on the content of the
columns in relational tables. For example consider the database
table, holdingsxml, which stores XML data in the userid and
holdings columns:

If you specify your XQuery as:

collection('holdingsxml')/holdingsxml/holdings//share

the following message is returned:

Path expressions on XML column "holdings" are not
supported.

One way to avoid issues with database support for XQuery is to
use the ddtek:evaluate-in-memory extension expression.

The ddtek:evaluate-in-memory extension expression allows you
to evaluate XQuery expressions on the value of the XML column
in memory. Consider the following example:

let $v1 := collection('holdingsxml')/holdingsxml/holdings
return

(# ddtek:evaluate-in-memory #)
{$v1//share}

holdingsxml

userid holdings

Jonathan <holdings>
 <share company="Amazon.com, Inc." userid="Jonathan">3000</share>
 <share company="eBay Inc." userid="Jonathan">4000</share>
 <share company="Int'l Business Machines C" userid="Jonathan"> 2500</sha
 <share company="Progress Software" userid="Jonathan">23</share>
</holdings>

Minollo <holdings>
 <share company="Amazon.com, Inc." userid="Minollo">3000</share>
 <share company="eBay Inc." userid="Minollo">4000</share>
 <share company="Lucent Technologies Inc." userid="Minollo">40000</share
 <share company="Progress Software" userid="Minollo">4000000</share>
</holdings>
DataDirect XQuery User’s Guide and Reference

Updating Relational Data 267
The advantages of using ddtek:evaluate-in-memory is that the
XQuery is portable across databases, and it allows you to use the
complete DataDirect XQuery feature set to query the XML
stored in the database.

However, using ddtek:evaluate-in-memory requires the
instantiation of all the XML in memory, even if only part of it is
needed by the XQuery. The holdings column in the sample
database used in the previous example, for example, contained
small XML fragments; but there is no practical limit to the size of
the XML that can be stored in a relational column, and reading
large XML fragments into memory for query processing can
decrease performance and affect scalability.

Another potential limitation of using the
ddtek:evaluate-in-memory extension expression is that it can be
used with a only limited set of XQuery expressions.

See “Using Extension Expressions” on page 285 for more
information on ddtek:evaluate-in-memory.

Using Database-Specific Functions

An alternative to evaluating XQuery in memory is to use
database-specific functions to query data stored on relational
databases. See “Database-Specific Query Functions” on page 483
to learn how to query XML Type data for databases that do not
support XQuery.

Updating Relational Data
DataDirect XQuery supports updates to relational database
tables from inside an XQuery by providing three built-in
functions. These functions are:

■ “ddtek:sql-insert”
DataDirect XQuery User’s Guide and Reference

268 Chapter 11 Support for Relational Databases
■ “ddtek:sql-update”
■ “ddtek:sql-delete”

The DataDirect XQuery relational update functionality is an
extension of the XQuery Update Facility (XUF). To learn about
DataDirect XQuery’s support for XUF and how to use XUF to
update XML, see Chapter 5, “Tutorial: The XQuery Update
Facility.”

ddtek:sql-insert

The ddtek:sql-insert built-in function inserts a single record in a
database table.

The syntax is:

declare updating function ddtek:sql-insert(
 table as xs:string,
 column as xs:string,
 value as item()*,
 ...) external;

where:

table is the database table in which to insert the record. The
semantics of table are equivalent to those for fn:collection; see
“Specifying Relational Database Tables” on page 118.

column is the column of the database table in which to insert a
value.

value is the value to insert into the specified column.

column and value are a pair in a variable argument list. If column is
specified without value, an error is raised. You can specify
multiple values for this pair, as shown in the example.
DataDirect XQuery User’s Guide and Reference

Updating Relational Data 269
The following example inserts a new record with three columns
into the holdings table. The columns and their values are
userid=Minollo, stockticker=TIVO, and shares=200.

ddtek:sql-insert("holdings", "userid", "Minollo", "stockticker", "TIVO",
 "shares", 200)

Other examples can be found in the RDBMSUpdate example.

ddtek:sql-update

The ddtek:sql-update built-in function updates records in a
database table.

The syntax is:

declare updating function ddtek:sql-update(
 row as element()*,
 column as xs:string,
 value as item()*,
 ...) external;

where:

row identifies the records in the database table to update. Each
item in the sequence must be a row element of the database
table returned by a previous fn:collection call.

column is the column of the database table to update.

value is the new value for the specified column.

column and value are a pair in a variable argument list. If column
is specified without value, an error is raised.

The following example updates a record in the holdings table –
in particular, the record where the userid column equals Minollo
and the stockticker column equals PRGS. In this record, the
shares column is updated to 500.
DataDirect XQuery User’s Guide and Reference

270 Chapter 11 Support for Relational Databases
ddtek:sql-update(
 collection("holdings")/holdings[userid="Minollo" and stockticker="PRGS"],
 "shares", 500)

Other examples can be found in the RDBMSUpdate example.

ddtek:sql-delete

The ddtek:sql-delete built-in function deletes records in a
database table.

The syntax is:

declare updating function ddtek:sql-delete(
 row as element()*) external;

where:

row identifies the records to be deleted. Each item in the
sequence must be a row element of the database table returned
by a previous fn:collection call.

The following example deletes all of the records in the holdings
database table where the userid column equals Minollo.

ddtek:sql-delete(collection("holdings")/holdings[userid = "Minollo"])

Other examples can be found in the RDBMSUpdate example.

Understanding the Transactional Behavior of
DataDirect XQuery Updates

This section describes how DataDirect XQuery supports
transactions, transaction isolation levels, and distributed
transactions.
DataDirect XQuery User’s Guide and Reference

Understanding the Transactional Behavior of DataDirect XQuery Updates 271
Transactions

A transaction consists of one or more updating XQueries that
have been executed, completed, and then either committed or
rolled back.

By default, a DataDirect XQuery connection (a new
XQConnection object) is in auto-commit mode. Auto-commit
causes a commit after each XQuery is evaluated.

To disable auto-commit, specify false as the argument value for
setAutoCommit, which is a method of the XQConnection
interface. For example:

...
DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
XQConnection conn = ds.getConnection("myuserid", "mypswd");
conn.setAutoCommit(false);
...

When auto-commit is disabled, the application must either
commit or roll back each transaction explicitly. DataDirect
XQuery, by default, rolls back the active transaction when a
connection is closed.

To perform commits and rollbacks, use the commit and rollback
methods, respectively, of XQConnection. See “XQConnection
Interface” on page 508.

Transaction Isolation Levels

DataDirect XQuery supports the following isolation levels as
defined in the JDBC interface java.sql.Connection:

■ java.sql.Connection.TRANSACTION_READ_UNCOMMITTED
(Read Uncommitted) – Locks are obtained on modifications
to the database and held until end of transaction (EOT).
Reading from the database does not involve any locking.
DataDirect XQuery User’s Guide and Reference

272 Chapter 11 Support for Relational Databases
■ java.sql.Connection.TRANSACTION_READ_COMMITTED (Read
Committed) – Locks are acquired for reading and modifying
the database. Locks are released after reading but locks on
modified objects are held until EOT.

■ java.sql.Connection.TRANSACTION_REPEATABLE_READ
(Repeatable Read) – Locks are obtained for reading and
modifying the database. Locks on all modified objects are
held until EOT. Locks obtained for reading data are held until
EOT. Locks on non-modified access structures (such as indexes
and hashing structures) are released after reading.

■ java.sql.Connection.TRANSACTION_SERIALIZABLE
(Serializable) – All data read or modified is locked until EOT.
All access structures that are modified are locked until EOT.
Access structures used by the query are locked until EOT.

■ java.sql.Connection.TRANSACTION_NONE (None) –
Transactions are not supported.
DataDirect XQuery User’s Guide and Reference

Understanding the Transactional Behavior of DataDirect XQuery Updates 273
Not all databases support all of these isolation levels, as
summarized in following table.

 * MyISAM and Memory MySQL storage engines are non-transactional.

The names of the DB2 isolation levels do not map one-to-one to
the names of the JDBC isolation levels. The following table maps
the JDBC isolation levels to the appropriate DB2 isolation levels.

Table 11-1. Isolation Level Support

Database

Read
Committed

Read
Uncommitted

Repeatable
Read Serializable None

DB2 X (default) X X X X

Informix X (default) X X X

MySQL
Enterprise
(InnoDB*)

X (default) X X X

Oracle X (default) X

PostgreSQL X (default) X

SQL Server X (default) X X X

Sybase X (default) X X X

JDBC Isolation Level DB2 Isolation Level

Read Committed Cursor Stability

Read UnCommitted Uncommitted Read

Repeatable Read Read Stability

Serializable Repeatable Read

None No Commit *

* Supported for DB2 for iSeries versions that do not enable journaling.
DataDirect XQuery User’s Guide and Reference

274 Chapter 11 Support for Relational Databases
To set an isolation level for a single connection, specify the
appropriate value for the JdbcTransactionIsolationLevel property
of DDXQDataSource (see Table 6-1 on page 128).

To set an isolation level for multiple connections, specify the
appropriate value for the TransactionIsolationLevel property of
DXQJDBCConnection (see Table 6-2 on page 136).

NOTE: Once a connection is made, the transaction isolation level
cannot be changed for that connection (XQConnection object).

Distributed Transactions

DataDirect XQuery does not support distributed transactions.
However, it is possible to have a single DataDirect XQuery
connection (XQConnection object) with multiple underlying JDBC
connections and perform updates if the updates target only one
of the JDBC data sources. It is also possible during the lifetime of
an XQConnection object to update two different JDBC data
sources, provided this is done in separate transactions and not in
a single transaction.
DataDirect XQuery User’s Guide and Reference

275
12 Using Advanced Features

This chapter explains the following DataDirect XQuery advanced
features and when they are useful:

■ Using Option Declarations and Extension Expressions
■ Querying Multiple Files in a Directory
■ Querying ZIP, JAR, and MS Office Files
■ Using URI Resolvers
■ Analyzing EDI to XML Conversions
■ Generating XQuery Execution Plans
■ Specifying Collations

Using Option Declarations and Extension
Expressions

Option declarations provide parameters that modify how
DataDirect XQuery processes queries. Extension expressions are
syntactical XQuery constructs that modify how DataDirect
XQuery processes expressions in a query.

Option Declarations

Option declarations provide parameters that modify how
DataDirect XQuery processes queries. They are similar to
extension expressions, which modify how DataDirect XQuery
processes expressions in a query.
DataDirect XQuery User’s Guide and Reference

276 Chapter 12 Using Advanced Features
There are three types of option declarations:

■ Global
■ Relational
■ Database-specific

Global Option Declarations

A global option declaration is used as the default for all XML and
relational data sources accessed by XQuery queries in your Java
application. DataDirect XQuery supports the following global
option declarations:

■ automatic-update
■ detect-XPST0005
■ ignore-whitespace
■ plan-explain
■ serialize
■ xml-streaming

Table 12-1. Global Option Declarations

Option Declaration Description

automatic-update {yes | no}. The ddtek:automatic-update option allows
XQuery to automatically update data sources that are
accessed through doc and collection functions.
Relational data sources cannot be updated using
automatic update.

Data sources affected by XUF update expressions are
physically modified at the end of the XQuery execution.

See “Updating Data Sources” on page 112 for more
information.

DataDirect XQuery User’s Guide and Reference

Using Option Declarations and Extension Expressions 277
detect-XPST0005 {yes | no}. Determines whether err:XPST0005 is raised
during static analysis. If set to yes (the default), the error
message err:XPST0005 is raised if the static data type
assigned to an XQuery expression other than the
expression () or data(()) is void(). For example, this error is
raised if DataDirect XQuery can statically determine in a
NameTest that a path expression can never match a node,
for example, because the name of an element is
misspelled or a specified column does not exist in the
table.

If set to no, err:XPST0005 is not raised during static
analysis and the expression is evaluated at runtime.

ignore-whitespace {yes | no}. Gives DataDirect XQuery the ability to ignore
ignorable whitespace (tabs, linefeeds, carriage returns,
and spacebar spaces) when parsing XML documents.

If set to no (the default), ignorable whitespace is
preserved.

plan-explain 'format=xhtml|xml[,resourceLocation=path]'.
Determines whether an execution plan is generated for
the queries in your application.

The value for path must be /install_dir/planExplain, where
install_dir is the installation directory of DataDirect
XQuery (for example, /DDXQ3_0/planExplain).

When the Plan Explain feature is enabled, DataDirect
XQuery generates an execution plan and does not
execute the queries. See “Generating XQuery Execution
Plans” on page 307 for more information.

serialize Controls the process of serializing the query results into
XML, XHTML, or HTML notation as specified by XQuery
1.0: An XML Query Language, W3C Recommendation 23
January 2007 located at:

http://www.w3.org/TR/2007/REC-xquery-20070123/

See Appendix D, “Serialization Support” for the
serialization parameters that you can set using this option
declaration.

Table 12-1. Global Option Declarations (cont.)

Option Declaration Description
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/

278 Chapter 12 Using Advanced Features
Relational Option Declarations

Relational declarations control the processing of XQuery queries
for connections to relational databases; they can be used with
any relational database supported by DataDirect XQuery.

■ sql-decimal-cast
■ sql-extra-checks-trailing-spaces
■ sql-ignore-trailing-spaces
■ sql-order-by-on-values
■ sql-rewrite-algorithm
■ sql-simple-convert-functions
■ sql-simple-string-functions
■ sql-unicode-literals (deprecated)
■ sql-unicode-strings
■ sql-varchar-cast

xml-streaming {yes | no}. Determines whether DataDirect XQuery uses
Streaming XML when querying large XML documents. The
Streaming XML technique reduces memory consumption.
When set to yes, Streaming XML is enabled in the XML
Adaptor. The default is yes.

See “Querying Large XML Documents” on page 177 for
details.

Table 12-1. Global Option Declarations (cont.)

Option Declaration Description
DataDirect XQuery User’s Guide and Reference

Using Option Declarations and Extension Expressions 279
Table 12-2. Relational Option Declarations

Option Declaration Description

sql-decimal-cast precision,scale. Determines precision and scale used for
xs:decimal().

If you do not specify a precision and scale, the following
default values are used:

DB2: 30, 15
Informix: 32, 15
MySQL: 64, 30
Oracle: No default
Microsoft SQL Server: 38,19
PostgreSQL: No default
Sybase: 38, 19

You can override the default by using this option
declaration.

sql-extra-checks-trailing-spaces {yes | no}. When set to yes, the SQL generated for the
XQuery distinct-values functions does not ignore trailing
spaces. The default is no.

sql-ignore-trailing-spaces {yes | no}. When set to yes, the generated SQL clauses for
string comparison ignore trailing spaces. The default is no.
DataDirect XQuery User’s Guide and Reference

280 Chapter 12 Using Advanced Features
sql-order-by-on-values {yes | no | noSubquery}. When set to yes, expressions on
which to sort are not explicitly added to the Select list of
generated SQL Select statements.

When set to no, values or expressions on which to sort are
always added to the Select list, which typically decreases
performance, but is required by some databases.

When set to noSubquery, the behavior is equivalent to yes
except when the expression on which to sort is a
subquery. In this case, the value noSubquery behaves as if
no is specified.

The default value is database dependent:

DB2: no
Informix: noSubquery
MySQL: yes
Oracle: yes
Microsoft SQL Server: yes
PostgreSQL: yes
Sybase: noSubquery

See “Using an Order By Clause” on page 257 for an
example.

sql-rewrite-algorithm {nested-loop | merge-join | outer-join |
sorted-outer-union}. Specifies the SQL generation
algorithm used by DataDirect XQuery when accessing a
relational data source. See “Using DataDirect XQuery
SQL Generation Algorithms” on page 260 for descriptions
of these algorithms and information about choosing the
appropriate one. The default is merge-join.

sql-simple-convert-functions {yes | no}. When set to yes, the generated convert
functions do not consider all semantic differences
between XQuery and SQL casts and do, in some cases,
return incorrectly formatted string casts of numeric
values—for example, leading zeroes in casts of decimal to
string with DB2. The default is no.

Table 12-2. Relational Option Declarations (cont.)

Option Declaration Description
DataDirect XQuery User’s Guide and Reference

Using Option Declarations and Extension Expressions 281
sql-simple-string-functions {yes | no}. When set to yes, the generated SQL string
functions do not consider semantic differences between
XQuery and SQL functions with regard to empty string or
empty sequence (null) arguments. The default is no.

sql-unicode-literals

 DEPRECATED

This option declaration is recognized for backward
compatibility, but we recommend that you use the
sql-unicode-strings option declaration.

sql-unicode-strings {yes | no}. Determines whether XQuery literals are
translated to SQL literals escaped with the Alternate
National Character Set escape character N.

If set to yes, XQuery literals are translated to SQL literals
escaped with the Alternate National Character Set escape
character N. Set the value of this option declaration to yes
when a SQL literal contains characters that cannot be
translated to the code page of your database. Then,
execute the query using this option declaration. This
setting is useful when the database table has columns
that can contain Unicode information (for example,
nvarchar columns).

If set to no (the default), XQuery literals are not
translated.

NOTE: Some databases are significantly slower than
others when Unicode comparisons are performed.

Table 12-2. Relational Option Declarations (cont.)

Option Declaration Description
DataDirect XQuery User’s Guide and Reference

282 Chapter 12 Using Advanced Features
sql-varchar-cast precision. When multiple XQuery expressions are
translated to equivalent SQL statements, a cast to varchar
is required. This value defines the varchar precision.

If you do not specify a precision, the following default
values are used:

DB2: 4088
Informix: 254
MySQL: 255
Oracle: 4000
Microsoft SQL Server: 8000
PostgreSQL: No default
Sybase: 8000

You can override the default by using this option
declaration.

Table 12-2. Relational Option Declarations (cont.)

Option Declaration Description
DataDirect XQuery User’s Guide and Reference

Using Option Declarations and Extension Expressions 283
Database-Specific Option Declarations

Database-specific option declarations control the processing of
XQuery queries for a specific database. Connection-specific
option declarations are:

■ sql-ora10-use-binary-float-double
■ sql-rewrite-exists-into-count
■ sql-sybase-temptable-index
■ sql-sybase-use-derived-tables

Table 12-3. Database-Specific Option Declarations

Option Declaration Description

sql-ora10-use-binary-float-double

 Connection-specific

{yes | no}. For Oracle 10g and higher. When set to yes, the
BINARY_FLOAT and BINARY_DOUBLE data types are
converted from XML floats and doubles. The default is no.

sql-rewrite-exists-into-count

{yes | no | inCase}. For DB2 only. The different DB2
databases impose limitations on the usage of the SQL
EXISTS subclause. This option specifies whether to change
an EXISTS subclause into a count() > 0 subclause.

When set to no, EXISTS subclauses are not rewritten.

When set to yes (the default for DB2 for z/OS), EXISTS
subclauses are always rewritten.

When set to inCase (the default for DB2 for iSeries),
EXISTS subclauses in conditional expressions are rewritten.

Typically, you should not change the default setting, but
some XQuery expressions executed against DB2 for z/OS
and DB2 for iSeries perform better when this option is set
to no. In addition, if sql-order-by-on-values is set to
noSubquery for DB2 for Linux/UNIX/Windows, you will get
the best performance for the broadest set of queries if
you set this option to inCase.
DataDirect XQuery User’s Guide and Reference

284 Chapter 12 Using Advanced Features
Specifying an Option Declaration

You can specify an option declaration using either of the
following methods:

■ Using the prolog of the XQuery query. The syntax for
specifying an option declaration in a query is:

 declare option ddtek:name_of_option_declaration "value";

For example:

sql-sybase-temptable-index

 Connection-specific

{yes | no}. For Sybase only. Determines whether an index is
created on the temporary table that is used when joining
XML and relational data. When set to yes, DataDirect
XQuery creates this index. Setting this option to yes has a
positive impact on performance when hundreds of values
are extracted from XML documents and joined with
relational data. The default is no.

sql-sybase-use-derived-tables

 Connection-specific

{yes | no}. For Sybase only. Determines whether DataDirect
XQuery generates SQL statements that use derived tables.
Many XQuery expressions require the use of derived
tables. However, derived tables are not fully supported in
Sybase, and some valid SQL statements that use derived
tables fail when executed against a Sybase server.
Therefore, DataDirect XQuery does not generate SQL
statements that use derived tables by default; instead, it
creates temporary views, which can adversely affect
performance. For some XQuery expressions, the
generated SQL that uses derived tables does not fail and
returns correct results. To use derived tables, set this
option declaration to yes. When using derived tables,
performance is improved.

Table 12-3. Database-Specific Option Declarations (cont.)

Option Declaration Description
DataDirect XQuery User’s Guide and Reference

Using Option Declarations and Extension Expressions 285
 declare option ddtek:sql-unicode-strings "yes";

NOTE: If the option declarations you specify in imported
modules conflict with the option declarations you specify in
the query or another imported module, DataDirect XQuery
raises an error.

■ Using the properties of the DDXQDataSource and
DDXQJDBCConnection class. To specify an option declaration
as global, use the Options property of the DDXQDataSource
class. To specify an option declaration as connection-specific,
use the JdbcOptions property of the DDXQDataSource class
or the Options property of the DDXQJDBCConnection class.
See “DDXQDataSource and DDXQJDBCConnection
Properties” on page 128.

In the following example, we specify detect-XPST0005=no as a
global option declaration. It disables the XPST0005 error, which
is raised during static analysis under certain conditions (as
explained in Table 12-1). In addition, the example specifies
sql-decimal-cast=20,15 as a connection-specific option
declaration. It instructs DataDirect XQuery to process a query
with a specific precision and scale for xs:decimal() values.

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
ds.setOptions("detect-XPST0005=no");
ds.setJdbcOptions("sql-decimal-cast=20,15");
XQConnection conn = ds.getConnection("myuserid","mypswd");

XQExpression xqExpression = conn.createExpression();
FileReader fileReader = new FileReader("xquery_file.xq");
XQSequence xqSequence = xqExpression.executeQuery(fileReader);

Using Extension Expressions

Extension expressions provide parameters that modify how
DataDirect XQuery processes expressions in a query. You can
specify extension expressions only in the body of a query. The
DataDirect XQuery User’s Guide and Reference

286 Chapter 12 Using Advanced Features
only extension expression supported by DataDirect XQuery is
evaluate-in-memory (as defined in Table 12-4 “Extension
Expressions” on page 287).

The syntax for specifying an extension expression in a query is:

(# ddtek:name_of_extension_expression #)

For example:

(# ddtek:evaluate-in-memory #)

Suppose a user wants to perform data analysis using the
following query, which accesses the historical database table and
returns the ratio of the value of adjustedclose to the value of
actualclose for a particular date.

for $h in collection('historical')/historical
where $h/ticker = 'AMZN'
return
 <historical>
 {$h/datetraded}
 {$h/adjustedclose div $h/actualclose}
 </historical>

Suppose that actualclose is 0 for one or multiple dates because of
a data entry error. In XQuery, division by 0 raises an error for
decimal and integer data types, but not for float and double data
types. The user can avoid an error by casting the ratio to a double
data type and performing the division in memory by specifying
the evaluate-in-memory extension expression for the division
expression as shown in the following query:

for $h in collection('historical')/historical
where $h/ticker = 'AMZN'
return
 <historical>
 {$h/datetraded}
 {(# ddtek:evaluate-in-memory #)
 {xs:double($h/adjustedclose) div $h/actualclose}}
 </historical>
DataDirect XQuery User’s Guide and Reference

Using Option Declarations and Extension Expressions 287
Table 12-4 provides a description of the evaluate-in-memory
extension expression.

Table 12-4. Extension Expressions

Extension Expressions Description

evaluate-in-memory Specifies an expression that is evaluated in memory
as XQuery, ensuring that it will not be translated to
SQL for evaluation in a relational data source. Use
this extension expression for the following reasons:

■ To ensure that DataDirect XQuery uses strictly
conforming XQuery behavior when processing
data from relational data sources. For relational
data sources, DataDirect XQuery sometimes uses
compensation to allow expressions to be
evaluated efficiently (as described in
“Understanding Compensation” on page 191).
When strict conformance to the XQuery
specification is more important than efficient
data handling, use this extension expression.

■ To provide XQuery functionality not typically
provided for relational data sources. For
example, use this extension expression to
perform path expressions on XML stored in the
database.

This setting ensures the maximum XQuery
conformance, but can significantly degrade
performance depending on how it is used. For
example, if used in a where clause of a FLWOR
expression, it can force all rows of a database table
to be evaluated in memory, which degrades
performance.

The expression used for evaluation in memory
cannot contain the following functions:
fn:collection, fn:doc and fn:doc-available.
DataDirect XQuery User’s Guide and Reference

288 Chapter 12 Using Advanced Features
Querying Multiple Files in a Directory
DataDirect XQuery supports the use of fn:collection to query
multiple XML and non-XML files in a specified directory.

XML Files

In the following example, suppose you have a number of XML
files stored in the directory books. Each of the files contains
information about one book, and you want to create a single
XML document that contains a list of all your books.

<books>{
for $book in collection("file:///c:/books?select=*.xml")
return
 <myBook>{$book/book/title}</myBook>
}</books>

The result would look something like this:

<books>
<myBook>
<title>Emma</title>

</myBook>
<myBook>
<title>Pride and Prejudice</title>

</myBook>
. . .

</books>

The function’s declaration for this feature is:

collection("directory_uri(?option(;option)*)?")

where:

directory_uri is a URI referencing a directory. The URI must use
the file:// scheme.
DataDirect XQuery User’s Guide and Reference

Querying Multiple Files in a Directory 289
option is {(select="REGEX") | recurse={yes | no} |
(sort=[a,t,r]+) | (xquery-regex=(yes|no))}

where:

• select contains a regular expression (REGEX), which
determines which files in the directory are selected. If
select is not specified, any file is assumed.

• sort determines how the retrieved files are sorted, as
follows:

• a sorts alphabetically (ascending).

• t sorts by modification time (beginning with most
recent).

• r combined with a and t reverses the sort order.

• recurse determines whether subdirectories are searched.
The default is no. To search subdirectories, set this option
to yes, for example:

<books>{
for $book in
collection("file:///c:/books?select=*.xml;recurse=yes")
return
 <myBook>{$book/book/title}</myBook>
}</books>

• xquery-regex determines what type of regular expression
syntax is specified in select.

• If set to no (the default), the select pattern syntax
takes the conventional form. For example, *.xml
selects all files with an xml extension. More generally,
the select pattern is converted to a regular expression
by prepending "^", appending "$", replacing "." with
"\.", and replacing "*" with ".*". Then, the select
pattern is used to match the file names appearing in
the directory using the XQuery regular expression
rules. So, for example, you can specify *.(xml|xhtml) to
match files with either of these two file extensions.
DataDirect XQuery User’s Guide and Reference

290 Chapter 12 Using Advanced Features
Note however, that special characters used in the URL
may need to be escaped using the %HH convention,
which can be achieved using the iri-to-uri function.

• If set to yes, the select pattern syntax as supported by
XQuery is assumed. In this case, some characters may
need to be escaped such as the backslash character (\) in
a file name, for example:

select=.*\.xml$ must be select=.*%5C.xml$

Non-XML Files

The collection function supports the use of the converter URI,
which allows you to use DataDirect XML Converters to query
non-XML files, such as EDI, binary, and tab- and comma-separated
files. For example, this XQuery uses the EDI XML Converter to
return a sequence in which each item is an EDI file contained in
the directory C:/myfolder:

fn:collection("converter:///EDI?file:///C:/myfolder")

DataDirect XQuery also supports additional arguments in
fn:collection to tune navigation of the specified directory:

fn:collection("converter:name:[property_name=value: | property_name=value: |
...]?directory_url(?option(;option)*)?")

where:

name is the name of the XML Converter. There are converters for
numerous non-XML file types such as EDI, CSV, dBase, and more.

property_name=value are used to specify the properties you want
the conversion engine to use when converting a non-XML file to
XML. Some properties are shared across converters; others are
peculiar to a converter for a given file type.

directory_url and option are the same those described in “XML
Files” on page 288.
DataDirect XQuery User’s Guide and Reference

Querying Multiple Files in a Directory 291
The following examples show how fn:collection can be used to
query a directory containing EDI files, using the converter URI to
specify the EDI to be converted to XML and the properties to be
used by the conversion engine.

In this example, X12 elements from all files in the directory
C:\myfolder are retrieved.

fn:collection("converter:///EDI?file:///C:/myfolder")/X12

In this example, X12 elements from all files the directory
C:\myfolder are retrieved, including the ones in sub-folders.

fn:collection("converter:///EDI?file:///C:/myfolder?recurse=yes")/X12

In this example, X12 elements from all files with extension .x12
in directory C:\myfolder are retrieved, including the ones in
sub-folders, and they are sorted in ascending order.

fn:collection("converter:///EDI?file:///C:/myfolder?select=*.x12;recurse=yes;
sort=a")/X12

For More Information

To learn more DataDirect XML Converters, the converter URI,
and conversion properties, see the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

See also “Collection URI Resolvers” on page 298.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

292 Chapter 12 Using Advanced Features
Querying ZIP, JAR, and MS Office Files
DataDirect XQuery supports the use of fn:collection to directly
query XML files archived in a ZIP or JAR file, without first
unpacking the archive file. This feature is useful for querying
many types of business documents (word-processing documents,
spreadsheets, charts, and graphical images such as drawings and
presentations) stored in an XML format such as MS Office Open
XML and OpenDocument Format.

In the following example, suppose you have multiple XML files
archived in the ZIP file xml.zip. Each XML file contains
information about one book, and you want to create a single
XML document that contain lists of all your books.

<books>
for $book in collection("zip:file:///c:/xml.zip")//books
return
<myBook>{$book/book/title}</myBook>

</books>

The result would look something like this:

<books>
<myBook>
<title>Emma</title>

</myBook>
<myBook>
<title>Pride and Prejudice</title>

</myBook>
. . .

</books>
DataDirect XQuery User’s Guide and Reference

Querying ZIP, JAR, and MS Office Files 293
The function’s declaration for this feature is:

collection("zip_or_jar_url(?option(;option)*)?")

where:

zip_or_jar_url is a URL referencing a ZIP or JAR file. The URL
must use the zip: or jar: scheme.

option is {(select="REGEX") | recurse={yes | no} |
(sort=[a,t,r]+) | (xquery-regex=(yes|no))}

where:

select contains a regular expression (REGEX), which
determines which files in the directory are selected. If select
is not specified, any file is assumed.

sort determines how the retrieved files are sorted, as
follows:

• a sorts alphabetically (ascending).
• t sorts by modification time (beginning with most

recent).
• r combined with a and t reverses the sort order.

recurse determines whether subdirectories archived in the
ZIP or JAR file are searched. The default is no.

To search subdirectories, set recurse to yes, for example:

<books>
for $book in
collection("zip:file:///c:/xml.zip?select=*.xml;recurse=yes")//books
return
<myBook>{$book/book/title}</myBook>

</books>

xquery-regex determines what type of regular expression
syntax is specified in select.

• If set to no (the default), the select pattern syntax takes
the conventional form. For example, *.xml selects all files
with an xml extension. More generally, the select pattern
is converted to a regular expression by prepending "^",
DataDirect XQuery User’s Guide and Reference

294 Chapter 12 Using Advanced Features
appending "$", replacing "." with "\.", and replacing "*"
with ".*". Then, the select pattern is used to match the file
names appearing in the directory using the XQuery
regular expression rules. So, for example, you can specify
*.(xml|xhtml) to match files with either of these two file
extensions.

Note however, that special characters used in the URL may
need to be escaped using the %HH convention, which can
be achieved using the iri-to-uri function.

• If set to yes, the select pattern syntax as supported by
XQuery is assumed. In this case, some characters may need
to be escaped such as the backslash character (\) in a file
name, for example:

select=.*\.xml$ must be select=.*%5C.xml$

See also “Collection URI Resolvers” on page 298.

Creating and Updating ZIP Files

You can use the ddtek:serialize-to-url function to create new ZIP
files and add files to an existing ZIP file. See
“ddtek:serialize-to-url” on page 420 for more information.

Using URI Resolvers
This section provides information about URI resolvers for
documents, modules, and file collections.
DataDirect XQuery User’s Guide and Reference

Using URI Resolvers 295
Document URI Resolvers

DataDirect XQuery allows an application to specify a custom URI
resolver for fn:doc and fn:doc-available. For example, you may
want to create a Java class to resolve custom URLs that point to a
proprietary repository that stores your XML documents, like an
XML database. This type of custom URI resolver is called a
document URI resolver.

The document URI resolver must be a Java class that implements
the the javax.xml.transform.URIResolver interface and the
default constructor. The javax.xml.transform.Source object
returned by the URI resolver must be an instance of one of the
following interfaces:

■ javax.xml.transform.stream.StreamSource
■ javax.xml.transform.sax.SAXSource
■ javax.xml.transform.dom.DOMSource
■ javax.xml.transform.stax.StAXSource (for JVM 1.6 only)*
■ com.ddtek.xquery.StAXSource (a proprietary DataDirect

XQuery class for JVMs prior to 1.6)*
* The StAXSource must be created with an XMLStreamReader; it
cannot be created with an XMLEventReader.

If you specify a document URI resolver, the rules enforced for URI
paths are governed by the syntax specified by your custom URI
resolver. See “XML Data Sources” on page 116 for the rules
enforced for specifying URIs by the default URI resolver.

You can specify a document URI resolver by configuring the
DocumentUriResolver property of DDXQDataSource.
See“DDXQDataSource and DDXQJDBCConnection Properties”
on page 128.
DataDirect XQuery User’s Guide and Reference

296 Chapter 12 Using Advanced Features
Library Module URI Resolvers

DataDirect XQuery allows you to customize the mechanism for
importing library modules in a query. For example, you may want
to create a Java class to resolve custom URLs that point to a
repository that stores XQuery modules.

Any custom library module URI resolver must be a Java class that
implements the com.ddtek.xquery.ModuleURIResolver interface.
In addition, it must return an array of Java StreamSource objects
that identify the contents of a module to be imported.

The interface has one method, resolve. You must implement the
resolve method to resolve the module with the provided
module URI, base URI, and location hints, as follows:

public StreamSource[] resolve (String moduleURI,
 String baseURI,
 String[] locationHints)
 throws TransformerException

The resolve method accepts the following parameters specified in
the query:

■ moduleURI is the module namespace URI. This parameter
cannot be null.

■ baseURI is the base URI of the module containing the import
module declaration or null if no base URI is known.

■ locationHints is the array of location hints provided in the
at clause of the import module declaration. An empty array is
specified if no at clause is included in the import module
declaration.

The resolve method returns an array of StreamSource objects,
each identifying the contents of a module to be imported. Each
StreamSource must contain a non-null absolute System ID that is
used as the location URI of the imported module. Optionally, the
StreamSource can contain an InputStream or Reader representing
the text of the module. If a representation of the text of the
DataDirect XQuery User’s Guide and Reference

Using URI Resolvers 297
module is not returned, DataDirect XQuery resolves the module
using the specified location URI.

If null is returned, DataDirect XQuery resolves the module using
the default module URI resolver.

You can specify a custom library module URI resolver by
configuring the ModuleUriResolver property of
DDXQDataSource. See “DDXQDataSource and
DDXQJDBCConnection Properties” on page 128.

Example: Using a Custom Library Module URI Resolver

The following custom library module URI resolver relies on a
specific directory to resolve the module. In addition, if a location
hint is omitted in the XQuery import statement, DataDirect
XQuery uses the default module URI resolver.

import javax.xml.transform.TransformerException;
import javax.xml.transform.stream.StreamSource;
import java.io.File;
import com.ddtek.xquery.ModuleURIResolver;

public class customModuleResolver implements ModuleURIResolver {
 public StreamSource[] resolve(String moduleURI, String baseURI, String[]
 locationHint)throws TransformerException {
 // In this example, the custom behavior is triggered by using
 // a specific moduleURI
 if(moduleURI.equals("http://sharedFunctions.company.com")) {
 File fileSource;
 // If a locationHint is available, we use it; otherwise, we
 // load the default module URI resolver.
 if(locationHint.length > 0)
 fileSource = new File("c:/sharedFunctions/"+locationHint[0]);
 else
 fileSource = new File("c:/sharedFunctions/defaultModule.xquery");
 // More than one StreamSource can be returned;
 // This example only returns one StreamSource.
 StreamSource streamSources[] = {new StreamSource(fileSource)};
 return streamSources;
 }
DataDirect XQuery User’s Guide and Reference

298 Chapter 12 Using Advanced Features
 return null;
}
}

The following query only specifies the module file name and
relies on customModuleResolver to import the module from the
path c:/sharedFunctions/module1.xquery:

import module namespace sharedFunctions =
 'http://sharedFunctions.company.com' at 'module1.xquery';
sharedFunctions:func('a','b')

The following query omits the location hint. In this case, the
query relies on customModuleResolver to import a default
module (c:/sharedFunctions/defaultModule.xquery):

import module namespace sharedFunctions =
 'http://sharedFunctions.company.com'; (: no location hint :)
sharedFunctions:func('a','b')

In the following query, customModuleResolver defaults to the
behavior of the built-in DataDirect XQuery module URI resolver
(note the different namespace URI for the imported module),
which tries to locate module1.xquery relative to the location of
the URL of the query:

import module namespace otherFunctions = 'http://other.company.com'
 at 'module1.xquery';
sharedFunctions:func('a','b')

Collection URI Resolvers

DataDirect XQuery allows an application to specify a custom URI
resolver for fn:collection. For example, you might want to create
a Java class to resolve custom URIs that point to a directory that
contains your XML files. This type of custom URI resolver is called
a collection URI resolver.

The collection URI resolver must be a Java class that implements
the com.ddtek.xquery.CollectionURIResolver interface. The URI
DataDirect XQuery User’s Guide and Reference

Analyzing EDI to XML Conversions 299
resolver returns a java.util.Iterator object, which, in turn, must
return objects that implement one of the following interfaces:

■ javax.xml.transform.stream.StreamSource
■ javax.xml.transform.sax.SAXSource
■ javax.xml.transform.dom.DOMSource
■ javax.xml.transform.stax.StAXSource (for JVM 1.6 only)*
■ com.ddtek.xquery.StAXSource (a proprietary DataDirect

XQuery class for JVMs prior to 1.6)*

* The StAXSource must be created with an XMLStreamReader; it
cannot be created with an XMLEventReader.

Refer to the Javadoc for details about the CollectionURIResolver
interface.

You can specify a collection URI resolver by configuring the
CollectionUriResolver property of DDXQDataSource. See
“DDXQDataSource and DDXQJDBCConnection Properties” on
page 128.

See also “Querying Multiple Files in a Directory” on page 288
and “Querying ZIP, JAR, and MS Office Files” on page 292.

Analyzing EDI to XML Conversions
DataDirect XQuery provides several ways to convert non-XML
data to XML, including using the converter URI in document and
collection functions, as well as built-in functions
ddtek:convert-to-xml, and ddtek:analyze-edi-from-* and
ddtek:edi-to-xml-from-*.

This section describes how to use DataDirect XQuery
ddtek:analyze-edi-from-* and ddtek:edi-to-xml-from-* built-in
functions to analyze and convert EDI to XML. It covers the
following topics:
DataDirect XQuery User’s Guide and Reference

http://www.xquery.com/docs/ddxq4.0/javadoc/index.html

300 Chapter 12 Using Advanced Features
■ Overview
■ Built-in EDI Analysis and Conversion Functions
■ Examples

Overview

The following illustration provides an overview of how you can
use DataDirect XQuery built in functions to analyze and convert
EDI to XML. It shows EDI being provided by some entity – an EDI
document, EDI data stored on a file system, or EDI provided by a
Web service, for example – being passed to the
ddtek:analyze-edi-from-* and ddtek:edi-to-xml-from-* functions.
The same EDI stream is specified for each function.

EDI Analysis

First the EDI data stream is analyzed by the ddtek:analyze-edi-*
function. The ddtek:analyze-edi-* function produces an XML
report that, among other things, identifies any messages that
contain errors. You can write the report to any output you choose
– you might want to review the report before converting the EDI
to XML, for example – but it is written as a document node by
default.

EDI Conversion

Once the analysis is complete, the analysis report is passed to the
ddtek:edi-to-xml-* function, along with the EDI data stream. The
ddtek:edi-to-xml-* function uses the errors identified in the
DataDirect XQuery User’s Guide and Reference

Analyzing EDI to XML Conversions 301
analysis report to filter the EDI, preventing messages containing
errors from being converted to XML.

Receipt and Acknowledgement Messages

The analysis report includes a Response element; this element
contains Receipt and Acknowledgement subelements. Each
subelement holds a complete EDI message in XML format that
can be easily manipulated using XQuery and then serialized to
DataDirect XQuery User’s Guide and Reference

302 Chapter 12 Using Advanced Features
EDI to communicate with the EDI sender whether the
transmission was accepted or rejected.

Receipt messages are used to notify the sender that an EDI
transmission has been received; acknowledgement messages are
used to notify the sender of those messages in the EDI
transmission that were rejected because of errors, as well as the
nature of the errors. Formats for receipt and acknowledgement
messages are dialect-specific.

Supported EDI Dialects

The ddtek:analyze-edi-from-* and ddtek:edi-to-xml-from-*
built-in functions can be used to convert EDI to XML (and not
XML to EDI) for the following EDI dialects:

■ EDIFACT
■ HIPAA
■ X12

For More Information

To learn more about analyzing EDI before converting it to XML,
including details of the analysis report, see the DataDirect XML
Converters User’s Guide and Reference manual. DataDirect XML
Converters documentation is installed as part of the DataDirect
Data Integration Suite, of which DataDirect XQuery is a part; you
can also find DataDirect XML Converters product documentation
on the DataDirect Web site.

Built-in EDI Analysis and Conversion
Functions

DataDirect XQuery built-in functions for converting EDI to XML:
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Analyzing EDI to XML Conversions 303
■ Validate an EDI stream and generate an XML report that
describes the errors

■ Automatically generate accept/reject messages for the EDI
sender

■ Convert partially valid EDI streams

EDI Analysis Functions

DataDirect XQuery ddtek:analyze-edi-from-* functions,
ddtek:analyze-edi-from-string and ddtek:analyze-edi-from-url,
analyze an EDI stream and generate a report that describes the
errors, if any, they detect. These functions can be used in
standalone fashion to generate the analysis report, but they are
designed to be used with ddtek:edi-to-xml-from-* functions as
part of the process to convert EDI to XML.

EDI Conversion Functions

DataDirect XQuery ddtek:edi-to-xml-from-* functions,
ddtek:edi-to-xml-from-string and ddtek:edi-to-xml-from-url,
take the report generated by the ddtek:analyze-edi-from-*
functions and use it to filter detected errors from the EDI before
converting it to XML. The ddtek:edi-to-xml-from-* functions
cannot be used alone to convert EDI to XML – you must pass the
report generated by the ddtek:analyze-edi-from-* functions.

Specifying the EDI Stream and EDI Conversion
Settings

The EDI stream specified in the ddtek:edi-to-xml-from-*
functions must be the same as that specified in the
ddtek:analyze-edi-from-* functions for a given XQuery.

For this reason, it is recommended that you use the
ddtek:analyze-edi-from-* and ddtek:edi-to-xml-from-* functions
DataDirect XQuery User’s Guide and Reference

304 Chapter 12 Using Advanced Features
in pairs – ddtek:analyze-edi-from-string and
ddtek:edi-to-xml-from-string, and ddtek:analyze-edi-from-url
and ddtek:edi-to-xml-from-url, for example.

The same is also true for any conversion properties you specify –
any conversion properties specified in the analysis function must
also be specified in the conversion function.

To learn more about conversion properties, see the section "EDI
XML Converter Properties" in the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

Examples

The following examples show how to use DataDirect XQuery
analyze EDI and convert EDI built-in functions to convert EDI to
XML.

EDI Specified as a URL

In this example, the EDI document code99.x12 is converted to
XML:

let $edi := "EDI:tbl=yes?file:///c:/EDI/code99.x12"
let $report := ddtek:analyze-edi-from-url($edi)
let $ack := $report/AnalyzeReport/Response/Acknowledgement/X12
let $receipt := $report/AnalyzeReport/Response/Receipt/X12
let $xml := ddtek:edi-to-xml-from-url($edi, $report)
return(
 ddtek:serialize-to-url($report ,"file:///c:/EDI/code99.x12.report.xml", "")
,ddtek:serialize-to-url($xml ,"file:///c:/EDI/code99.x12.xml", "")
,ddtek:serialize-to-url($receipt,"file:///c:/EDI/code99.rec.x12","method=EDI"
)
,ddtek:serialize-to-url($ack ,"file:///c:/EDI/code99.ack.x12","method=EDI")
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

Analyzing EDI to XML Conversions 305
)

In this example, the XQuery produces four files:

■ code99.x12.report.xml – The analysis report generated by the
ddtek:analyze-edi-from-url function.

■ code99.x12.xml – The XML generated by the
ddtek:edi-to-xml-from-url.

■ code99.rec.x12 – The receipt message rendered as an XML
document.

■ code99.ack.x12 – Acknowledgement messages, one for each
message in the EDI data stream containing an error, rendered
as an XML document.

As noted in Receipt and Acknowledgement Messages, the
receipt and acknowledgement messages are dialect-specific. In
this example, which uses the X12 EDI dialect, the receipt message
conforms to the TA1 message type, and the acknowledge
message conforms to the 997 message type. The
ddtek:serialize-to-url function is used to convert code99.rec.x12
and code99.ack.x12 from XML to EDI for transmission back to
the EDI sender.

EDI Specified as a String

This example is similar to the first, but this instance the EDI is
stored in memory as a string:

let $edi := "ISA:00: :00: :01:1515151515 :01:5151515151
:041201:1217:U:00403:000032123:0:P:*~GS:CT:9988776655
:1122334455:20041201:1217:128:X:004030~ST:831:00128001~BGN
:99:88200001:20041201~N9:BT:88200001~TRN:1:88200001~AMT
:2:100000.00~QTY:46:1~SE:7:00128001~GE:1:128~IEA:1:000032123~"
let $url := "EDI:tbl=yes"
let $report := ddtek:analyze-edi-from-string($url, $edi)
let $ack := $report/AnalyzeReport/Response/Acknowledgement/X12
let $receipt := $report/AnalyzeReport/Response/Receipt/X12
let $xml := ddtek:edi-to-xml-from-string($url ,$edi, $report)
return(
DataDirect XQuery User’s Guide and Reference

306 Chapter 12 Using Advanced Features
ddtek:serialize-to-url($report ,"file:///c:/EDI/code99.x12.report.xml",
"")
,ddtek:serialize-to-url($xml ,"file:///c:/EDI/code99.x12.xml", "")
,ddtek:serialize-to-url($receipt,"file:///c:/EDI/code99.rec.x12","method
=EDI")
,ddtek:serialize-to-url($ack ,"file:///c:/EDI/code99.ack.x12",
"method=EDI")
)

DataDirect XQuery User’s Guide and Reference

Generating XQuery Execution Plans 307
Generating XQuery Execution Plans
The DataDirect XQuery feature, Plan Explain, allows you to
generate an XQuery execution plan so that you can see how
DataDirect XQuery will execute your query. For example, if your
query accesses a relational data source, the plan will include the
SQL statements that DataDirect XQuery will send to the
database.

The main benefit of using this feature is that you can tune your
queries for the best performance possible.

NOTE: The Plan Explain feature is also available in Stylus Studio
and DataDirect XQuery Editor for Eclipse.

Format of an XQuery Execution Plan

DataDirect XQuery outputs the plan in either XHTML format
(the default) or XML format. The XHTML format provides a
graphical representation of the plan. DataDirect XQuery also
supports an XML format in the case that you want to create your
own graphical representation of the plan or to archive the plan.

XHTML Format

The XHTML representation of an XQuery execution plan is a tree
structure that provides the details of how DataDirect XQuery
will execute the query for which the plan was generated. You
can use one of the following browsers to display the XHTML file:
Internet Explorer 6.x or 7.x, or Firefox 2.x.
DataDirect XQuery User’s Guide and Reference

308 Chapter 12 Using Advanced Features
The following figure shows an example of an execution plan in
XHTML format.

The tree can contain the following top-level nodes:

■ Adaptors. This node contains a list of database resources that
will be involved in the execution of the query. These resources
can include JDBC connections, temporary tables, and deferred
SQL statements used in the context of DataDirect XQuery
update functionality.

■ Global Variables. This node contains a list of global variables
that are available to the query plan, such as external variables
defined by the query and variables defined as part of the
generation of the execution plan.

■ Local Functions. This node contains a list of user-defined
functions used during the query evaluation. Each
user-defined function listed in this node has a plan
description associated with it. Plan descriptions are described
next.

■ Plan. This node contains the description of the query
execution plan. It contains the nodes of the plan, for example,
flwor nodes and the nodes within the flwor nodes such as for,
let, and return.

You can navigate the tree to check where variables are defined
and where they are referenced. For example, you can navigate
from one adaptor’s definition to its references and vice-versa. To
navigate the tree, you use either the toolbar displayed at the top
DataDirect XQuery User’s Guide and Reference

Generating XQuery Execution Plans 309
of the tree or right-click an item in the tree and use the
context-sensitive menu.

The icons on the toolbar perform the following tasks:

Toolbar

Icon Task

Go to definition: given a selected variable
reference, go to the position in the plan where
the variable is defined.

Go to first reference: given a selected variable
definition, go to its first reference in the plan.

Go to next reference: given a selected variable
reference, go to the next reference of the same
variable (if any).

Go to previous reference: given a selected
variable reference, go to the previous reference
of the same variable (if any).
DataDirect XQuery User’s Guide and Reference

310 Chapter 12 Using Advanced Features
Enabling Plan Explain

You can enable Plan Explain through XQJ or through the
plan-explain option declaration.

Example 1: Enabling Through XQJ

The following code is an example of enabling Plan Explain
through XQJ using the proprietary interface ExtPlanExplain. This
example outputs the query execution plan to an XHTML file
named queryplan.xhtml.

...
 XQExpression exp = conn.createExpression();
 ExtPlanExplain explain = (ExtPlanExplain)exp;
 XQResultSequence seq = explain.explain("for $item in
 fn:doc('items.xml')/items/item return $item");
 seq.writeSequence(new FileOutputStream("queryplan.xhtml"), null);
 exp.close();

Refer to the Javadoc for details about the ExtPlanExplain
interface.

The following code is an example of outputting the query
execution plan to an XML file named queryplan.xml.

...
 XQExpression exp = conn.createExpression();
 ExtPlanExplain explain = (ExtPlanExplain)exp;
 explain.setPlanFormat(PLAN_EXPLAIN_AS_XML);
 XQResultSequence seq = explain.explain("for $item in
 fn:doc('items.xml')/items/item return $item");
 seq.writeSequence(new FileOutputStream("queryplan.xml"), null);
 exp.close();
DataDirect XQuery User’s Guide and Reference

http://www.xquery.com/docs/ddxq3.0/javadoc/index.html

Generating XQuery Execution Plans 311
Example 2: Enabling Through an Option Declaration

The following example shows how to enable Plan Explain using
the plan-explain option declaration.

declare option ddtek:plan-explain "format=xhtml";
for $item in fn:doc('items.xml')/items/item

NOTE: When you enable Plan Explain through an option
declaration, the query execution plan is returned instead of
XQuery results.

See the description of plan-explain in Table 12-1 “Global Option
Declarations” on page 276 for more information about this
option declaration.

Example of an XQuery Execution Plan

This example XQuery execution plan provides information about
how DataDirect XQuery translates the following query, which
accesses one relational data source, into a SQL Select statement
and how XML results are constructed.

declare option ddtek:plan-explain 'format=xhtml';
<myHoldings> {
 for $holdings in collection("pubs.dbo.holdings")/holdings
 where $holdings/userid = "Minollo"
 return <holding
 quantity="{$holdings/shares}">{$holdings/stockticker/text()}</holding>
}
</myHoldings>
DataDirect XQuery User’s Guide and Reference

312 Chapter 12 Using Advanced Features
In the following execution plan, notice how the Relational Data
Source node includes details about the SQL Select statement, as
well as information about how the result ($PT) is constructed.

Specifying Collations
DataDirect XQuery allows collations to be specified in the query,
for example, in the query prolog or for a specific order by clause.
The specified collation, however, is only used for expressions
evaluated by the XQuery engine (see “DataDirect XQuery®
Architecture” on page 55).

When DataDirect XQuery accesses a relational database, it uses
the collation used by the database. For consistency, ensure that

DataDirect XQuery User’s Guide and Reference

Specifying Collations 313
the collation used by DataDirect XQuery (which can be modified
as explained below) is compatible with the collation used by the
database. If multiple databases are accessed, ensure that their
collations are compatible. For relational sources, the collation
used by the database overrides any collation specified in the
query.
DataDirect XQuery User’s Guide and Reference

314 Chapter 12 Using Advanced Features
DataDirect XQuery allows you to specify any of the following
collations:

■ W3C Unicode Codepoint collation. For example:

http://www.w3.org/2005/04/xpath-functions/collation/codepoint

■ User-defined collation using the following format:

http://www.datadirect.com/xquery/collation?class=class_name

where class_name is a fully-qualified name of a Java class that
implements java.util.Comparator. If the collation will be used
in functions such as contains() and starts-with(), this class must
also implement java.text.RuleBaseCollator.

■ Collation using a semicolon-separated list of keyword=value
pairs in the following format:

http://www.datadirect.com/xquery/collation?keyword=value[;keyword=value]...

where the following keywords and values are valid:

lang Specifies a value that is used to find the
collation appropriate to a Java locale. A
valid value is any value allowed for the
langName or langDef parameters of
java.lang.Locale. For example, for
US English:

en-us

strength {primary | secondary | tertiary | identical}.
Specifies a level of comparison that
DataDirect XQuery enforces when
comparing strings. For example, A/B is a
primary difference; a/á is a secondary
difference; A/a is a tertiary difference; and
a/a is identical. Therefore, if
strength=primary, A=a is true;
if strength=secondary, A=a is true, but a=á
is false; and, if strength=tertiary, A=a is
false.
DataDirect XQuery User’s Guide and Reference

Using External Functions 315
DataDirect XQuery uses the collation URI used by the Java
Virtual Machine as the default collation. You can change this
value using any of the following methods:

■ Specifying the collation parameter in the query prolog

■ Specifying the Collation property of DDXQDataSource (see
“DDXQDataSource and DDXQJDBCConnection Properties”
on page 128)

Using External Functions
This section explains the types of external functions supported
by DataDirect XQuery and how to use them. This section covers
the following subjects:

■ Supported External Functions
■ Querying Multiple Files in a Directory
■ Using SQL Functions

Supported External Functions

External functions are functions that are implemented outside
the query environment. DataDirect XQuery supports two types
of external functions: Java and SQL.

Java functions might be used to return system information, to
invoke a Web service call, or simply to make available a function
that is not in the XQuery function library.

decomposition {none | standard | full}. Determines how
the collator handles Unicode characters.
Refer to your J2SE documentation for
details about how these values affect
comparisons of strings.
DataDirect XQuery User’s Guide and Reference

316 Chapter 12 Using Advanced Features
SQL functions might be used to invoke a stored procedure or to
make available a function that is not in the XQuery function
library.

All external functions are namespace qualified, and the
namespace that is used tells DataDirect XQuery whether the
external function is written in Java or in SQL. Before calling an
external function, it must be declared in the query.

Example: Java Function (Static Method)

Suppose an application needs to return information about the
Java environment in which a query runs. The following Java code
defines a class that contains the function to retrieve this
information in Java:

public class myClass extends Object {
...
 public static String myExternalFunction() {
 StringBuffer returnBuffer = new StringBuffer();
 Properties systemProperties = System.getProperties();
 returnBuffer.append("VM Version:"
 + systemProperties.get("java.vm.version") + "\n");
 returnBuffer.append("VM Vendor:"
 + systemProperties.get("java.vm.vendor") + "\n");
 returnBuffer.append("VM Name:"
 + systemProperties.get("java.vm.name"));
 return returnBuffer.toString();
 }
}

Now, the function must be declared, as shown in the following
query:

declare namespace ex="ddtekjava:myClass";
declare function ex:myExternalFunction() as xs:string external;

let $infoString := ex:myExternalFunction()
return
 let($infoString := ex:myExternalFunction()
 return <vm_info>{$infoString}</vm_info>)
DataDirect XQuery User’s Guide and Reference

Using External Functions 317
In the preceding XQuery expression, the XQuery binds a
namespace prefix (ex) to the fully qualified name of the class
that defines the function.

Example: SQL Function

A SQL function can be called in a similar way to calling a Java
function. The namespace for a SQL function is the predefined
namespace, in this case http://www.datadirect.com/xquery
/sql-function, which is bound to the predefined prefix ddtek-sql.
The following example calls the SQL function rtrim().

declare function ddtek-sql:reverse($namevalue as xs:string) as
 xs:string external;

for $username in collection('users')//lastname
return
<last_name>{ddtek-sql:reverse($username)}</last_name>

Using Java Functions

DataDirect XQuery supports Java static methods, Java instance
methods, and Java constructors.

The DataDirect XQuery type ddtek:javaObject allows you to
invoke Java methods. The predeclared DataDirect XQuery
namespace prefix is ddtek, and is bound to
http://www.datadirect.com/xquery. The examples in this section
demonstrate the usage of ddtek:javaObject.

Declaring Java Functions

Two steps are required to declare Java functions:

1 Import the class into the XQuery environment.

2 Declare the function.
DataDirect XQuery User’s Guide and Reference

318 Chapter 12 Using Advanced Features
1. Importing the Class

Before you can declare a Java class, you must import it into the
XQuery environment. To do this, you must declare a namespace
with a specific URI. The syntax of an import is:

declare namespace prefix = "ddtekjava:java class name";

where:

prefix is a namespace prefix to associate with the Java class.

java class name contains the complete package and class name
of the Java class to import. The specified Java class must be
accessed using the Java class loader in the environment in which
the query is executed. Typically, this means that the CLASSPATH
must contain a reference to the directory or jar file where the
Java class can be found. In J2EE server environments, other
requirements might exist – the jar or class file might have to be
stored in a specific directory, for example, as shown here:

declare namespace file = "ddtekjava:java.io.File";

If DataDirect XQuery cannot find the Java class, it generates a
static error.

2. Declaring the Function

Before you can invoke a Java function in a query, you must
declare it. How you declare it depends on whether the Java
function is a static method or an instance method.

Static Method

To declare a static method, use the following syntax:

declare namespace file = "ddtekjava:java.io.File";
declare function namespace:function name(argument list) as return type
 external;
DataDirect XQuery User’s Guide and Reference

Using External Functions 319
For example:

declare namespace file = "ddtekjava:java.io.File";
declare function file:createTempFile($prefix as xs:string,$suffix as
 xs:string) as ddtek:javaObject external;

See also “Example: Java Function (Static Method)” on page 316.

Instance Method

To declare an instance method, follow these steps:

1 Import the class to a namespace (see “1. Importing the Class”
on page 318).

2 In the cases where you need to explicitly create a new Java
object instance, declare a function mapping to a Java
constructor unless the Java object type you are declaring has
a defined XQuery mapping. A class instance can be an XML
type for which a mapping is defined.

3 If step 2 is required, declare a function mapping to an
instance method declaring ddtek:javaObject as the value for
the first parameter. Otherwise, the value of the first
parameter is the appropriate XQuery data type.

4 Invoke the function using the class instance on which the
instance method is invoked as the first argument.

The numbers in the following example correspond to the
preceding steps:

declare namespace BigInteger = "ddtekjava:java.math.BigInteger"; 1
declare function BigInteger:BigInteger($v as xs:string) 2
 as ddtek:javaObject external;
declare function BigInteger:gcd(
 $this as ddtek:javaObject,
 $val as xs:integer) as xs:integer external; 3

 BigInteger:gcd(BigInteger:BigInteger("12"),4) 4
DataDirect XQuery User’s Guide and Reference

320 Chapter 12 Using Advanced Features
The following example does not include step 2 because the Java
object to be declared has a defined XQuery mapping.

declare namespace BigInteger = "ddtekjava:java.math.BigInteger"; 1
 declare function BigInteger:gcd(
 $this as xs:integer,
 $val as xs:integer) as xs:integer external; 3

 BigInteger:gcd(12,4) 4

Mapping Types Between Java and XQuery for
Java External Functions

Before DataDirect XQuery passes XQuery arguments to a Java
method, it converts the arguments from the XQuery data type to
a Java type using the SequenceType specified for the external
function when it was declared.

Table 12-5 shows how to map arguments and return types from
the Java function declaration to XQuery SequenceTypes to be
used in the XQuery function declaration.

Table 12-5. Mapping Types Between Java and XQuery

Java Type XQuery SequenceType

boolean xs:boolean

byte xs:byte

byte[] ddtek:javaObject
xs:base64binary
xs:hexBinary

double xs:double

float xs:float

int xs:int

long xs:long

short xs:short

void empty-sequence() a
DataDirect XQuery User’s Guide and Reference

Using External Functions 321
java.lang.Boolean ddtek:javaObject
xs:boolean[?]

java.lang.Byte ddtek:javaObject
xs:byte[?]

java.lang.Double ddtek:javaObject
xs:double[?]

java.lang.Float ddtek:javaObject
xs:float[?]

java.lang.Integer ddtek:javaObject
xs:int[?]

java.lang.Long ddtek:javaObject
xs:long[?]

java.lang.Object b ddtek:javaObject

java.lang.Short ddtek:javaObject
xs:short[?]

java.lang.String ddtek:javaObject
xs:untypedAtomic[?]
xs:string[?]

java.math.BigDecimal ddtek:javaObject
xs:decimal[?]

java.math.BigInteger ddtek:javaObject
xs:integer[?]

java.net.URI ddtek:javaObject
xs:anyURI[?]

java.xml.namespace.QName ddtek:javaObject
xs:QName[?]

javax.xml.transform.Sourcec ddtek:javaObject
document-node()

org.w3c.doc.ProcessingInstruction ddtek:javaObject
processing-instruction() [?]

org.w3c.dom.Attr ddtek:javaObject
attribute() [?]

org.w3c.dom.Comment ddtek:javaObject
comment() [?]

Table 12-5. Mapping Types Between Java and XQuery (cont.)

Java Type XQuery SequenceType
DataDirect XQuery User’s Guide and Reference

322 Chapter 12 Using Advanced Features
org.w3c.dom.Document ddtek:javaObject
document-node() [?]

org.w3c.dom.Element ddtek:javaObject
element() [?]

org.w3c.dom.Node ddtek:javaObject
document-node() [?]
element() [?]
attribute() [?]
comment() [?]
text() [?]
processing-instruction() [?]

org.w3c.dom.Text ddtek:javaObject
text() [?]

boolean, byte, double, float, int,
long, short d

xs:anyAtomicType? -323

byte[], java.lang.Byte,
java.lang.Double, java.lang.Float,
java.lang.Integer, java.lang.Long,
java.lang.Short, java.lang.String,
java.math.BigDecimal,
java.math.BigInteger, java.net.URI,
java.xml.namespace.QName

xs:anyAtomicType? -323

Any Java data type in this table item() -323

Any Java object type in this table item() ? -323

Any Java type in this table item()* -322
item() + -322

java type [] e ddtek:javaObject
XQuery type of this table(*|+)

a. Only for return types.
b. java.lang.Object or another Java class not listed in this table.

Table 12-5. Mapping Types Between Java and XQuery (cont.)

Java Type XQuery SequenceType
DataDirect XQuery User’s Guide and Reference

Using External Functions 323
In cases where Table 12-5 lists multiple mapping options,
consider the following information:

■ ddtek:javaObject cannot be combined with other XQuery
types. This means that when the expression you want to pass
to a Java function is the result of calling another Java
method that returns a ddtek:javaObject, you must declare
the function as receiving a ddtek:javaObject expression. Also,
when you declare the return type of a Java function as
ddtek:javaObject, the returned value can be passed only into
another Java method. The returned value cannot be used
with any other XQuery expression.

■ To map a Java method to an XQuery type when the method
is overloaded on parameter type and no common XQuery
type can be found for that parameter, you must use a less
specific SequenceType. Typically, in this case, you would use a
less specific SequenceType such as item(), xs:anyAtomicType,
or ddtek:javaObject depending on the details of the set of
overloaded methods. DataDirect XQuery attempts to map a
given XQuery function invocation to the correct Java
function using the static types of the function call arguments
instead of the SequenceType of the arguments. See the next
section Resolving Function Calls for more information on this
topic.

c. Must be one of the following interfaces:
 javax.xml.transform.stream.StreamSource,
 javax.xml.transform.sax.SAXSource,
 javax.xml.transform.dom.DOMSource,
 javax.xml.transform.stax.StAXSource, or
 com.ddtek.xquery.StAXSource.
Note that only javax.xml.transform.dom.DOMSource is supported for the
function’s parameters.

d. Useful to declare Java methods overloaded on argument type. See
“Resolving Function Calls” on page 324.

e. When the Java parameter type or method return type is an array, either
declare the XQuery function to receive or return one of the matching
types from this table and add a * or + quantifier.You can also use
ddtek:javaObject with a * or + quantifier.
DataDirect XQuery User’s Guide and Reference

324 Chapter 12 Using Advanced Features
Resolving Function Calls

Before DataDirect XQuery attempts to resolve the Java method
used to invoke a given XQuery function call, DataDirect XQuery
identifies the external function declaration.

Then, like any other XQuery function call, the static types of the
argument expressions are matched with the SequenceType of the
function declaration parameters. Static type errors are detected
and reported.

Finally, the Java method must be resolved. Sometimes, DataDirect
XQuery cannot determine how to map an XQuery function
declaration and the associated function call to a Java instance
method. Ambiguity can occur for the following reasons:

■ Java supports method overloading on argument type;
however, XQuery does not support function overloading on
argument type.

■ Invoking Java instance methods from DataDirect XQuery
requires a first artificial "this" argument. This requirement
creates a potential conflict with static methods of the same
class that accept a true Java object as their first argument.

DataDirect XQuery uses the following steps to determine the
Java method to invoke for a given function call. Except for the
first step, each of the consecutive steps reduces the number of
Java functions that are potential candidates to which to map the
XQuery function call.

1 Add all public (static and instance) methods and public
constructors of the Java class identified through the function’s
namespace.

2 Use a public constructor if the name of the function equals
the class name. In the absence of matching public
constructors, DataDirect XQuery considers Java methods with
the same name.
DataDirect XQuery User’s Guide and Reference

Using External Functions 325
3 Retain only Java methods whose names match the name of
the function if the name of the function being invoked does
not equal the class name.

4 Remove all instance methods, unless the first argument in
the function call is typed as ddtek:javaObject and the Java
class associated with the ddtek:javaObject equals the class
identified by the namespace of the function (see “Notes
About Using Java Instance Methods” on page 326).

5 Remove all static methods and constructors whose number of
parameters does not match the number of parameters in the
XQuery function declaration.

6 Remove all instance methods whose number of parameters
does not equal the number of parameters of the XQuery
function declaration minus one. (This takes into account the
first artificial "this" argument that is required when invoking
an instance method from XQuery.)

7 Remove all Java methods and constructors for which the
SequenceType of the argument as specified in the function
declaration does not match the type of the Java method. The
type matching requires a mapping from an XQuery
SequenceType to a Java type. This mapping is documented in
Table 12-5 on page 320. Note that when the function
argument is declared as item(), xs:anyAtomicType, or
ddtek:javaObject, DataDirect uses the static type of the
argument expression of the function call instead of the
SequenceType of the function declaration. This typically is
more accurate and allows correct method resolution in more
scenarios.

Unless exactly one method remains after the previously
described procedure, one of the following static errors is
generated:

Static error during resolving of external Java function.
Ambiguous call to Java external function '<function>'

or
DataDirect XQuery User’s Guide and Reference

326 Chapter 12 Using Advanced Features
Static error during resolving of external Java function. No
matching Java external function found for '<function>'

Note that at execution time:

■ Standard Java late binding applies when invoking instance
methods.

■ If the XQuery external function resolves to an instance
method and at runtime the "this" argument evaluates to an
empty sequence, the following error is generated:

Runtime error. Value of this pointer is null in call to
external Java instance method.

NOTE: Generic methods introduced with J2SE 5.0 are not
supported.

Notes About Using Java Instance Methods

■ ddtek:javaObject can only be used when declaring a
SequenceType and cannot be used in any other XQuery
expression where a QName bound to a type is allowed such as
cast, treat as, and so on.

■ External variables of type ddtek:javaObject are not
supported.
DataDirect XQuery User’s Guide and Reference

Using External Functions 327
■ When possible, DataDirect XQuery keeps track of the exact
Java class that is associated with a given
ddtek:javaObject-typed expression. This can be useful when
trying to map a given function call to a Java method.

When tracking the underlying Java class is not possible, you
can use the DataDirect XQuery proprietary function,
ddtek:javaCast, to resolve this issue (see “ddtek:javaCast” on
page 416). DataDirect XQuery cannot track the underlying
Java class in the following situations:

• The ddtek:javaObject expression is the result of executing
a recursive function, for example:

declare namespace c1 = "ddtekjava:c1";
declare namespace c2 = "ddtekjava:c2";
declare namespace c3 = "ddtekjava:c3";
declare variable $e as xs:integer external;
declare function c1:c1() external;
declare function c2:c2() external;
declare function c3:f($this as ddtek:javaObject)
external;
declare function local:recursive($p as xs:integer)
as ddtek:javaObject {
if($p le 1) then c1:c1()
else if($p eq 2) then c2:c2()
else local:recursive($p - 2)
};
c3:f(local:recursive($e))

Assuming that there are two static c3:f methods, the first
taking an instance of c1 and the second taking an
instance of c2, DataDirect XQuery is unable to determine
statically which one to invoke and generates a static
error.

• The static type of an expression is a sequence (or union)
of different ddtek:javaObject types, for example:

declare namespace c1 = "ddtekjava:c1";
declare namespace c2 = "ddtekjava:c2";
declare namespace c3 = "ddtekjava:c3";
DataDirect XQuery User’s Guide and Reference

328 Chapter 12 Using Advanced Features
declare function c1:c1() external;
declare function c2:c2() external;
declare function c3:f($this as ddtek:javaObject)
external;
for $x in (c1:c1(),c2:c2()) return c3:f($x)

Assuming that there are two static c3:f methods, the first
taking an instance of c1 and the second taking an instance
of c2, DataDirect XQuery is unable to determine statically
which one to invoke and generates a static error.

■ Keeping in mind the preceding information about tracking
the extract Java class, it is possible to return a
ddtek:javaObject value from a query. A Java program
containing the query can retrieve the result by:

• Serializing the result by using one of the following
XQSequence methods: getSequenceAsString,
writeSequence, writeSequenceToSAX, or
writeSequenceToStream (see also Appendix D,
“Serialization Support”).

• Using the XQSequence getObject method, which returns
the Java object.

• Using the XQSequence getLexicalValue method.

NOTE: Using any other XQJ method to retrieve a
ddtek:javaObject value generates an error.

See also “Resolving Function Calls” on page 324.

Disabling Java Functions

You can disable the ability to invoke Java functions, for example,
for security reasons, by specifying the AllowJavaFunctions
property of DDXQDataSource. See “DDXQDataSource and
DDXQJDBCConnection Properties” on page 128.
DataDirect XQuery User’s Guide and Reference

Using External Functions 329
Using SQL Functions

DataDirect XQuery allows you to invoke any SQL function
provided by any supported database, including built-in database
functions and stored procedures. See “Example: SQL Function”
on page 317 for an example of invoking a SQL function.

Requirements and Restrictions

The requirements and restrictions for using SQL functions within
a query are:

■ You must declare the SQL function as an external function in
the http://www.datadirect.com/xquery/sql-function
namespace, which has a predefined prefix of ddtek-sql.

The following example first declares rtrim(), and then
invokes it within a query:

declare function ddtek-sql:rtrim($inp as xs:string) as xs:string external;
for $x in collection('items')//itemno
return
 <a>{ddtek-sql:rtrim(concat($x,' '))}

■ You must declare a JDBC Escape function as an external
function in the
http://www.datadirect.com/xquery/sql-jdbc-escape-function
namespace, which has a predefined prefix of ddtek-sql-jdbc.

■ Functions or procedures returning results through output
parameters are not supported.

■ Functions that return a table are supported if the table
function is defined in the source configuration file. This is
specified in the tableFunction element of the source
configuration file. See “Using SQL Table Functions” on
page 337 for more information.

■ The SequenceTypes for parameter and return values in the
external function declarations must match the mapping of
DataDirect XQuery User’s Guide and Reference

330 Chapter 12 Using Advanced Features
database data types to XML schema types as described in the
tables listed in “Data Type Mappings” on page 447.

■ The SQL function is not supported if the SQL function through
an argument or return type refers to a data type for which no
mapping is defined. See “Data Type Mappings” on page 447
for the mappings of database data types to XML schema
types.

■ The quantifier of the return type must be ? or 1.

Microsoft SQL Server Examples

This section presents examples of Microsoft SQL Server functions
and describes their equivalents in XQuery.

Example: ddtek-sql:STUFF

The STUFF function inserts the contents of one string in another.
The syntax of this function is:

STUFF(character_expr,start,length,character_expr)

The equivalent XQuery declaration is:

declare function ddtek-sql:STUFF(
 $p1 as xs:string?,
 $p2 as xs:integer,
 $p3 as xs:integer,
 $p4 as xs:string) as xs:string? external;

TIP: Although ddtek-sql:STUFF accepts null for its arguments, it is
a better idea to provide more precise SequenceType quantifier
information, as shown in the preceding XQuery declaration, if
the context in which the query is being executed allows such
optimization.
DataDirect XQuery User’s Guide and Reference

Using External Functions 331
An example query using ddtek-sql:STUFF is:

collection('users')//userid/ddtek-sql:STUFF(.,1,0,
 "userid=")

The results are:

userid=Jonathan
userid=Minollo

Example: ddtek-sql:STDEV

The STDEV function returns the standard deviation of a set of
values. The syntax of this function is:

STDEV(expression)

where expression is a numeric expression.

The equivalent XQuery declaration is:

declare function ddtek-sql:STDEV($p as xs:decimal*)
 as xs:double? external;

Because STDEV is an aggregate function, the quantifier of the
SequenceType for $p must be *.

IMPORTANT: You must use * as a quantifier for the argument of
the ddtek-sql:STDEV declaration. If you do not, a SQL error is
raised.

An example of invoking ddtek-sql:STDEV is:

declare function ddtek-sql:STDEV($p as xs:decimal*)
 as xs:double? external;
ddtek-sql:STDEV(collection('historical')//volume)

Assume that another invocation of ddtek-sql:STDEV within the
same query needs to operate on xs:double arguments. In this
situation, you cannot declare the argument of ddtek-sql:STDEV
as xs:decimal*. Instead, declare the argument as
xs:anyAtomicType*, as shown:

declare function ddtek-sql:STDEV($p as xs:anyAtomicType*)
DataDirect XQuery User’s Guide and Reference

332 Chapter 12 Using Advanced Features
 as xs:double? external;
ddtek-sql:STDEV(
 collection(' historical ')//volume/xs:decimal(.)),
ddtek-sql:STDEV(
 collection('historical')//actualclose/xs:double(.))

DB2 Examples

This section presents examples of DB2 functions and describes
their equivalents in XQuery.

Example: ddtek-sql:encrypt

The encrypt function returns an encrypted value. The syntax of
this function is:

encrypt(StringDataToEncrypt, PasswordOrPhrase,
 PasswordHint)

The equivalent XQuery declaration is:

declare function ddtek-sql:encrypt($data as xs:string,
 $password as xs:string,
 $hint as xs:string)
 as xs:string external;

An example query using ddtek-sql:encrypt is:

declare function ddtek-sql:encrypt($data as xs:string,
 $password as xs:string,
 $hint as xs:string)
 as xs:string external;

for $x in collection('users')/users
return
<user id='{$x/userid}' encrypted='{ddtek-sql:encrypt
 concat($x/firstname,$x/lastname,$x/othername),
 'secret','hint')}' />

This example returns:

<user
DataDirect XQuery User’s Guide and Reference

Using External Functions 333
 id="Jonathan"
 encrypted=
 "089B6504E404BFD568696E743A5B64F5A7838CEEEE66DE7F9C5CD92D5E70954C00A81E71"/>
<user
 id="Minollo"
 encrypted="08C04004E404A5D568696E742C93D28C8A2946BF74DB19F6CA6B27BD"/>

Example: ddtek-sql:variance

The variance function returns the variance of a set of numbers.
The syntax of this function is:

variance(numeric-expression)

The equivalent XQuery declaration is:

declare function ddtek-sql:variance($inp as xs:decimal*) as
 xs:double external;

An example query using ddtek-sql:variance is:

declare function ddtek-sql:variance($inp as xs:decimal*) as
 xs:double external;

for $x in
distinct-values(collection('historical')/historical/ticker)
return
<ticker-variance
 ticker='{$x}'
 variance='{ddtek-sql:variance(
 collection('historical')/historical[ticker eq
 $x]/adjustedclose)}' />

Because variance is an aggregate function, the quantifier of the
SequenceType for $inp must be *.

The example returns:

<ticker-variance ticker="AAPL" variance="136.3814396049211"/>
<ticker-variance ticker="ADBE" variance="302.2495900777491"/>
<ticker-variance ticker="AMZN" variance="559.4292663498876"/>
...
DataDirect XQuery User’s Guide and Reference

334 Chapter 12 Using Advanced Features
Oracle Examples

This section presents examples of Oracle functions and describes
their equivalents in XQuery.

Example: ddtek-sql:DECODE

The DECODE function behaves as a SQL IF-THEN-ELSE statement.
The syntax of this function is:

DECODE(expr, search, result
 [, search, result]...
 [, default]
)

This function is overloaded; therefore, it must be declared
multiple times, for example:

declare function ddtek-sql:DECODE(
 $p1 as xs:string,
 $p2 as xs:string,
 $p3 as xs:string,
 $p4 as xs:string) as xs:string external;
declare function ddtek-sql:DECODE(
 $p1 as xs:string,
 $p2 as xs:string,
 $p3 as xs:string,
 $p4 as xs:string,
 $p5 as xs:string,
 $p6 as xs:string) as xs:string external;

for $h in collection('holdings')/holdings
let $ticker := $h/stockticker
let $description := ddtek-sql:DECODE(
 $ticker,
 'PRGS','Progress Software Cooperation',
 fn:concat('Sorry but ',$ticker,' is not a recognized
 ticker'))
let $holder := ddtek-sql:DECODE(
 $h/userid,
 'Jonathan', 'Mr John',
 'Minollo', 'Senior Minollo',
DataDirect XQuery User’s Guide and Reference

Using External Functions 335
 '????')
return
 <who-owns-what
 description='{$description}'
 holder='{$holder}' />

This example returns:

<who-owns-what description="Progress Software Cooperation" holder="Mr John"/>
<who-owns-what description="Progress Software Cooperation"
 holder="Senior Minollo"/>
<who-owns-what description="Sorry but AMZN is not a recognized ticker"
 holder="Mr John"/>
<who-owns-what description="Sorry but AMZN is not a recognized ticker"
 holder="Senior Minollo"/>
...

Using User-Defined Functions

User-defined functions are available for all supported databases.
This section provides examples for DB2, Microsoft SQL Server,
and Oracle.

For the following examples, assume a user-defined function
named FUNC_TAN.

Example: DB2

CREATE FUNCTION FUNC_TAN (X DOUBLE) RETURNS DOUBLE
LANGUAGE SQL CONTAINS SQL NO EXTERNAL ACTION DETERMINISTIC
RETURN SIN(X)/COS(X)

Example: Microsoft SQL Server

CREATE FUNCTION FUNC_TAN (@X float) RETURNS float
BEGIN RETURN (SIN(@X)/COS(@X)) END
DataDirect XQuery User’s Guide and Reference

336 Chapter 12 Using Advanced Features
Example: Oracle

CREATE OR REPLACE FUNCTION FUNC_TAN (X IN FLOAT) RETURN
 FLOAT
IS TMP FLOAT;
BEGIN
TMP := SIN(X)/COS(X);
RETURN (TMP);
END;

The following XQuery expression declares and invokes the
function:

declare function ddtek-sql:FUNC_TAN($x as xs:double?)
 as xs:double? external;
for $v in collection('some_table')//some_numeric_column
return ddtek-sql:FUNC_TAN($v)

Using JDBC Scalar Functions

In addition to allowing you to invoke any SQL function provided
by any supported database, including built-in database functions,
DataDirect XQuery allows you to use JDBC scalar functions, which
are not database specific. Refer to the JDBC specification for a
complete list of JDBC scalar functions.

You must declare a JDBC scalar function in the
http://www.datadirect.com/xquery/sql-jdbc-escape-function
namespace, which has a predefined prefix of ddtek-sql-jdbc.

For example:

declare function ddtek-sql-jdbc:user() as xs:string external;
<holding-report generated-by='{ddtek-sql-jdbc:user()}'>{
 for $h in collection('holdings')/holdings
 return
 <holding-info userid="{$h/userid}" ticker="{$h/stockticker}" />
}</holding-report>
DataDirect XQuery User’s Guide and Reference

Using External Functions 337
Using SQL Table Functions

DataDirect XQuery supports table functions, including
user-defined table functions, for DB2, Informix, Oracle,
PostgreSQL, and Microsoft SQL Server.

To use SQL table functions, you must declare the function and
the structure of the returned table using the tableFunction
element in the source configuration file. See Appendix H
“Source Configuration File” on page 533 for details.

DB2 has a system table function, SYSPROC.DB_PARTITIONS, that
returns system information of the DB2 instance. (Refer to your
IBM DB2 documentation for details about this table function.) To
invoke this function, configure the source configuration file as
shown:

<schema name="SYSPROC">
...
 <tableFunction name="DB_PARTITIONS">
 <resultSet>
 <column name="PARTITION_NUMBER" schemaType="short"/>
 <column name="HOST_NAME" schemaType="string"/>
 <column name="PORT_NUMBER" schemaType="short"/>
 <column name="SWITCH_NAME" schemaType="string"/>
 </resultSet>
 </tableFunction>
...
</schema>

Once you have configured the source configuration file, declare
the function in the ddtek-sql namespace
(http://www.datadirect.com/xquery/sql-function) and use a
return type of document-node(element()). For example:

declare function ddtek-sql:XVS.SYSPROC.DB_PARTITIONS() as
 document-node(element()) external;
ddtek-sql:XVS.SYSPROC.DB_PARTITIONS()
DataDirect XQuery User’s Guide and Reference

338 Chapter 12 Using Advanced Features
One possible result for this example is:

<DB_PARTITIONS>
 <PARTITION_NUMBER>0</PARTITION_NUMBER>
 <HOST_NAME>the_host</HOST_NAME>
 <PORT_NUMBER>0</PORT_NUMBER>
 <SWITCH_NAME>the_switch_name</SWITCH_NAME>
</DB_PARTITIONS>

A second example:

declare function ddtek-sql:XVS.SYSPROC.DB_PARTITIONS() as
 document-node(element()) external;
for $x in ddtek-sql:XVS.SYSPROC.DB_PARTITIONS()/DB_PARTITIONS
return
 <partition number='{$x/PARTITION_NUMBER}' host='{$x/HOST_NAME}' />

One possible result for this example is:

<partition number="0" host="the_host"/>
DataDirect XQuery User’s Guide and Reference

339
A XQuery Support

This appendix describes how DataDirect XQuery supports
XQuery expressions, functions, and operators according to the
following specifications:

■ XQuery 1.0: An XML Query Language, W3C Recommendation
23 January 2007 located at:
http://www.w3.org/TR/2007/REC-xquery-20070123/

■ XQuery 1.0 and XPath 2.0 Data Model (XDM), W3C
Recommendation 23 January 2007 located at:
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/

■ XQuery 1.0 and XPath 2.0 Functions and Operators, W3C
Recommendation 23 January 2007 located at:
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/

■ XQuery 1.0 and XPath 2.0 Formal Semantics, W3C
Recommendation 23 January 2007 located at:
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/

■ XQuery 1.1 W3C Working Draft 3 December 2008 located at:
http://www.w3.org/TR/xquery-11/

Terminology

The tables in this appendix that present XQuery support
information use the following terms to describe this support for
both XML and relational sources.

Term Definition

Supported DataDirect XQuery supports the feature,
function, or operator with no exceptions.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xquery-11/
http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/

340 Appendix A XQuery Support
The numbers in the main section in this appendix correspond to
the sections in the XQuery 1.0 W3C Recommendation 23 January
2007 where that topic is discussed.

Except where noted, all features are supported for both XQuery
1.0 and XQuery 1.1. Features that are supported only in XQuery
1.1 are indicated with a symbol like this:

In This Appendix

This appendix contains the following sections:

■ “2 Basics” on page 341
■ “3 Expressions” on page 347
■ “4 Modules and Prologs” on page 357
■ “5 Conformance” on page 358
■ “Namespaces” on page 360

Supported with
comment

DataDirect XQuery supports the feature,
function, or operator with the comment
noted.

Not supported DataDirect XQuery does not support the
feature, function, or operator and raises an
error.

Term Definition
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xquery-20070123/
http://www.w3.org/TR/2007/REC-xquery-20070123/

2 Basics 341
2 Basics
This section describes how DataDirect XQuery supports the
following XQuery basics.

■ “Expression Context” on page 342
■ “Processing Model” on page 345
■ “Error Handling” on page 345
■ “Concepts” on page 346
■ “Types” on page 346
■ “Comments” on page 347
DataDirect XQuery User’s Guide and Reference

342 Appendix A XQuery Support
Expression Context

Table A-1 describes the XQuery expression context for DataDirect
XQuery.

Table A-1. XQuery Expression Context

XQuery Language Support

Static context

XPath 1.0 compatibility
mode

This setting is always false as required by the XQuery
specification.

Statically known
namespaces

Supported. See “Namespaces” on page 360 for details
on predefined namespaces.

Default element/type
namespace

The default value is no namespace. This value can be set
in the query prolog.

Default function
namespace

The default value is http://www.w3.org/2005/
xpath-functions. This value can be set in the query
prolog.

In-scope schema
definitions

Only predeclared types are supported. See “Supported
XQuery Atomic Types” on page 459 for a list of
supported types.

In-scope variables This is determined by the XQuery expression.

Context item static type Supported except for initial context item.

Function signatures See Appendix B “Functions and Operators” on page 361
for a list of supported XQuery functions. User-defined
functions are also supported.

Statically known collations The collations supported by the Java Virtual Machine.

Default collation Either the Java Virtual Machine collation or the one
specified in the source configuration file.

For relational sources, the default value is the collation
used by the database. To ensure consistency, make sure
that the collation used by the Java Virtual Machine is
compatible with the collation used by the database. If
multiple databases are used, make sure that their
collations are compatible.

See “Specifying Collations” on page 312 for instructions
on specifying collations.
DataDirect XQuery User’s Guide and Reference

2 Basics 343
Construction mode Supported with comment:

preserve is supported. strip is not supported.

Ordering mode Supported.

Default order for empty
sequences

The following algorithm is used:

1 The default is empty least.

2 The default is overwritten by the default ordering
behavior of the first JDBC connection defined using
XQJ or the source configuration file. The default
ordering of the first JDBC connection is defined by
the database:

DB2: empty greatest
Informix: empty least
Microsoft SQL Server: empty least
Oracle: empty greatest
PostgreSQL: empty greatest
Sybase: empty least

Boundary-space policy The default value is strip (white space is removed during
processing). This value may be set in the query prolog.

Copy-namespaces mode inherit,preserve mode is supported.

Base URI Supported. You can set this value in the query prolog or
in the DDXQDataSource class by configuring the BaseUri
property.

Statically known
documents

Not supported.

Statically known
collections

Data types of the data stored in database tables that
can be referenced with fn:collection() are statically
known although these data types cannot be accessed
from within the expression. See “Data Type Mappings”
on page 447 for a list of supported data types.

Statically known default
collection type

Not supported.

Table A-1. XQuery Expression Context (cont.)

XQuery Language Support
DataDirect XQuery User’s Guide and Reference

344 Appendix A XQuery Support
Dynamic context

Context item Supported, except for initial context item.

Context position Supported. Context-position dependent expressions are
compensated for relational sources.

Context size Supported.

Variable values Supported.

Function implementations Supported.

Current dateTime Supported. The current date and time are obtained
from the Java Virtual Machine; however, queries
executed against relational databases use the current
date and time of the database server.

Implicit timezone
(implementation-defined)

Supported. The timezone is obtained from the Java
Virtual Machine; however, queries executed against
relational databases use the current timezone of the
database server.

Available documents Supported. Available documents include XML files
accessed through http:, ftp:, and file: URI schemes using
fn:doc().

See “XML Data Sources” on page 116 for rules
governing URIs.

Available collections Supported. Available collections are determined by
which connections are configured. See “Specifying
Relational Database Tables” on page 118 for details.

Default collection Not supported.

Table A-1. XQuery Expression Context (cont.)

XQuery Language Support
DataDirect XQuery User’s Guide and Reference

2 Basics 345
Processing Model

Table A-2 describes how the XQuery processing model relates to
DataDirect XQuery.

Error Handling

Table A-3 describes how DataDirect XQuery handles errors.

Table A-2. XQuery Processing Model

XQuery Language Support

Data Model Generation For a description of data model generation from XML, see “Data
Model Representation of XML Documents” on page 117.

For a description of data model generation from relational
sources, see “Data Model Representation of Relational Tables”
on page 120.

Schema import processing Not supported.

Expression processing Supported.

Serialization Supported through XQJ. See Appendix D “Serialization Support”
on page 439 for details.

Consistency constraints DataDirect XQuery adheres to the consistency constraints as
listed in this section of the XQuery specification.

Table A-3. Error Handling

XQuery Language Support

Error reporting Supported. The static typing feature is also supported.
DataDirect XQuery User’s Guide and Reference

346 Appendix A XQuery Support
Concepts

Table A-4 describes how DataDirect XQuery works with some key
concepts defined by XQuery.

Types

Table A-5 describes how DataDirect XQuery handles XQuery
types.

Table A-4. XQuery Documents

XQuery Language Support

Document order Supported.

Atomization Supported.

Effective Boolean value Supported.

Input sources See fn:doc (15.5.4) and fn:collection (15.5.6).

URI literals Supported.

Table A-5. XQuery Types

XQuery Language Support

Predefined schema types Supported. See “Supported XQuery Atomic Types” on page 459
for a list of supported atomic types.

Typed value and string
value

Supported.

SequenceType syntax Supported.

SequenceType matching Supported. For queries evaluated against a relational database,
cardinality testing is not performed.
DataDirect XQuery User’s Guide and Reference

3 Expressions 347
Comments

Table A-6 describes how DataDirect XQuery supports comments.

3 Expressions
This section describes how DataDirect XQuery supports the
following XQuery expressions.

■ “Primary Expressions” on page 348
■ “Path Expressions” on page 349
■ “Sequence Expressions” on page 350
■ “Arithmetic Expressions” on page 350
■ “Comparison Expressions” on page 351
■ “Logical Expressions” on page 351
■ “Constructors” on page 352
■ “FLWOR Expressions” on page 353
■ “Ordered and Unordered Expressions” on page 353
■ “Conditional Expressions” on page 354
■ “Quantified Expressions” on page 354
■ “Expressions on SequenceTypes” on page 355
■ “Validate Expressions” on page 356
■ “Extension Expressions” on page 356

Table A-6. Comments

XQuery Language Support

Comments Supported.
DataDirect XQuery User’s Guide and Reference

348 Appendix A XQuery Support
Primary Expressions

Table A-7 describes how DataDirect XQuery supports XQuery
primary expressions.

Table A-7. XQuery Primary Expressions

XQuery Language Support

Literals) Supported.

For relational sources, the default encoding for string
literals is the encoding used by the database. You can set it
to Unicode using the option declaration
sql-unicode-literals.

By default, the precision and scale for decimals is:

DB2: 30, 15
Informix: 32, 15
Oracle: No default
PostgreSQL: No default
Microsoft SQL Server: 38,19
Sybase: 38, 19

You can override the database default by using the
sql-decimal-cast option declaration. See “Option
Declarations” on page 275 for details. Also, the following
constructor function creates a decimal that allows you to
set the precision and scale:

ddtek:decimal ($arg as xs:anyAtomicType?,
$precision as xs:integer, $scale as xs:integer)
as xs:decimal?

Variable references Supported.

Parenthesized expressions Supported.

Context item expression Supported, except for initial context item.

Function calls Supported.
DataDirect XQuery User’s Guide and Reference

3 Expressions 349
Path Expressions

Table A-8 describes how DataDirect XQuery supports path
expressions.

Table A-8. XQuery Path Expressions

XQuery Language Support

Steps

Axis Supported, except for the Full Axis feature.

Nodes tests Supported.

For relational sources, name tests and kind tests that specify
a name are not supported when the test is applied to a node
with a computed name. In such cases, an error is raised. For
example, the following XQuery raises an error:

for $h in collection(’holdings')/holdings/*
return
 document {
 element {name($h)} {string($h)}
 } / stockholder

Predicates Supported. Numeric predicates are compensated for
relational sources. See “Understanding Compensation” on
page 191.

Unabbreviated syntax Supported.

Abbreviated syntax Supported.
DataDirect XQuery User’s Guide and Reference

350 Appendix A XQuery Support
Sequence Expressions

Table A-9 describes how DataDirect XQuery supports sequence
expressions.

Arithmetic Expressions

Table A-10 describes how DataDirect XQuery supports arithmetic
expressions.

Table A-9. XQuery Sequence Expressions

XQuery Language Support

Constructing sequences Supported. Range expressions are compensated for
relational sources. See “Understanding Compensation” on
page 191.

Filter expressions Supported. Numeric predicates in filter expressions are
compensated for relational sources. “Understanding
Compensation” on page 191.

Combining node sequences Supported.

Table A-10. XQuery Arithmetic Expressions

XQuery Language Support

Arithmetic expressions Supported. For relational sources, see Appendix B “Functions
and Operators” on page 361 for restrictions.
DataDirect XQuery User’s Guide and Reference

3 Expressions 351
Comparison Expressions

Table A-11 describes how DataDirect XQuery supports
comparison expressions.

Logical Expressions

Table A-12 describes how DataDirect XQuery supports logical
expressions.

Table A-11. XQuery Comparison Expressions

XQuery Language Support

Value comparisons Supported.

General comparisons Supported.

Node comparisons Supported.

Table A-12. XQuery Logical Expressions

XQuery Language Support

Logical expressions Supported.
DataDirect XQuery User’s Guide and Reference

352 Appendix A XQuery Support
Constructors

Table A-13 describes how DataDirect XQuery supports
constructors.

Table A-13. XQuery Constructors

XQuery Language Support

Direct element constructors Supported.

Attributes Supported.

Namespace declaration
attributes

Supported.

Content Supported.

Boundary whitespace Supported.

Other direct constructors Supported.

Computed element
constructors

Supported.

Computed attribute
constructors

Supported.

Document node constructors Supported.

Text node constructors Supported.

Computed processing
instruction constructors

Supported.

Computed comment
constructors

Supported.

In-scope namespaces of a constructed element Supported. DataDirect XQuery only supports
inherit and preserve for the
copy-namespaces mode.
DataDirect XQuery User’s Guide and Reference

3 Expressions 353
FLWOR Expressions

Table A-14 describes how DataDirect XQuery supports FLWOR
expressions.

Ordered and Unordered Expressions

Table A-15 describes how DataDirect XQuery supports ordered
and unordered expressions.

Table A-14. XQuery FLWOR Expressions

XQuery Language Support

FLWOR expressions Supported. For relational sources, positional variables are
compensated. Also, relational sources do not support the
collation in order by clauses. Any specified collation is ignored
and sorting is performed according to the collation used by the
database.

See “Specifying Collations” on page 312 for more information
about using the collation parameter. See “Restructuring Data:
FLWOR Expressions” on page 84 for more information on using
FLWOR expressions in your XQuery.

Table A-15. XQuery Ordered and Unordered Expressions

XQuery Language Support

Ordered expressions Supported.

Unordered expressions Supported.
DataDirect XQuery User’s Guide and Reference

354 Appendix A XQuery Support
Conditional Expressions

Table A-16 describes how DataDirect XQuery supports
conditional expressions.

Quantified Expressions

Table A-17 describes how DataDirect XQuery supports quantified
expressions.

Table A-16. XQuery Conditional Expressions

XQuery Language Support

Conditional expressions Supported.

Table A-17. XQuery Quantified Expressions

XQuery Language Support

Quantified expressions Supported.
DataDirect XQuery User’s Guide and Reference

3 Expressions 355
Expressions on SequenceTypes

Table A-18 describes how DataDirect XQuery supports
expressions on SequenceTypes.

Table A-18. XQuery Expressions on Sequence Types

XQuery Language Support

Instance of Supported. Compensated for relational sources. See
“Understanding Compensation” on page 191.

Typeswitch Supported. Compensated for relational sources. See
“Understanding Compensation” on page 191.

Cast Supported. See “Supported XQuery Atomic Types” on page 459.

For relational sources, not all data types are supported. See
“Data Type Mappings” on page 447 for tables of supported
database data types and information about how they are
mapped to the XML schema data types. If the XML schema data
type specified in a cast expression is not supported, the cast
expression is compensated. See “Understanding Compensation”
on page 191.

Castable Supported. Compensated for relational sources. See
“Understanding Compensation” on page 191.

Constructor functions Supported.

For relational sources, not all constructor functions are
supported. See “5 Constructor Functions” on page 364 for
which types are supported. If an XQuery expression specifies a
constructor function that is not supported, the constructor
function is compensated. See “Understanding Compensation”
on page 191.

Treat Supported. Compensated for relational sources. See
“Understanding Compensation” on page 191.
DataDirect XQuery User’s Guide and Reference

356 Appendix A XQuery Support
Validate Expressions

Table A-19 describes how DataDirect XQuery supports validate
expressions.

Extension Expressions

Table A-20 describes how DataDirect XQuery supports extension
expressions.

Table A-19. XQuery Validate Expressions

XQuery Language Support

Validate expressions Not supported.

NOTE: DataDirect XQuery supports a built-in validate function,
ddtek:validate. See “ddtek:validate” on page 424.

Table A-20. XQuery Extension Expressions

XQuery Language Support

Extension expressions Supported. See “Using Extension Expressions” on page 285 for
details.
DataDirect XQuery User’s Guide and Reference

4 Modules and Prologs 357
4 Modules and Prologs
Table A-21 describes how DataDirect XQuery supports XQuery
modules and prologs.

Table A-21. XQuery Modules and Prologs

XQuery Language Support

Version declaration Supported. The version can be 1.0 or 1.1. If an encoding
declaration is specified, it is ignored. See “Specifying the
XQuery Version” on page 60 for more information.

Module declaration Supported.

Boundary-space
declaration

Supported.

Default collation
declaration

Supported. Any collation supported by the Java Virtual Machine
can be specified. See “Specifying Collations” on page 312 for
more information about collations.

Base URI declaration Supported.

Construction declaration Supported. DataDirect XQuery always implements preserve.

Ordering mode
declaration

Supported.

Empty order declaration Supported.

Copy-namespaces
declaration

Supported. DataDirect XQuery always implements inherit,
preserve.

Schema import Not supported.

Decimal-format
declaration

Supported for XQuery 1.1 only.

Module import Supported. See “Library Module URI Resolvers” on page 296.

Namespace declaration Supported.

Default namespace
declaration

Supported.

Variable declaration Supported.

 VarValue and VarDefaultValue declaration parts are
supported in XQuery 1.1 only.
DataDirect XQuery User’s Guide and Reference

358 Appendix A XQuery Support
5 Conformance
DataDirect XQuery fulfills the requirements of XQuery Minimal
Conformance.

Optional Features

Table A-22 describes how DataDirect XQuery supports optional
XQuery features. Some optional features are compensated for
relational sources; see “Understanding Compensation” on
page 191 for details.

Function declaration Supported.

Option declaration Supported. See “Option Declarations” on page 275 for details.

Context item declaration Supported for XQuery 1.1 only.

Table A-21. XQuery Modules and Prologs (cont.)

XQuery Language Support

Table A-22. XQuery Optional Features

XQuery Language Support

Schema import feature Not supported.

Schema validation feature Not supported.

Static typing feature Supported. See “Resolving Static Type Errors” on
page 573 for more information about static typing.

Full axis feature Supported. Compensated for relational sources.

Module feature Supported. See “Library Module URI Resolvers” on
page 296.
DataDirect XQuery User’s Guide and Reference

5 Conformance 359
Data Model Conformance

DataDirect XQuery supports the data types as described in
“Supported XQuery Atomic Types” on page 459. XML documents
are mapped to the Data Model using Infoset mapping.
Relational tables are mapped to the Data Model using SQL/XML
mappings and PSVI mapping.

Serialization feature Supported. See Appendix D “Serialization Support”
on page 439.

Trivial XML embedding feature Not supported.

Table A-22. XQuery Optional Features (cont.)

XQuery Language Support
DataDirect XQuery User’s Guide and Reference

360 Appendix A XQuery Support
Namespaces
This section lists predefined namespaces.

Predefined Namespaces (Not Reserved)

Table A-23 lists namespaces that are predefined, but not
reserved.

Table A-23. Predefined Namespaces

Namespace
Prefix

Namespace URI

xml http://www.w3.org/XML/1998/namespace

xs http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

fn http://www.w3.org/2005/xpath-functions

xdt http://www.w3.org/2005/xpath-datatypes

local http://www.w3.org/2005/xquery-local-functions
DataDirect XQuery User’s Guide and Reference

361
B Functions and Operators

This appendix describes how DataDirect XQuery supports the
following categories of XQuery functions and operators as
described in the XQuery 1.0 and XPath 2.0 Functions and
Operators, W3C Recommendation 23 January 2007 located at:
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/

In this appendix, numbered headings and items correspond to
the sections in the W3C Recommendation 23 January 2007
where that topic is discussed.

■ “2 Accessors” on page 362

■ “3 Error Function” on page 363

■ “4 Trace Function” on page 363

■ “5 Constructor Functions” on page 364

■ “6 Functions and Operators on Numerics” on page 367

■ “7 Functions on Strings” on page 369

■ “8 Functions and Operators for anyURI” on page 372

■ “9 Functions and Operators on Boolean Values” on page 373

■ “10 Functions and Operators on Durations, Dates, and Times”
on page 374

■ “11 Functions Related to QNames” on page 381

■ “12 Operators on base64Binary and hexBinary” on page 382

■ “13 Functions and Operators on NOTATION” on page 383

■ “14 Functions and Operators on Nodes” on page 383
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/

362 Appendix B Functions and Operators
■ “15 Functions and Operators on Sequences” on page 384

■ “16 Context Functions” on page 387

■ “17 Casting” on page 388

2 Accessors

Table B-1 describes how DataDirect XQuery supports XQuery
accessor functions. Some accessor functions are compensated for
relational sources; see “Understanding Compensation” on
page 191 for details.

Table B-1. XQuery Accessor Functions

XQuery Function Support

fn:node-name (2.1) Supported.

fn:nilled (2.2) Supported. Compensated for relational sources.

fn:string (2.3) Supported.

fn:data (2.4) Supported.

fn:base-uri (2.5) Supported. Compensated for relational sources.

fn:document-uri (2.6) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

363
3 Error Function

Table B-2 describes how DataDirect XQuery supports the XQuery
error function. The error function is compensated for relational
sources; see “Understanding Compensation” on page 191 for
details.

4 Trace Function

Table B-3 describes how DataDirect XQuery supports the XQuery
trace function. The trace function is compensated for relational
sources; see “Understanding Compensation” on page 191 for
details.

Table B-2. XQuery Error Function

XQuery Function Support

fn:error (3) Supported. Compensated for relational sources.

Table B-3. XQuery Trace Function

XQuery Function Support

fn:trace (4) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

364 Appendix B Functions and Operators
5 Constructor Functions

Each predefined XQuery atomic type has an associated
constructor function. Only those constructor functions that
operate on supported atomic types are supported. See
“Supported XQuery Atomic Types” on page 459 for a list of the
atomic types supported by DataDirect XQuery.

5.1 Constructor Functions for XML Schema
Built-in Types

Table B-4 describes how DataDirect XQuery supports the XQuery
constructor functions for XML schema built-in types. Some of
these constructor functions are compensated for relational
sources; see “Understanding Compensation” on page 191 for
details.

Table B-4. XQuery Constructor Functions for XML Schema Built-In Types

XQuery Function Support

xs:string (5.1) Supported.

xs:boolean (5.1) Supported.

xs:decimal (5.1) Supported.

xs:float (5.1) Supported. For relational sources, INF, -INF, and NaN are not
supported.

xs:double (5.1) Supported. For relational sources, INF, -INF, and NaN are not
supported.

xs:duration (5.1) Supported. Compensated for relational sources.

xs:dateTime (5.1) Supported.

xs:time (5.1) Supported.

xs:date (5.1) Supported.

xs:gYearMonth (5.1) Supported. Compensated for relational sources.

xs:gYear (5.1) Supported. Compensated for relational sources.

xs:gMonthDay (5.1) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

365
xs:gDay (5.1) Supported. Compensated for relational sources.

xs:gMonth (5.1) Supported. Compensated for relational sources.

xs:hexBinary (5.1) Supported. Compensated for relational sources.

xs:base64Binary (5.1) Supported. Compensated for relational sources.

xs:anyURI (5.1) Supported. Compensated for relational sources

xs:QName (5.1) Supported.

xs:normalizedString (5.1) Supported. Compensated for relational sources.

xs:token (5.1) Supported. Compensated for relational sources.

xs:language (5.1) Supported. Compensated for relational sources.

xs:NMTOKEN (5.1) Supported. Compensated for relational sources.

xs:Name (5.1) Supported. Compensated for relational sources.

xs:NCName (5.1) Supported. Compensated for relational sources.

xs:ID (5.1) Supported. Compensated for relational sources.

xs:IDREF (5.1) Supported. Compensated for relational sources.

xs:ENTITY (5.1) Supported. Compensated for relational sources.

xs:integer (5.1) Supported.

xs:nonPositiveInteger (5.1) Supported. Compensated for relational sources.

xs:negativeInteger (5.1) Supported. Compensated for relational sources.

xs:long (5.1) Supported.

xs:int (5.1) Supported.

xs:short (5.1) Supported.

xs:byte (5.1) Supported.

xs:nonNegativeInteger (5.1) Supported. Compensated for relational sources.

xs:unsignedLong (5.1) Supported. Compensated for relational sources.

xs:unsignedInt (5.1) Supported. Compensated for relational sources.

xs:unsignedShort (5.1) Supported. Compensated for relational sources.

xs:unsignedByte (5.1) Supported. Compensated for relational sources.

xs:positiveInteger (5.1) Supported. Compensated for relational sources.

xs:yearMonthDuration (5.1) Supported. Compensated for relational sources.

Table B-4. XQuery Constructor Functions for XML Schema Built-In Types (cont.)

XQuery Function Support
DataDirect XQuery User’s Guide and Reference

366 Appendix B Functions and Operators
5.2 A Special Constructor Function for
xs:dateTime

Table B-5 describes how DataDirect XQuery supports the Special
Constructor Function for xs:dateTime.

5.3 Constructor Functions for User-Defined
Types

Not supported.

xs:dayTimeDuration (5.1) Supported. Compensated for relational sources.

xs:untypedAtomic (5.1) Supported.

Table B-4. XQuery Constructor Functions for XML Schema Built-In Types (cont.)

XQuery Function Support

Table B-5. A Special Constructor Function for xs:dateTime

XQuery Function Support

fn:dateTime($arg1 as
xs:date, $arg2 as xs:time) as
xs:dateTime (5.2)

Supported.
DataDirect XQuery User’s Guide and Reference

367
6 Functions and Operators on Numerics

This section describes how DataDirect XQuery supports functions
and operators on numeric data types.

6.2 Operators on Numeric Values

Table B-6 describes how DataDirect XQuery supports operators
on numeric values.

Table B-6. XQuery Operators on Numeric Values

XQuery Operator Support

op:numeric-add (6.2.1) Supported.

op:numeric-subtract (6.2.2) Supported.

op:numeric-multiply (6.2.3) Supported.

op:numeric-divide (6.2.4) Supported.

For relational sources, an xs:float or xs:double value
divided by zero raises an error instead of returning INF or
–INF.

op:numeric-integer-divide (6.2.5) Supported.

op:numeric-mod (6.2.6) Supported.

op:numeric-unary-plus (6.2.7) Supported.

op:numeric-unary-minus (6.2.8) Supported.
DataDirect XQuery User’s Guide and Reference

368 Appendix B Functions and Operators
6.3 Comparison of Numeric Values

Table B-7 describes how DataDirect XQuery supports comparison
operators on numeric values.

6.4 Functions on Numeric Values

Table B-8 describes how DataDirect XQuery supports functions on
numeric values. Some of these functions are compensated for
relational sources; see “Understanding Compensation” on
page 191 for details.

Table B-7. XQuery Comparison Operators on Numeric Values

XQuery Operator Support

op:numeric-equal (6.3.1) Supported.

op:numeric-less-than (6.3.2) Supported.

op:numeric-greater-than (6.3.3) Supported.

Table B-8. XQuery Functions on Numeric Values

XQuery Function Support

fn:abs (6.4.1) Supported.

fn:ceiling (6.4.2) Supported. Compensated for Informix.

fn:floor (6.4.3) Supported.

fn:round (6.4.4) Supported.

fn:round-half-to-even (6.4.5) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

369
7 Functions on Strings

This section describes how DataDirect XQuery supports functions
on string data types.

7.2 Functions to Assemble and Disassemble
Strings

Table B-9 describes how DataDirect XQuery supports functions to
assemble and disassemble strings. All of these functions are
compensated for relational sources; see “Understanding
Compensation” on page 191 for details.

7.3 Equality and Comparison of Strings

Table B-10 describes how DataDirect XQuery supports functions
that provide equality and comparison operations on strings.
Some of these functions are compensated for relational sources;
see “Understanding Compensation” on page 191 for details.

Table B-9. XQuery Functions to Assemble and Disassemble Strings

XQuery Function Support

fn:codepoints-to-string (7.2.1) Supported. Compensated for relational sources.

fn:string-to-codepoints (7.2.2) Supported. Compensated for relational sources.

Table B-10. XQuery Functions for Equality and Comparison of Strings

XQuery Function Support

fn:compare (7.3.2) Supported. See “Specifying Collations” on page 312 for
information about using the collation parameter.

fn:codepoint-equal (7.3.3) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

370 Appendix B Functions and Operators
7.4 Functions on String Values

Table B-11 describes how DataDirect XQuery supports functions
on string values. Some of these functions are compensated for
relational sources; see “Understanding Compensation” on
page 191 for details.

Table B-11. XQuery Functions on String Values

XQuery Function Support

fn:concat (7.4.1) Supported.

fn:string-join (7.4.2) Supported. Compensated for relational sources.

fn:substring (7.4.3) Supported.

fn:string-length (7.4.4) Supported.

fn:normalize-space (7.4.5) Supported. Compensated for relational sources.

fn:normalize-unicode (7.4.6) Supported. Compensated for relational sources.

fn:upper-case (7.4.7) Supported.

fn:lower-case (7.4.8) Supported.

fn:translate (7.4.9) Supported. Compensated for relational sources, except in
this case:
fn:translate($arg as xs:string?, $mapString as
xs:string, $transString as xs:string) as xs:string

fn:translate() is not compensated if all of the following
conditions are true:

■ $mapString and $transString are literals.
■ No characters of $mapString appear in $transString,

and vice versa.
■ The underlying database is not Sybase.

fn:escape-uri (7.4.10) Supported. Compensated for relational sources.

fn:iri-to-uri (7.4.11) Supported. Compensated for relational sources.

fn:escape-html-uri (7.4.12) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

371
7.5 Functions Based on Substring Matching

Table B-12 describes how DataDirect XQuery supports functions
based on substring matching.

Table B-12. XQuery Functions Based on Substring Matching

XQuery Function Support

fn:contains (7.5.1) Supported. Compensated for Informix, except when the
second argument is a sting literal. See “Specifying Collations”
on page 312 for information about using the collation
parameter.

fn:starts-with (7.5.2) Supported. Compensated for Informix, except when the
second argument is a sting literal. See “Specifying Collations”
on page 312 for information about using the collation
parameter.

fn:ends-with (7.5.3) Supported. Compensated for Informix, except when the
second argument is a sting literal. See “Specifying Collations”
on page 312 for information about using the collation
parameter.

fn:substring-before (7.5.4) Supported. Compensated for Informix. See “Specifying
Collations” on page 312 for information about using the
collation parameter.

fn:substring-after (7.5.5) Supported. Compensated for Informix. See “Specifying
Collations” on page 312 for information about using the
collation parameter.
DataDirect XQuery User’s Guide and Reference

372 Appendix B Functions and Operators
7.6 String Functions That Use Pattern Matching

Table B-13 describes how DataDirect XQuery supports functions
that use pattern matching. All of these functions are
compensated for relational sources; see “Understanding
Compensation” on page 191 for details.

8 Functions and Operators for anyURI

Table B-14 describes how DataDirect XQuery supports functions
on the anyURI data type. The resolve-uri function is compensated
for relational sources; see “Understanding Compensation” on
page 191 for details.

Table B-13. String Functions That Use Pattern Matching

XQuery Function Support

fn:matches (7.6.2) Supported. Compensated for relational sources.

fn:replace (7.6.3) Supported. Compensated for relational sources, except if all of the
following conditions are true:

■ $pattern and $replacement are string literals.
■ $pattern is not a regular expression, does not contain

unescaped characters: (|) [] * ? + ^ $.
■ $replacement cannot include unescaped \ or $ characters.
■ The underlying database is not Sybase.

fn:tokenize (7.6.4) Supported. Compensated for relational sources.

Table B-14. XQuery anyURI Functions

XQuery Function Support

fn:resolve-uri (8.1) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

373
9 Functions and Operators on Boolean
Values

This section describes how DataDirect XQuery supports functions
and operators on the boolean data type.

9.1 Boolean Constructor Functions

Table B-15 describes how DataDirect XQuery supports boolean
constructor functions.

9.2 Operators on Boolean Values

Table B-16 describes how DataDirect XQuery supports operators
on boolean values.

Table B-15. XQuery Boolean Constructor Functions

XQuery Function Support

fn:true (9.1.1) Supported.

fn:false (9.1.2) Supported.

Table B-16. XQuery Operators on Boolean Values

XQuery Operator Support

op:boolean-equal (9.2.1) Supported.

op:boolean-less-than (9.2.2) Supported.

op:boolean-greater-than (9.2.3) Supported.
DataDirect XQuery User’s Guide and Reference

374 Appendix B Functions and Operators
9.3 Functions on Boolean Values

Table B-17 describes how DataDirect XQuery supports functions
on boolean values.

10 Functions and Operators on
Durations, Dates, and Times

This section describes how DataDirect XQuery supports functions
and operators on duration, date, and time data types.

10.1 and 10.2 Duration, Date, and Time Types

Table B-18 describes how DataDirect XQuery supports functions
on duration, date, and time data types. Some of these are
compensated for relational sources, see “Understanding
Compensation” on page 191 for details.

Table B-17. XQuery Functions on Boolean Values

XQuery Function Support

fn:not (9.3.1) Supported.

Table B-18. Functions on Duration, Date, and Time Data Types

XQuery Function Support

xs:dateTime (10.1) Supported. See comments for xs:dateTime (5.1).

xs:date (10.1) Supported.

xs:time (10.1) Supported. See comments for xs:time (5.1).

xs:gYearMonth (10.1) Supported. Compensated for relational sources.

xs:gYear (10.1) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

375
10.3 Two Totally Ordered Subtypes of Duration

DataDirect XQuery supports the xs:yearMonthDuration (10.3.1)
and xs:dayTimeDuration (10.3.2). For relational sources, these
two subtypes are compensated. See “Understanding
Compensation” on page 191.

10.4 Comparisons of Duration, Date, and Time
Values

Table B-19 describes how DataDirect XQuery supports
comparisons of duration, date, and time values. Some of the
comparison operators on duration, date, and time values are
compensated for relational sources; see “Understanding
Compensation” on page 191 for details.

xs:gMonthDay (10.1) Supported. Compensated for relational sources.

xs:gMonth (10.1) Supported. Compensated for relational sources.

xs:gDay (10.1) Supported. Compensated for relational sources.

Table B-18. Functions on Duration, Date, and Time Data Types

XQuery Function Support

Table B-19. XQuery Comparisons of Duration, Date, and Time Values

XQuery Operator Support

op:yearMonthDuration-equal
(10.4.1)

Supported. Compensated for relational sources.

op:yearMonthDuration-less-than
(10.4.2)

Supported. Compensated for relational sources.

op:yearMonthDuration-greater-than
(10.4.3)

Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

376 Appendix B Functions and Operators
op:dayTimeDuration-equal (10.4.4) Supported. Compensated for relational sources.

op:dayTimeDuration-less-than
(10.4.5)

Supported. Compensated for relational sources.

op:dayTimeDuration-greater-than
(10.4.6)

Supported. Compensated for relational sources.

op:duration-equal (10.4.7) Supported. Compensated for relational sources.

op:dateTime-equal (10.4.8) Supported.

op:dateTime-less-than (10.4.9) Supported.

op:dateTime-greater-than (10.4.10) Supported.

op:date-equal (10.4.11) Supported.

op:date-less-than (10.4.12) Supported.

op:date-greater-than (10.4.13) Supported.

op:time-equal (10.4.14) Supported.

op:time-less-than (10.4.15) Supported.

op:time-greater-than (10.4.16) Supported.

op:gYearMonth-equal (10.4.17) Supported. Compensated for relational sources.

op:gYear-equal (10.4.18) Supported. Compensated for relational sources.

op:gMonthDay-equal (10.4.19) Supported. Compensated for relational sources.

op:gMonth-equal (10.4.20) Supported. Compensated for relational sources.

op:gDay-equal (10.4.21) Supported. Compensated for relational sources.

Table B-19. XQuery Comparisons of Duration, Date, and Time Values (cont.)

XQuery Operator Support
DataDirect XQuery User’s Guide and Reference

377
10.5 Component Extraction Functions on
Durations, Dates, and Times

Table B-20 describes how DataDirect XQuery supports
component extraction functions. Some of these functions are
compensated for relational sources; see “Understanding
Compensation” on page 191 for details.

Table B-20. XQuery Component Extraction Functions

XQuery Function Support

fn:years-from-duration (10.5.1) Supported. Compensated for relational sources.

fn:months-from-duration (10.5.2) Supported. Compensated for relational sources.

fn:days-from-duration (10.5.3) Supported. Compensated for relational sources.

fn:hours-from-duration (10.5.4) Supported. Compensated for relational sources.

fn:minutes-from-duration (10.5.5) Supported. Compensated for relational sources.

fn:seconds-from-duration (10.5.6) Supported. Compensated for relational sources.

fn:year-from-dateTime (10.5.7) Supported.

fn:month-from-dateTime (10.5.8) Supported.

fn:day-from-dateTime (10.5.9) Supported.

fn:hours-from-dateTime (10.5.10) Supported. Compensated for Informix.

fn:minutes-from-dateTime (10.5.11) Supported. Compensated for Informix.

fn:seconds-from-dateTime (10.5.12) Supported. Compensated for Informix.

fn:timezone-from-dateTime (10.5.13) Supported. Compensated for relational sources.

fn:year-from-date (10.5.14) Supported.

fn:month-from-date (10.5.15) Supported.

fn:day-from-date (10.5.16) Supported.

fn:timezone-from-date (10.5.17) Supported. Compensated for relational sources.

fn:hours-from-time (10.5.18) Supported. Compensated for Informix.

fn:minutes-from-time (10.5.19) Supported. Compensated for Informix.

fn:seconds-from-time (10.5.20) Supported. Compensated for Informix.

fn:timezone-from-time (10.5.21) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

378 Appendix B Functions and Operators
10.6 Arithmetic Operators on Durations

Table B-21 describes how DataDirect XQuery supports arithmetic
operators on durations. All of these operators are compensated
for relational sources; see “Understanding Compensation” on
page 191 for details.

Table B-21. XQuery Arithmetic Operators on Durations

XQuery Operator Support

op:add-yearMonthDurations (10.6.1) Supported. Compensated for relational sources.

op:subtract-yearMonthDurations
(10.6.2)

Supported. Compensated for relational sources.

op:multiply-yearMonthDuration (10.6.3) Supported. Compensated for relational sources.

op:divide-yearMonthDuration (10.6.4) Supported. Compensated for relational sources.

op:divide-yearMonthDuration-by-year
MonthDuration (10.6.5)

Supported. Compensated for relational sources.

op:add-dayTimeDurations (10.6.6) Supported. Compensated for relational sources.

op:subtract-dayTimeDurations (10.6.7) Supported. Compensated for relational sources.

op:multiply-dayTimeDuration (10.6.8) Supported. Compensated for relational sources.

op:divide-dayTimeDuration (10.6.9) Supported. Compensated for relational sources.

op:divide-dayTimeDuration-by-dayTime
Duration (10.6.10)

Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

379
10.7 Timezone Adjustment on Dates and Time
Values

Table B-22 describes how DataDirect XQuery supports functions
and operators used to adjust timezones on dateTime, date, and
time values. All of these functions are compensated for
relational sources; see “Understanding Compensation” on
page 191 for details.

10.8 Arithmetic Operators on Durations, Dates,
and Times

Table B-23 describes how DataDirect XQuery supports operators
used to add and subtract durations from dateTime, date, and
time. All of these operators are compensated for relational
sources; see “Understanding Compensation” on page 191 for
details.

Table B-22. Functions for Timezone Adjustment on dateTime, date, and time Values

XQuery Function Support

fn:adjust-dateTime-to-timezone (10.7.1) Supported. Compensated for relational sources.

fn:adjust-date-to-timezone (10.7.2) Supported. Compensated for relational sources.

fn:adjust-time-to-timezone (10.7.3) Supported. Compensated for relational sources.

Table B-23. Operators for Adding and Subtracting Durations from dateTime, date,
and time

XQuery Operator Support

op:subtract-dateTimes (10.8.1) Supported. Compensated for relational
sources.

op:subtract-dates (10.8.2) Supported. Compensated for relational
sources.
DataDirect XQuery User’s Guide and Reference

380 Appendix B Functions and Operators
op:subtract-times (10.8.3) Supported. Compensated for relational
sources.

op:add-yearMonthDuration-to-dateTime
(10.8.4)

Supported. Compensated for relational
sources.

op:add-dayTimeDuration-to-dateTime (10.8.5) Supported. Compensated for relational
sources.

op:subtract-yearMonthDuration-from-dateTime
(10.8.6)

Supported. Compensated for relational
sources.

op:subtract-dayTimeDuration-from-dateTime
(10.8.7)

Supported. Compensated for relational
sources.

op:add-yearMonthDuration-to-date (10.8.8) Supported. Compensated for relational
sources.

op:add-dayTimeDuration-to-date (10.8.9) Supported. Compensated for relational
sources.

op:subtract-yearMonthDuration-from-date
(10.8.10)

Supported. Compensated for relational
sources.

op:subtract-dayTimeDuration-from-date
(10.8.11)

Supported. Compensated for relational
sources.

op:add-dayTimeDuration-from-date (10.8.12) Supported. Compensated for relational
sources.

op:subtract-dayTimeDuration-from-time
(10.8.13)

Supported. Compensated for relational
sources.

Table B-23. Operators for Adding and Subtracting Durations from dateTime, date,
and time (cont.)

XQuery Operator Support
DataDirect XQuery User’s Guide and Reference

381
11 Functions Related to QNames

This section describes how DataDirect XQuery supports functions
related to QNames.

11.1 Constructor Functions for QNames

Table B-24 describes how DataDirect XQuery supports
constructor functions for QNames. Some of these constructor
functions are compensated for relational sources; see
“Understanding Compensation” on page 191 for details.

11.2 Operators and Functions Related to
QNames

Table B-25 describes how DataDirect XQuery supports the
operators and functions related to QNames. Some of these
functions are compensated for relational sources; see
“Understanding Compensation” on page 191 for details.

Table B-24. Constructor Functions for QNames

XQuery Function Support

fn:resolve-QName (11.1.1) Supported. Compensated for relational sources.

fn:QName (11.1.2) Supported.

Table B-25. XQuery Operators and Functions Related to QNames

XQuery Operator or Function Support

op:QName-equal (11.2.1) Supported.

fn:prefix-from-Qname (11.2.2) Supported.

fn:local-name-from-QName (11.2.3) Supported.
DataDirect XQuery User’s Guide and Reference

382 Appendix B Functions and Operators
12 Operators on base64Binary and
hexBinary

Table B-26 describes how DataDirect XQuery supports
comparisons of base64Binary and hexBinary values. One of these
operators is compensated for relational sources; see
“Understanding Compensation” on page 191 for details.

fn:namespace-uri-from-QName (11.2.4) Supported.

fn:namespace-uri-for-prefix (11.2.5) Supported. Compensated for relational sources.

fn:in-scope-prefixes (11.2.6) Supported. Compensated for relational sources.

Table B-25. XQuery Operators and Functions Related to QNames (cont.)

XQuery Operator or Function Support

Table B-26. XQuery Comparisons of base64Binary and hexBinary Values

XQuery Operator Support

op:hexBinary-equal (12.1.1) Supported.

op:base64Binary-equal (12.1.2) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

383
13 Functions and Operators on
NOTATION

Table B-27 describes how DataDirect XQuery supports operators
that work with NOTATION.

14 Functions and Operators on Nodes

Table B-28 describes how DataDirect XQuery supports functions
and operators on nodes. One of these functions is compensated
for relational sources; see “Understanding Compensation” on
page 191 for details.

Table B-27. XQuery Operators on NOTATION

XQuery Operator Support

op:NOTATION-equal (13.1.1) Supported.

Table B-28. XQuery Functions and Operators on Nodes

XQuery Function or Operator Support

fn:name (14.1) Supported.

fn:local-name (14.2) Supported.

fn:namespace-uri (14.3) Supported.

fn:number (14.4) Supported.

fn:lang (14.5) Supported. Compensated for relational sources.

op:is-same-node (14.6) Supported.

op:node-before (14.7) Supported.

op:node-after (14.8) Supported.

fn:root (14.9) Supported.
DataDirect XQuery User’s Guide and Reference

384 Appendix B Functions and Operators
15 Functions and Operators on
Sequences

This section describes how DataDirect XQuery supports functions
and operators on sequences.

15.1 General Functions and Operators on
Sequences

Table B-29 describes how DataDirect XQuery supports functions
and operators on sequences. Some of these functions are
compensated for relational sources; see “Understanding
Compensation” on page 191 for details.

Table B-29. XQuery General Functions and Operators on Sequences

XQuery Function or Operator Support

fn:boolean (15.1.1) Supported.

op:concatenate (15.1.2) Supported

fn:index-of (15.1.3) Supported. See “Specifying Collations” on
page 312 for information about using the
collation parameter.

Compensated for relational sources.

fn:empty (15.1.4) Supported.

fn:exists (15.1.5) Supported.

fn:distinct-values (15.1.6) Supported. See “Specifying Collations” on
page 312 for information about using the
collation parameter.

fn:insert-before (15.1.7) Supported. Compensated for relational sources.

fn:remove (15.1.8) Supported. Compensated for relational sources.

fn:reverse (15.1.9) Supported. Compensated for relational sources.

fn:subsequence (15.1.10) Supported. Compensated for relational sources.

fn:unordered (15.1.11) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

385
15.2 Functions that Test Cardinality of
Sequences

Table B-30 describes how DataDirect XQuery supports functions
that test cardinality of sequences. All of these functions are
compensated for relational sources; see “Understanding
Compensation” on page 191 for details.

15.3 Equals, Union, Intersection, and Except

Table B-31 describes how DataDirect XQuery supports functions
and operators on equals, union, intersection, and except. Some
of these functions are compensated for relational sources; see
“Understanding Compensation” on page 191 for details.

Table B-30. XQuery Functions that Test Cardinality on Sequences

XQuery Function Support

fn:zero-or-one (15.2.1) Supported. Compensated for relational sources.

fn:one-or-more (15.2.2) Supported. Compensated for relational sources.

fn:exactly-one (15.2.3) Supported. Compensated for relational sources.

Table B-31. XQuery Functions and Operators on Equals, Union, Intersection, and
Except

XQuery Function or Operator Support

fn:deep-equal (15.3.1) Supported. See “Specifying Collations” on
page 312 for information about using the
collation parameter.

Compensated for relational sources.

op:union (15.3.2) Supported.

op:intersect (15.3.3) Supported.

op:except (15.3.4) Supported.
DataDirect XQuery User’s Guide and Reference

386 Appendix B Functions and Operators
15.4 Aggregate Functions

Table B-32 describes how DataDirect XQuery supports aggregate
functions.

15.5 Functions and Operators That Generate
Sequences

Table B-33 describes how DataDirect XQuery supports functions
and operators that generate sequences. Some of these functions
and operators are compensated for relational sources; see
“Understanding Compensation” on page 191 for details.

Table B-32. XQuery Aggregate Functions

XQuery Function Support

fn:count (15.4.1) Supported.

fn:avg (15.4.2) Supported.

fn:max (15.4.3)

fn:min (15.4.4)

Supported. See “Specifying Collations” on
page 312 for information about using the
collation parameter.

fn:sum (15.4.5) Supported.

Table B-33. XQuery Functions and Operators That Generate Sequences

XQuery Function or Operator Support

op:to (15.5.1) Supported. Compensated for relational sources.

fn:id (15.5.2) Supported. Compensated for relational sources.

fn:idref (15.5.3) Supported. Compensated for relational sources.

fn:doc (15.5.4) Supported. See “XML Data Sources” on page 116
for rules governing URIs.
DataDirect XQuery User’s Guide and Reference

387
16 Context Functions

Table B-34 describes how DataDirect XQuery supports context
functions. Some of these functions are compensated for
relational sources; see “Understanding Compensation” on
page 191 for details.

fn:doc-available (15.5.5) Supported.

fn:collection (15.5.6) Supported.

Table B-33. XQuery Functions and Operators That Generate Sequences (cont.)

XQuery Function or Operator Support

Table B-34. XQuery Context Functions

XQuery Function Support

fn:position (16.1) Supported. Compensated for relational sources.

fn:last (16.2) Supported. Compensated for relational sources.

fn:current-dateTime (16.3) Supported. For relational sources, values are
returned without timezones.

fn:current-date (16.4) Supported. For relational sources, values are
returned without timezones.

fn:current-time (16.5) Supported. For relational sources, values are
returned without timezones.

fn:implicit-timezone (16.6) Supported. Compensated for relational sources.

fn:default-collation (16.7) Supported. Compensated for relational sources.

fn:static-base-uri (16.8) Supported. Compensated for relational sources.
DataDirect XQuery User’s Guide and Reference

388 Appendix B Functions and Operators
17 Casting

Supported.
DataDirect XQuery User’s Guide and Reference

389
C Built-in Functions and Options

This appendix describes DataDirect XQuery built-in functions
and options. Unless stated otherwise, all functions and options
described in this chapter are supported for XQuery 1.1 and
XQuery 1.0.

This appendix contains the following sections:

■ “DataDirect XQuery Built-In Functions” on page 389
■ “HTTP Functions <request> Element” on page 433
■ “DataDirect XQuery Options” on page 437
■ “Namespaces” on page 437

DataDirect XQuery Built-In Functions
This section describes the following DataDirect XQuery built-in
functions:

■ ddtek:analyze-edi-from-string
■ ddtek:analyze-edi-from-url
■ ddtek:convert-to-xml
■ ddtek:decimal
■ ddtek:edi-to-xml-from-string
■ ddtek:edi-to-xml-from-url
■ ddtek:format-date
■ ddtek:format-date-time
■ ddtek:format-number
■ ddtek:format-time
■ ddtek:http-delete
■ ddtek:http-get
■ ddtek:http-head
DataDirect XQuery User’s Guide and Reference

390 Appendix C Built-in Functions and Options
■ ddtek:http-options
■ ddtek:http-post
■ ddtek:http-put
■ ddtek:http-trace
■ ddtek:info
■ ddtek:isValid
■ ddtek:javaCast
■ ddtek:ltrim, ddtek:rtrim, and ddtek:trim
■ ddtek:parse
■ ddtek:serialize
■ ddtek:serialize-to-url
■ ddtek:sql-delete
■ ddtek:sql-insert
■ ddtek:sql-update
■ ddtek:validate
■ ddtek:validate-and-report
■ ddtek:wscall

In addition, DataDirect XQuery supports the DB2 V9.1 for
Linux/UNIX/Windows, Microsoft SQL Server 2005, and
Oracle 10g R2 XQuery extensions through a set of built-in
(predeclared) XQuery functions that map one-to-one to the
database features. See “Querying XML on Microsoft SQL Server
2005” on page 497 and “Querying XML on Oracle” on page 490
for examples.

ddtek:analyze-edi-from-string

ddtek:analyze-edi-from-string analyzes an EDI stream and
provides an error report that describes any errors that will
prevent EDI messages from being converted to XML using the
ddtek:edi-to-xml-from-string function. The report generated by
ddtek:analyze-edi-from-string is used by
ddtek:edi-to-xml-from-string to filter messages that contain
errors, allowing processing of EDI sources that contain errors.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 391
This function is supported only for EDIFACT, HIPAA, and X12 EDI
dialects.

Function Declaration

declare function ddtek:analyze-edi-from-string(
 $url as xs:string,
 $edi as xs:string)
 as document-node(element(*, xs:untyped)) external;

where:

$url specifies the properties you want the EDI conversion engine
to use when converting the EDI stream to XML – EDI:tbl=yes, for
example.

To learn more about conversion properties, see the section "EDI
XML Converter Properties" in the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

$edi can be any EDI document in a supported dialect specified as
a string.

Note: ddtek:analyze-edi-from-string requires that XML
Converters are reachable in the current classpath and that a valid
XML Converters license is available.

See “Analyzing EDI to XML Conversions” on page 299 for more
information.

ddtek:analyze-edi-from-url

ddtek:analyze-edi-from-url analyzes an EDI stream and provides
an error report that describes any errors that will prevent EDI
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

392 Appendix C Built-in Functions and Options
messages from being converted to XML using the
ddtek:edi-to-xml-from-url function. The report generated by
ddtek:analyze-edi-from-url is used by ddtek:edi-to-xml-from-url
to filter messages that contain errors, allowing processing of EDI
sources that contain errors.

This function is supported only for EDIFACT, HIPAA, and X12 EDI
dialects.

Function Declaration

declare function ddtek:analyze-edi-from-url(
 $url as xs:string)
 as document-node(element(*, xs:untyped)) external;

where:

$url specifies the full path of the EDI source you want to convert,
as well as the properties you want the EDI conversion engine to
use when converting the EDI stream to XML –
EDI:tbl=yes?file:///c:/EDI/code99.x12, for example.

To learn more about conversion properties, see the section "EDI
XML Converter Properties" in the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

Note: ddtek:analyze-edi-from-url requires that XML Converters
are reachable in the current classpath and that a valid XML
Converters license is available.

See “Analyzing EDI to XML Conversions” on page 299 for more
information.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

DataDirect XQuery Built-In Functions 393
ddtek:convert-to-xml

ddtek:convert-to-xml allows you to convert non-XML data
passed as xs:string into XML using DataDirect XML Converters
expressed using the converter URI syntax. The source for the
XML data might have been extracted from a database, XML
document, or other sources.

Note: ddtek:convert-to-xml requires that XML Converters are
reachable in the current classpath and that a valid XML
Converters license is available.

Function Declaration

ddtek:convert-to-xml($input as xs:string, $options as xs:string) as
document-node(element(*,xs:untyped))

where:

$input is a character string

$options are properties used by the conversion engine when
converting to XML. Separate options with a colon (long=yes:tbl=
no, for example).

To learn more about conversion properties, see the section "EDI
XML Converter Properties" in the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

Example Using the EDI Converter

This example shows an EDI message being converted to XML
using the EDI converter:

let $edimessage := "ISA+00+ +00+ +01+1515151515
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

394 Appendix C Built-in Functions and Options
+01+5151515151 +041201+1217+^+00403+000032123+0+P+*'
GS+CT+9988776655+1122334455+20041201+1217+128+X+004030'
ST+831+00128001'
BGN+00+88200001+20041201'
N9+BT+88200001'
TRN+1+88200001'
AMT+2+100000'
QTY+46+1'
SE+7+00128001'
GE+1+128'
IEA+1+000032123'"
return
 ddtek:convert-to-xml($edimessage, "EDI:long=yes")

Example Using the CSV Converter

This example shows the CSV converter being used to convert a
simple comma-separated values file (submitted as a string) to
XML:

declare option ddtek:serialize "indent=yes";
ddtek:convert-to-xml("a,b,c", "CSV")

ddtek:decimal

ddtek:decimal allows you to specify precision and scale of a
decimal value. For example:

ddtek:decimal($v as xs:anyAtomicType?,$p as xs:integer,$s as xs:integer)
 as xs:decimal?

ddtek:edi-to-xml-from-string

ddtek:edi-to-xml-from-string allows you to convert an EDI stream
to XML when the EDI is stored in memory as a String datatype.
The report used as an input to this function, which is generated
by ddtek:analyze-edi-from-string, filters out errors in the EDI
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 395
source that would otherwise cause the conversion to fail. This
function is supported only for EDIFACT, HIPAA, and X12 EDI
dialects.

Function Declaration

declare function ddtek:edi-to-xml-from-string(
 $url as xs:string,
 $edi as xs:string,
 $report as document-node(element(*, xs:untyped)))
 as document-node(element(*, xs:untyped)) external;

where:

$url specifies the properties you want the EDI conversion engine
to use when converting the EDI stream to XML – EDI:tbl=yes, for
example.

To learn more about conversion properties, see the section "EDI
XML Converter Properties" in the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

$edi is any EDI document in a supported dialect.

$report is the report generated by the
ddtek:analyze-edi-from-string function.

Note: ddtek:edi-to-xml-from-string requires that XML Converters
are reachable in the current classpath and that a valid XML
Converters license is available.

See “Analyzing EDI to XML Conversions” on page 299 for more
information.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

396 Appendix C Built-in Functions and Options
ddtek:edi-to-xml-from-url

ddtek:analyze-edi-from-url allows you to convert an EDI stream
to XML.The report used as an input to this function, which is
generated by ddtek:analyze-edi-from-url, filters out errors in the
EDI source that would otherwise cause the conversion to fail. This
function is supported only for EDIFACT, HIPAA, and X12 EDI
dialects.

Function Declaration

declare function ddtek:edi-to-xml-from-url(
 $url as xs:string ,
 $report as document-node(element(*, xs:untyped)))
 as document-node(element(*, xs:untyped)) external;

where:

$url specifies the full path of the EDI source you want to convert,
as well as the properties you want the EDI conversion engine to
use when converting the EDI stream to XML –
EDI:tbl=yes?file:///c:/EDI/code99.x12, for example.

To learn more about conversion properties, see the section "EDI
XML Converter Properties" in the DataDirect XML Converters
User’s Guide and Reference manual. DataDirect XML Converters
documentation is installed as part of the DataDirect Data
Integration Suite, of which DataDirect XQuery is a part; you can
also find DataDirect XML Converters product documentation on
the DataDirect Web site.

$report is the report generated by the
ddtek:analyze-edi-from-url function.

Note: ddtek:edi-to-xml-from-url requires that XML Converters are
reachable in the current classpath and that a valid XML
Converters license is available.
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/techres/xmlconvertersproddoc/index.ssp

DataDirect XQuery Built-In Functions 397
See “Analyzing EDI to XML Conversions” on page 299 for more
information.

ddtek:format-date

The ddtek:format-date function can be used to format date
strings. Depending on your requirements, the
ddtek:format-date-time function can also be used for this
purpose.

The ddtek:format-date function is based on XSLT 2.0 date
formatting functions as defined in the XSL Transformations
(XSLT) Version 2.0 W3C Recommendation 23 January 2007. See
http://www.w3.org/TR/xslt20/#format-date for more
information.

Function Declarations

declare function ddtek:format-date($value as xs:date?, $picture as xs:string)
as xs:string?

declare function ddtek:format-date(
$value as xs:date?,
$picture as xs:string,
$language as xs:string?,
$calendar as xs:string?,
$country as xs:string?) as xs:string?

where:

$value is the date string to be formatted.

$picture is a sequence of variable markers and literal substrings
used to specify formatting of $value. See “Picture String”for
more information on specifying the $picture argument.

$language is the language to be used for the result of the
ddtek:format-date function. It is used for names (days, for
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xslt20/#format-date

398 Appendix C Built-in Functions and Options
example), numbers when expressed as words, hour convention,
and the first day of the week and month of the year (Sunday
versus Monday, for example). If the language is not specified,
DataDirect XQuery uses the language specified for the Java
Virtual Machine (JVM) where DataDirect XQuery is installed.

$calendar is the type of calendar whose conventions are to be
used to convert the string supplied in the $value argument to a
value in that calendar. If the calendar is not specified, DataDirect
XQuery uses the calendar specified for the Java Virtual Machine
(JVM) where DataDirect XQuery is installed.

$country is the country in which the event represented by the
date string occurs. Valid values are those specified by ISO 3166-1,
ISO 3166-2, and ISO 3166-3. If the country is not specified,
DataDirect XQuery uses the country specified for the Java Virtual
Machine (JVM) where DataDirect XQuery is installed.

For more information on $language, $calendar, and $country
arguments, see http://www.w3.org/TR/xslt20/#lang-cal-country in
the XSLT 2.0 specification.

Picture String

As described previously, the $picture argument is a sequence of
variable markers and literal substrings used to specify formatting
of $value. Variable markers are indicated using bracket pairs to
surround a specifier; values not in brackets are taken as literal
substrings. Consider the following picture string:

"[M]-[D]-[Y]"

Here, month (M), day (D), and year (Y) specifiers are separated by
dash (-) literal substrings. Note that whitespace in literal
substrings is preserved, so

"[M]-[D]-[Y]"

and
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xslt20/#lang-cal-country

DataDirect XQuery Built-In Functions 399
"[M] - [D] - [Y]"

yield different strings.

The following table summarizes commonly used specifiers:

Table 12-6. Common Picture String Specifiers

Specifier Description

Y Year

M Month in year

D Day in month

d Day in year

f Day of week

W Week in year

w Week in month

H Hour in day (24 hours)

h Hour in half-day (12 hours)

P am/pm marker

m Minute in hour

s Second in minute

f Fractional seconds

Z Timezone as a time offset from Coordinated
Universal Time (UTC); UTC+1, for example.
Also accepts conventional timezone
abbreviations (EST for Eastern Standard
Timezone, for example)

z Timezone as a time offset from Greenwich
Mean Time (GMT)

C Calendar (the name or abbreviation)

E The name of a baseline for the numbering of
years; the reign of a monarch, for example
DataDirect XQuery User’s Guide and Reference

400 Appendix C Built-in Functions and Options
For a complete description of the picture string, see
http://www.w3.org/TR/xslt20/#date-picture-string in the XSLT 2.0
specification.

Examples

The following list shows pairs of ddtek:format-date function
declarations and using an input value of $d, specified as
xs:date(’2002-12-31’). The complete XQuery code might look
like this, for example:

let $d := xs:date('2002-12-31')
return (
 ddtek:format-date($d, "[Y0001]-[M01]-[D01]")
)

This XQuery returns this string:

2002-12-31

Here are other examples of the ddtek:format-date function and
the XQuery result:

ddtek:format-date($d, "[M]-[D]-[Y]")
12-31-2002

ddtek:format-date($d, "[D]-[M]-[Y]")
31-12-2002

ddtek:format-date($d, "[D1] [MI] [Y]")
31 XII 2002

ddtek:format-date($d, "[D1o] [MNn], [Y]", "en", (), ())
31st December, 2002

ddtek:format-date($d, "[D01] [MN,*-3] [Y0001]", "en", (),
())
31 DEC 2002

ddtek:format-date($d, "[MNn] [D], [Y]", "en", (), ())
December 31, 2002

ddtek:format-date($d, "[D] [MNn], [Y]", "de", (), ())
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xslt20/#date-picture-string

DataDirect XQuery Built-In Functions 401
31 Dezember, 2002

ddtek:format-date($d, "[FNn] [D] [MNn] [Y]", "sv", (), ())
tisdag 31 december 2002

ddtek:format-date($d, "[[[Y0001]-[M01]-[D01]]]")
[2002-12-31]

ddtek:format-date($d, "[YWw]", "en", (), ())
Two Thousand and Two

ddtek:format-date($d, "[Dwo] [MNn]", "de", (), ())
einunddreißigste Dezember

ddtek:format-date-time

The ddtek:format-date-time function can be used to format
date-time strings. Depending on your requirements, the
ddtek:format-date and ddtek:format-time functions can also be
used for this purpose.

The ddtek:format-date-time function is based on XSLT 2.0 date
formatting functions as defined in the XSL Transformations
(XSLT) Version 2.0 W3C Recommendation 23 January 2007. See
http://www.w3.org/TR/xslt20/#format-date for more
information.

Function Declarations

declare function ddtek:format-dateTime($value as xs:dateTime?,
$picture as xs:string) as xs:string?

declare function ddtek:format-dateTime(
$value as xs:dateTime?,
$picture as xs:string,
$language as xs:string?,
$calendar as xs:string?,
$country as xs:string?) as xs:string?

See ddtek:format-date for a discussion of function arguments.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xslt20/#format-date

402 Appendix C Built-in Functions and Options
Examples

The following list shows pairs of ddtek:format-dateTime function
declarations and using an input value of $dt, specified as
xs:dateTime('2002-12-31T15:58:00'). The complete XQuery code
might look like this, for example:

let $dt := xs:dateTime('2002-12-31T15:58:00')
return (
 ddtek:format-dateTime($dt, "[h].[m01][Pn] on [FNn], [D1o]
[MNn]")
)

This XQuery returns this string:

3.58p.m. on Tuesday, 31st December

Here is another example of the ddtek:format-dateTime function
and the XQuery result:

 ddtek:format-dateTime($dt, "[M01]/[D01]/[Y0001] at [H01]:[m01]:[s01]")
 12/31/2002 at 15:58:00

ddtek:format-number

The ddtek:format-number function is used to format numbers.

The ddtek:format-number function is based on XSLT 2.0
format-number function as defined in the XSL Transformations
(XSLT) Version 2.0 W3C Recommendation 23 January 2007. See
http://www.w3.org/TR/xslt20/#format-number for more
information.

Function Declarations

declare function ddtek:format-number($number as numeric?, $format
as xs:string) as xs:string

declare function ddtek:format-number(
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xslt20/#format-number

DataDirect XQuery Built-In Functions 403
$number as numeric?,
$format as xs:string,
$decimal-separator as xs:string?,
$grouping-separator as xs:string?,
$infinity as xs:string?,
$minus-sign as xs:string?,
$NaN as xs:string?,
$percent as xs:string?,
$per-mille as xs:string?,
$zero-digit as xs:string?,
$digit as xs:string?,
$pattern-separator as xs:string?) as xs:string

where:

$number is the string representing the number you wantt o
format.

$format is the format to be used for the digit representation. The
default is #, but if you use the second function declaration you
can use the value specified for the digit parameter.

The second function declaration takes additional parameters, as
summarized in the following table.

Table 12-7. ddtek:format-number Function Parameters

Parameter Value Description

decimal-separator char Character used as the
decimal character. Default is
".".

grouping-separator char Character used as the
thousands separator. Default
is ",".

infinity string String used to represent
infinity. Default is "Infinity".

minus-sign char Character used to indicate
negative numbers. Default is
"-".
DataDirect XQuery User’s Guide and Reference

404 Appendix C Built-in Functions and Options
Note that when you use the second function declaration for
ddtek:format-number, you must specify all parameters, even
those for which you wish to use the default values. To indicate
that you wish to use a default value, specify the parameter as ().

Examples

Here are a few paired examples that show how to use the
ddtek:format-number function. The function is shown on the first
line; the result is shown on the second line.

These examples use the first function declaration:

ddtek:format-number(500100, "#")
500100

NaN string String used when the value is
not a number. Default is
"NaN".

percent char Character used as the
precent sign. Default is "%".

per-mille char Character used as the
per-thousand sign character.
Defaule is "‰".

zero-digit char Character used as the zero
digit. Decault is "0".

digit char Character used to indicate a
place where a digit is
required. Default is "#".

pattern-separator char Character used to separate
positive and negative
subpatterns in a format
pattern. Default is ";".

Table 12-7. ddtek:format-number Function Parameters

Parameter Value Description
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 405
ddtek:format-number(500100, "###,###.00")
500,100.00

ddtek:format-number(0.23456, "#%")
23%

The following examples use the second function declaration.
Here is an example that uses European style formatting for
numbers – that is, using the comma for the decimal point and
the period for the thousands separator:

ddtek:format-number(26825.8, "#.###,00", ",", ".", (), (), (), (), (), (),
(), ())

26.825,80

In this example, the $format argument is defined using a custom
digit format, D:

ddtek:format-number(123456789, "$DDD,DDD,DDD.DD", (), (), (), (), (), (), (),
(), 'D', ())

$123,456,789

Note that in both of these examples all parameters for the
ddtek:format-number declaration are specified.

ddtek:format-time

The ddtek:format-time function can be used to format time
strings. Depending on your requirements, the
ddtek:format-date-time function can also be used for this
purpose.

The ddtek:format-time function is based on XSLT 2.0 date
formatting functions as defined in the XSL Transformations
(XSLT) Version 2.0 W3C Recommendation 23 January 2007. See
http://www.w3.org/TR/xslt20/#format-date for more
information.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/xslt20/#format-date

406 Appendix C Built-in Functions and Options
Function Declarations

declare function ddtek:format-time($value as xs:time?, $picture as
xs:string) as xs:string?

declare function ddtek:format-time(
$value as xs:time?,
$picture as xs:string,
$language as xs:string?,
$calendar as xs:string?,
$country as xs:string?) as xs:string?

See ddtek:format-date for a discussion of function arguments.

Examples

The following list shows pairs of ddtek:format-time function
declarations and using an input value of $t, specified as
xs:time('15:58:00'). The complete XQuery code might look like
this, for example:

let $t := xs:time('15:58:00')
return (
 ddtek:format-time($t, "[h]:[m01] [PN]", "en", (), ())
)

This XQuery returns this string:

3.58 P.M.

Here are other examples of the ddtek:format-time function and
the XQuery result:

ddtek:format-time($t, "[h]:[m01]:[s01] [Pn]", "en", (), ())
3:58:00 p.m.

ddtek:format-time($t, "[h]:[m01]:[s01] [PN] [ZN,*-3]", "en", (), ())
3:58:00 P.M.

ddtek:format-time($t, "[h]:[m01]:[s01] o'clock [PN] [ZN,*-3]", "en", (), ())
3:58:00 o'clock P.M.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 407
ddtek:format-time($t,"[H01]:[m01]")
15:58

ddtek:format-time($t,"[H01]:[m01]:[s01].[f001]")
15:58:00.000

ddtek:format-time($t,"[H01]:[m01]:[s01] [z]", "en", (), ())
15:58:00

ddtek:format-time($t,"[H01]:[m01] Uhr [z]", "de", (), ())
15:58 Uhr

ddtek:http-delete

The ddtek:http-delete function requests that the server delete
the resource identified by the request URI. This function can be
overridden by human intervention (or other means) on the
server. Because of this, the client cannot be guaranteed that the
operation has been carried out, even if the status code returned
from the server indicates that the action has been completed
successfully. However, the server should not indicate success
unless, at the time the response is given, it intends to delete the
resource or move it to an inaccessible location.

Successful responses are:

■ 200 (OK) – the response includes a response body describing
the status

■ 202 (Accepted) – the action has not yet been enacted

■ 204 (No Content) – the action has been enacted but the
response does not include a response body

Note that responses to this function are not cacheable.

If the request passes through a cache and the URI identifies one
or more currently cached entities, those entries should be
treated as stale.
DataDirect XQuery User’s Guide and Reference

408 Appendix C Built-in Functions and Options
Function Declarations

declare function ddtek:http-delete($url as xs:string) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-delete($url as xs:string,
$request as element()?) as
document-node(element(*,xs:untyped)) external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example).

$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request> Element”
on page 433 for more information.

ddtek:http-get

The ddtek:http-get function retrieves whatever information (in
the form of an entity) is identified by the Request-URI. For
example, if the Request-URI refers to a data-producing process, it
is the produced data that is returned as the entity in the response
and not the source text of the process, unless that text happens
to be the output of the process.

The semantics of the GET method change to a "conditional GET"
if the request message includes an If-Modified-Since,
If-Unmodified-Since, If-Match, If-None-Match, or If-Range header
field. A conditional GET method requests that the entity be
transferred only under the circumstances described by the
conditional header field(s). This reduces unnecessary network
usage by allowing cached entities to be refreshed without
requiring multiple requests or transferring data already held by
the client.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 409
If a Range header field is included, the request is for only the
part of the entity specified by the range header. This allows
partially retrieved entities to be completed without transferring
previously received data.

Function Declarations

declare function ddtek:http-get($url as xs:string) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-get($url as xs:string, $request
as element()?) as document-node(element(*,xs:untyped))
external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example).

$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request>
Element” on page 433 for more information.

ddtek:http-head

The ddtek:http-head function is identical to the GET method
except that the server must not return a message-body in the
response. The meta-information contained in the HTTP headers
in response to a HEAD request should be identical to the
information sent in response to a GET request. This allows a
client to obtain meta-information about a resource without
actually transferring the resource itself.

The head function is often used for testing hyperlinks,
accessibility and for determining if a document has been
recently modified.
DataDirect XQuery User’s Guide and Reference

410 Appendix C Built-in Functions and Options
When your program is implementing caching, it is important to
note that if the HEAD response indicates that the cached entity
differs from the current entity, such as by a change in the
Content-Length, Content-MD5, ETag or Last-Modified, the cache
must treat the cached entry as stale.

Function Declarations

declare function ddtek:http-head($url as xs:string) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-head($url as xs:string,
$request as element()?) as
document-node(element(*,xs:untyped)) external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example).

$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request> Element”
on page 433 for more information.

ddtek:http-options

The ddtek:http-options function represents a request for
information about the communication options available on the
request/response chain identified by the request URI.

This function allows the client to determine the options and/or
requirements associated with a resource, or the capabilities of a
server, without implying a resource action or initiating resource
retrieval.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 411
Function Declarations

declare function ddtek:http-options($url as xs:string) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-options($url as xs:string,
$request as element()?) as
document-node(element(*,xs:untyped)) external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example).

$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request>
Element” on page 433 for more information.

ddtek:http-post

The ddtek:http-post function is used to request that the origin
server (that is, the server hosting the resource) accept the entity
enclosed in the request as a new subordinate of the resource
identified by the Request-URI in the Request-Line. Essentially this
means that the POST data will be stored by the server and
usually will be processed by a server side application.

The ddtek:http-post function is designed to allow a uniform
approach to the following types of Web service application
activities:

■ Annotating existing resources

■ Posting a message to a bulletin board, newsgroup, mailing
list, or similar group of articles

■ Providing a block of data, such as the result of submitting a
form, to a data-handling process
DataDirect XQuery User’s Guide and Reference

412 Appendix C Built-in Functions and Options
■ Extending a database through an append operation

It is generally expected that a POST request will have some side
effect on the server, such as writing to a database, and the HTTP
specification suggests that user agents represent user actions
which result in a POST request in a special way, so that the user is
made aware of the fact that a possibly unsafe action is being
requested. This however, is not a requirement.

Function Declarations

declare function ddtek:http-post($url as xs:string,
$payload as item()?) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-post($url as xs:string,
$payload as item()?, $request as element()?) as
document-node(element(*,xs:untyped)) external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example).

$payload is an element that contains the service response.

$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request> Element”
on page 433 for more information.

ddtek:http-put

The ddtek:http-put function requests that the enclosed entity be
stored under the supplied URI. If the URI refers to an already
existing resource, the enclosed entity should be considered as a
modified version of the one residing on the origin server. If the
URI does not point to an existing resource, and that URI is
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 413
capable of being defined as a new resource by the requesting
user agent, the origin server can create the resource with that
URI.

If the request passes through a cache and the URI identifies one
or more currently cached entities, those entries should be
treated as stale. Responses to this function are not cacheable.

The fundamental difference between POST and PUT requests is
reflected in the different meaning of the request URI. The URI in
a POST request identifies the resource that will handle the
enclosed entity. That resource might be a data-accepting
process, a gateway to some other protocol, or a separate entity
that accepts annotations. In contrast, the URI in a PUT request
identifies the entity enclosed with the request – the user agent
knows what URI is intended and the server must not attempt to
apply the request to some other resource.

Unless otherwise specified for a particular entity-header, the
entity-headers in the PUT request should be applied to the
resource created or modified by the PUT.

Function Declarations

declare function ddtek:http-put($url as xs:string, $payload
as item()?, $request as element()?) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-put($url as xs:string, $payload
as item()?) as document-node(element(*,xs:untyped))
external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example).

$payload is an element that contains the service response.
DataDirect XQuery User’s Guide and Reference

414 Appendix C Built-in Functions and Options
$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request> Element”
on page 433 for more information.

ddtek:http-trace

The ddtek:http-trace function is primarily used for debugging
and testing purposes, and simply requests that the server echo
back the request it received. This can be useful for identifying any
changes to the request that is made by proxies.

The http-trace function is used to invoke a remote,
application-layer loop-back of the request message. The final
recipient of the request should reflect the message received back
to the client as the entity-body of a 200 (OK) response. The final
recipient is either the origin server or the first proxy or gateway
to receive a max-Forwards value of zero (0) in the request (see
section 14.31 of RFC2616).

Function Declarations

declare function ddtek:http-trace($url as xs:string) as
document-node(element(*,xs:untyped)) external;

declare function ddtek:http-trace($url as xs:string,
$request as element()?) as
document-node(element(*,xs:untyped)) external;

where:

$url is the URI of the origin server resource
(http://www.examples.xquery.com, for example)

$request is a set of options specified as <request> element
attributes to be consumed by the origin server (a username and
password, for example). See “HTTP Functions <request> Element”
on page 433 for more information.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 415
ddtek:info

Simple function that returns DataDirect XQuery version and
build information and Java system properties for your
DataDirect XQuery installation.

The function declaration for ddtek:info is:

declare function ddtek:info() as document-node() external;

The ddtek:info function returns <ddxq> and <java> elements, a
sample of which is shown here:

<info xmlns="">
 <ddxq>
 <name>DataDirect XQuery</name>
 <version>4.0</version>
 <build>R0693</build>
 <build-date>Wed May 27 20:03:55 CEST 2009</build-date>
 </ddxq>
 <java>
 <java.runtime.name>Java(TM) SE Runtime Environment</java.runtime.name>
 <sun.boot.library.path>C:\Program
Files\Java\jre1.6.0_03\bin</sun.boot.library.path>
 <java.vm.version>1.6.0_03-b05</java.vm.version>
 <java.vm.vendor>Sun Microsystems Inc.</java.vm.vendor>
 <java.vendor.url>http://java.sun.com/</java.vendor.url>
 <path.separator>;</path.separator>
 <java.vm.name>Java HotSpot(TM) Client VM</java.vm.name>
 <file.encoding.pkg>sun.io</file.encoding.pkg>
 <user.country>US</user.country>
 <sun.os.patch.level>Service Pack 3</sun.os.patch.level>

...
</java>

</info>

NOTE: The specific subelements of the <java> element vary
based on your installation.
DataDirect XQuery User’s Guide and Reference

416 Appendix C Built-in Functions and Options
ddtek:isValid

This function is similar to ddtek:validate but instead of returning
$arg1 unchanged, it returns a boolean indicating whether it is
valid for the specified XML Schema. Unlike ddtek:validate,
ddtek:isValid does not cause the XQuery execution to throw an
exception when the validation fails. An exception is thrown,
however, if $schema does not resolve to a valid XML Schema
resource.

The function declaration for ddtek:isValid is:

declare function ddtek:isValid($arg1 as node(), $schema as xs:string) as
xs:boolean external;

NOTE: Using this function can degrade performance, depending
on the size of the node to be validated and the complexity of the
XML schema used to do the validation.

ddtek:javaCast

When possible, DataDirect XQuery keeps track of the exact Java
class that is associated with a given ddtek:javaObject-typed
expression. This is needed to map a given function call to a Java
method. When DataDirect XQuery is unable to resolve the exact
Java class statically, for example when passing ddtek:javaObject
as a parameter to or a result from recursive XQuery functions,
you can help DataDirect XQuery resolve the Java class by
specifying the exact class through ddtek:javaCast. See “Notes
About Using Java Instance Methods” on page 326 for
information about tracking Java classes.

When you use ddtek:javaCast, DataDirect XQuery assumes
statically that the Java class of the expression that is cast is the
class specified in the second argument of the call to the function.
At runtime, the object is cast to the specified class. For example:

declare namespace A = "ddtekjava:com.ddtek.ejf.A";
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 417
declare namespace B = "ddtekjava:com.ddtek.ejf.B";

declare function A:A() as ddtek:javaObject external;
declare function A:f($this as ddtek:javaObject) as
xs:string external;

declare function local:f($arg1 as ddtek:javaObject, $count
 as xs:integer)
 as ddtek:javaObject {
if ($count eq 0)
then
 $arg1
else
 local:f($arg1, $count - 1)
};

let $a := local:f(A:A(), 1)
return A:f(ddtek:javaCast($a, "com.ddtek.qa.ejf.A"))

In this example, DataDirect XQuery cannot determine the class
of the object that is returned by the local:f (recursive) function.
By using ddtek:javaCast, any possible ambiguity is resolved. If, at
runtime, the ddtek:javaCast operation fails, DataDirect XQuery
raises an error.

ddtek:ltrim, ddtek:rtrim, and
ddtek:trim

These three built-in functions trim whitespaces:

■ ddtek:ltrim – trims whitespaces to the left of a character
string

■ ddtek:rtrim – trims whitespaces to the right of a character
string

■ ddtek:trim – trims whitespaces to the right and left of a
character string
DataDirect XQuery User’s Guide and Reference

418 Appendix C Built-in Functions and Options
The function declarations for the DataDirect XQuery trim
functions is:

ddtek:ltrim($string as xs:string?) as xs:string?
ddtek:rtrim($string as xs:string?) as xs:string?
ddtek:trim($string as xs:string?) as xs:string?

where $string is the character string that is to be trimmed.

For example:

ddtek:rtrim(" Gustavo ")

returns:

" Gustavo"

and

ddtek:trim(" Gustavo ")

returns:

"Gustavo"

ddtek:parse

ddtek:parse creates an XQuery Data Model instance from a string
value, assuming the string contains well-formed XML. You can
use this function to query XML information stored in character
columns in database tables. When a database does not support
an XML data type, sometimes XML information is stored in
character columns. In such cases, ddtek:parse allows you to query
the XML character data and use it as an XML data source.

The function declaration for ddtek:parse is:

ddtek:parse($arg as xs:string) as document-node(element(*,xs:untyped))

where $arg is a well-formed XML document. If $arg is not a
well-formed XML document, the query execution is aborted and
an exception can be handled at the XQJ level.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 419
Assume a database table is created as:

create table xmltab (key int primary key, xmlval varchar(2000))
insert into xmltab values(1,'<a>111')
insert into xmltab values(2,'<a>222')

The following query returns the key value and b elements from
the xmlval column for every b element that contains a value
greater than 10:

for $x in collection('xmltab')/xmltab
let $y := ddtek:parse($x/xmlval)//b[xs:integer(.) > 10]
return (data($x/key),$y)

ddtek:serialize

This built-in function controls the process of serializing the query
results into XML, XHTML, or HTML notation as specified by
XQuery 1.0: An XML Query Language, W3C Recommendation 23
January 2007 located at:
http://www.w3.org/TR/2007/REC-xquery-20070123/

The function declaration for ddtek:serialize is:

ddtek:serialize($items as item()*, $options as xs:string) as xs:string

where:

$items specifies the sequence that is to be serialized.

$options specifies the serialization options. See Appendix D
“Serialization Support” on page 439 for the serialization
parameters that you can set using this function.

For example:

ddtek:serialize(<books><book/></books>, "indent=yes, omit-xml-declaration=no")

returns the xs:string instance:

<?xml version="1.0"?>
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xquery-20070123/

420 Appendix C Built-in Functions and Options
<books>
 <book/>
</books>

ddtek:serialize-to-url

ddtek:serialize-to-url is equivalent to ddtek:serialize except that
instead of returning a string of characters, it writes the result to
I/O, allowing you to serialize XML nodes to a specified URI. This
function takes advantage of DataDirect XQuery Streaming XML
technique, avoiding the need to load the entire input value into
memory. See “Querying Large XML Documents” on page 177 to
learn more about Streaming XML.

The function declaration for ddtek:serialize-to-url is:

ddtek:serialize-to-url(($items as item()*, $url as
xs:string, $options as xs:string))

where:

$items specifies the input that is to be serialized.

$url specifies the URI where the result needs to be written. $url
must be one of the standard URL schemes supported by Java. If
no URL scheme is used, "file:" is implied. If the specified URI
references an existing file, the file is overwritten; otherwise it is
created.

To specify a ZIP as the target for ddtek:serialize-to-url, prefix the
file URI with zip:. You can use the auto-create="yes" option to
specify the creation of a new ZIP file. See “Working with ZIP
Files” for more information.

$options specifies the serialization options. See Appendix D
“Serialization Support” on page 439 for the serialization
parameters that you can set using this function.

For example:
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 421
ddtek:serialize-to-url(<books><book/></books>, file:///c:/result.xml,
"indent=yes, omit-xml-declaration=no")

creates a file c:/result.xml on the file system with content:

<?xml version="1.0"?>
<books>
 <book/>
</books>

Working with ZIP Files

In addition to creating new XML documents, you can use
ddtek:serialize-to-url to create ZIP files, and to create new
entries in existing ZIP files.

This example shows how to add a new entry to an existing ZIP
file. Note the use of the zip: prefix for the file URL:

ddtek:serialize-to-url(<e/>, "zip:file:///C:/tmp/test.zip!/dir/file.xml", "")

This example shows how to add a new entry to a new ZIP file,
which results from specifying the auto-create="yes" option:

ddtek:serialize-to-url(<e/>,
"zip:file:///C:/tmp/test.zip!/dir/file.xml?auto-create=yes", "")

ddtek:sql-delete

The ddtek:sql-delete built-in function deletes records in a
database table.

The function declaration for ddtek:sql-delete is:

declare updating function ddtek:sql-delete(
 row as element()*) external;

where:
DataDirect XQuery User’s Guide and Reference

422 Appendix C Built-in Functions and Options
row identifies the records to be deleted. Each item in the
sequence must be a row element of the database table returned
by a previous fn:collection call.

The following example deletes all of the records in the holdings
database table where the userid column equals Minollo.

ddtek:sql-delete(collection("holdings")/holdings[userid = "Minollo"])

Other examples can be found in the RDBMSUpdate example.

ddtek:sql-insert

The ddtek:sql-insert built-in function inserts a single record in a
database table.

The function declaration for ddtek:sql-insert is:

declare updating function ddtek:sql-insert(
 table as xs:string,
 column as xs:string,
 value as item()*,
 ...) external;

where:

table is the database table in which to insert the record. The
semantics of table are equivalent to those for fn:collection; see
“Specifying Relational Database Tables” on page 118.

column is the column of the database table in which to insert a
value.

value is the value to insert into the specified column.

column and value are a pair in a variable argument list. If column is
specified without value, an error is raised. You can specify
multiple values for this pair, as shown in the example.
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 423
The following example inserts a new record with three columns
into the holdings table. The columns and their values are
userid=Minollo, stockticker=TIVO, and shares=200.

ddtek:sql-insert("holdings", "userid", "Minollo", "stockticker", "TIVO",
 "shares", 200)

Other examples can be found in the RDBMSUpdate example.

ddtek:sql-update

The ddtek:sql-update built-in function updates records in a
database table.

The function declaration for ddtek:sql-update is:

declare updating function ddtek:sql-update(
 row as element()*,
 column as xs:string,
 value as item()*,
 ...) external;

where:

row identifies the records in the database table to update. Each
item in the sequence must be a row element of the database
table returned by a previous fn:collection call.

column is the column of the database table to update.

value is the new value for the specified column.

column and value are a pair in a variable argument list. If column
is specified without value, an error is raised.

The following example updates a record in the holdings table –
in particular, the record where the userid column equals Minollo
and the stockticker column equals PRGS. In this record, the
shares column is updated to 500.
DataDirect XQuery User’s Guide and Reference

424 Appendix C Built-in Functions and Options
ddtek:sql-update(
 collection("holdings")/holdings[userid="Minollo" and stockticker="PRGS"],
 "shares", 500)

Other examples can be found in the RDBMSUpdate example.

ddtek:validate

ddtek:validate allows you to validate an XML element or
document node against an element declaration in an XML
Schema. Use this function if it is important to validate that:

■ An XQuery expression is creating XML results that comply
with a given XML Schema declaration

■ The XML information provided through an external variable,
for example, complies with a given XML Schema before
processing it

NOTE: Using this function can degrade performance, depending
on the size of the node to be validated and the complexity of the
XML Schema used to do the validation.

See the section ddtek:isValidto learn about alternatives to the
ddtek:validate function

The function declaration for ddtek:validate is:

ddtek:validate($arg1 as node(), $arg2 as xs:string)as node() external;

where:

$arg1 is either an XML element or a document node.

$arg2 is a valid URI. If $arg2 is a relative URI, it is resolved using
the base URI of the XQuery expression.

The function attempts to validate $arg1 against the XML Schema
referred to by $arg2. If the validation succeeds, the function
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 425
returns $arg1 unchanged. If the validation fails, DataDirect
XQuery raises an error.

The following example first validates the input (req.xml) against
the input XML Schema, req.xsd. Then, before returning the
results, validates the results against the output XML Schema,
reply.xsd.

Assume an XML document, req.xml, containing the following
data:

<request-user-holdings>
 <user id="Minollo"/>
 <user id="Jonathan"/>
 <user id="Bill"/>
</request-user-holdings>

Also, assume an associated input XML Schema, req.xsd:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="request-user-holdings">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="user"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="user">
 <xs:complexType>
 <xs:attribute name="id" use="required" type="xs:NCName"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Lastly, assume a second schema, reply.xsd, which is an output
XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="reply">
 <xs:complexType>
DataDirect XQuery User’s Guide and Reference

426 Appendix C Built-in Functions and Options
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="user"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="user">
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element ref="name"/>
 <xs:element maxOccurs="unbounded" ref="holding"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:NCName"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="holding">
 <xs:complexType>
 <xs:attribute name="shares" use="required" type="xs:double"/>
 <xs:attribute name="ticker" use="required" type="xs:NCName"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

The following query returns holding information for each of the
users in the input document, req.xml. The query first validates the
input against the input XML Schema, req.xsd. Then, before
returning the results, the query validates the results against the
output XML Schema, reply.xsd.

declare base-uri "file:///c:/requests/";
let $validInput := ddtek:validate(doc('req.xml'),'req.xsd')
let $output :=
 <reply>{
 for $req-user in $validInput//user
 let $userid := xs:string($req-user/@id)
 return
 <user id='{$userid}'>{
 for $db-user in collection('users')/users[userid = $userid]
 return (
 <name>{concat($db-user/firstname,' ',$db-user/lastname)}</name>,
 for $holding in collection('holdings')/holdings
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 427
 where $holding/userid = $userid
 return
 <holding ticker='{$holding/stockticker}'
 shares='{$holding/shares}'/>
)
 }</user>
 }</reply>
let $validatedOutput := ddtek:validate($output,'reply.xsd')
return $validatedOutput

ddtek:validate-and-report

The validate-and-report built-in function provides full error
reporting.

The function declaration for ddtek:validate-and-report:

declare function ddtek:validate-and-report(
 $arg1 as node(), $schema as xs:string)
 as document-node(element(*,xs:untyped))

Other built-in functions that provide validation support are
ddtek:isValid and ddtek:validate.

Consider the following example. Given this XML Schema:

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.xquery.com/examples"
 xmlns="http://www.xquery.com/examples">
 <xsd:element name="books">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="book">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="title"/>
 </xsd:sequence>
 </xsd:complexType>
DataDirect XQuery User’s Guide and Reference

428 Appendix C Built-in Functions and Options
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

This XML document is invalid, because it is missing the <title>
element:

 <?xml version="1.0"?>
 <p1:books xmlns:p1="http://www.xquery.com/examples"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.xquery.com/examples books.xsd">
 <book>
 <!--<title>My Title</title>-->
 </book>
 </p1:books>

To capture such validation errors, the validate-and-report
function can be employed in an XQuery like this one:

declare variable $books as document-node(element(*, xs:untyped)) external;

ddtek:serialize-to-url(
ddtek:validate-and-report($books, "books.xsd"),
"file:///c:/errors/validation-result.xml","")

Which results in the following XML:

<p1:validation-result
 xmlns:p1="http://www.datadirect.com/xquery"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.datadirect.com/xquery
 validate-and-report.xsd">
 <error>
 <exception>
 <message>The content of element 'book' is not complete. One of '{title}'
 is expected.</message>
 <stack-trace/>
 </exception>
 <location>
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Built-In Functions 429
 <publicID/>
 <systemID>file:/c:/DDXQ5.0/books-validation.xml</systemID>
 <lineNumber>7</lineNumber>
 <columnNumber>12</columnNumber>
 </location>
 </error>
</p1:validation-result>
DataDirect XQuery User’s Guide and Reference

430 Appendix C Built-in Functions and Options
ddtek:wscall

This built-in function allows you to invoke a Web service
operation synchronously using SOAP over HTTP. (See
http://www.w3.org/TR/soap11 for details about SOAP.)

The function declarations for ddtek:wscall are:

ddtek:wscall($location as element(), $payload as element())
 as document-node(element(*, xs:untyped))

ddtek:wscall($location as element(), $header as element(),
 $payload as element())
 as document-node(element(*, xs:untyped))

where:

$location is an element named location as defined in the
following XML Schema:

<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.datadirect.com/xquery">
 <xsd:element name="location">
 <xsd:complexType>
 <xsd:attribute name="address" type="xsd:anyURI"/>
 <xsd:attribute name="soapaction" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="timeout" type="xsd:unsignedInt"
 use="optional" default="30000"/>
 <xsd:attribute name="user" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="password" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="http.proxyHost"
 type="xsd:anyURI" use="optional"/>
 <xsd:attribute name="http.proxyPort"
 type="xsd:unsignedInt" use="optional"/>
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/soap11

DataDirect XQuery Built-In Functions 431
 <xsd:attribute name="http.proxyUser"
 type="xsd:string" use="optional"/>
 <xsd:attribute name="http.proxyPassword"
 type="xsd:string" use="optional"/>
 <xsd:attribute name="http.version"
 type="xsd:string" use="optional" default="1.1"/
 <xsd:attribute name="compression"
 type="xsd:string" use="optional" default=""/
 <xsd:attribute name="wrapAnyErrorsAsSOAPFault"
 type="xsd:boolean" use="optional" default="true"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

For example:

<ddtek:location
 address="http://www.ejse.com/WeatherService/Service.asmx"
 soapaction="http://ejse.com/WeatherService/GetWeatherInfo"/>

The following table defines the attributes in the XML schema.

Attribute Name Description

address Web service end point

soapaction The SOAPAction HTTP
header field

timeout The connection timeout in
milliseconds

user User name for the HTTP
connection, if required

password Password for the HTTP
connection if required

http:proxyHost Proxy host address

http:proxyPort Proxy port number

http:proxyUser Proxy user name

http:proxyPassword Proxy password
DataDirect XQuery User’s Guide and Reference

432 Appendix C Built-in Functions and Options
$header is the SOAP Header payload. See the SOAP Header
specification at http://www.w3.org/TR/soap11/#_Toc478383497
for details. For example:

<tns:UserCreds xmlns:tns="http://ejse.com/WeatherService/">
 <tns:UserName>marypelle@acme.org</tns:UserName>
 <tns:Password>30Mp75Y8p49s</tns:Password>
</tns:UserCreds>

$payload is an element that defines the payload expected by the
web service, which is usually in a format defined by the Web
Services Description Language (WSDL). See
http://www.w3.org/TR/wsdl for details about WSDL. For example:

<tns:GetWeatherInfo xmlns:tns="http://ejse.com/WeatherService/">
 <tns:zipCode>01803</tns:zipCode>
</tns:GetWeatherInfo>

The return value is a document node that contains the web
service response.

The following example invokes a web service that requires
registration and uses the SOAP header to specify the user’s
credentials:

ddtek:wscall(
<ddtek:location
 address="http://www.ejse.com/WeatherService/Service.asmx"
 soapaction="http://ejse.com/WeatherService/GetWeatherInfo"/>,

http:version Version of the HTTP protocol
to use when communicating
with the server

compression The type of file compression
used to transmit the
message. The default is off;
you can specify "gzip".

wrapAnyErrorsAsSOAPFault Determines if exceptions are
returned

Attribute Name Description
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/soap11/#_Toc478383497.
http://www.w3.org/TR/wsdl

HTTP Functions <request> Element 433
<tns:UserCreds xmlns:tns="http://ejse.com/WeatherService/">
 <tns:UserName>marypelle@acme.org</tns:UserName>
 <tns:Password>30Mp75Y8p49s</tns:Password>
</tns:UserCreds>,
<tns:GetWeatherInfo xmlns:tns="http://ejse.com/WeatherService/">
 <tns:zipCode>01803</tns:zipCode>
</tns:GetWeatherInfo>
)

HTTP Functions <request> Element
You use attributes of the <request> element to specify optional
parameters when submitting a query to the origin server.
Examples of <request> element attributes include connection
and socket timeout values, the number of retries, and HTTP
version.

The following table summarizes the available parameters for
HTTP function <request> elements. See “Specifying HTTP
Client-Server Options” on page 244 for more information for
more information on using the <request> element.

Table 12-8. Function Request Parameters

Parameter Name Description Valid Values

cookie-policy Allows you to specify how to
manage cookies. See
“Managing Cookies” on
page 242.

RFC2109 (default)

RFC2965

netscape

ingore-cookies

connection-timeout Connection timeout value,
in milliseconds.

Positive integer

http-version The HTTP version expected
by the origin server.

http_1_0

http_1_1 (default)
DataDirect XQuery User’s Guide and Reference

434 Appendix C Built-in Functions and Options
password Password associated with
“username” when the
origin server requires
authentication.

String; origin server
dependent

protocol-head-body-timeout The wait time, in
milliseconds, for the
response body after a
ddtek:http-head call. Not all
servers adhere to the HTTP
protocol when replying to a
head request.

Positive integer

protocol-reject-head-body Reject response returned
after ddtek:head-call. Not
all servers adhere to the
HTTP protocol when
replying to a head request.

yes

no

proxy-host URI of a proxy server to
which DDXQ can be
configured to route all
requests.

String

proxy-password Password associated with
the “proxy-username”
required by the proxy server.

String; proxy server
dependent

proxy-port Port on the proxy server that
is configured to listen for
DataDirect XQuery requests.

Integer; proxy server
dependent

proxy-username Username associated with
the “proxy-password”
required by the proxy server.

String; proxy server
dependent

response-data-type Allows you to override the
origin server’s default
encoding behavior. See
“Response Encoding” on
page 238.

text

xml

base64

Table 12-8. Function Request Parameters

Parameter Name Description Valid Values
DataDirect XQuery User’s Guide and Reference

HTTP Functions <request> Element 435
retries The number of times
DataDirect XQuery retries
an HTTP call after a failure.
Not every failure is subject
to a retry.

Positive integer

serialize Specifies how the payload
has to be serialized before
sending to the origin server.

String. See
“ddtek:serialize” on
page 419 for possible
values.

socket-linger The delay, in milliseconds,
before a reset is sent to the
origin server, allowing more
time for data to be read or
sent, possibly at the expense
of performance.

Positive integer. See
“Managing Connections
and Sockets” on
page 235.

socket-receivebuffer Size, in bytes, of the socket
receive buffer. The socket
receive buffer is an input
buffer used by the
networking
implementation.

Positive integer. See
“Managing Connections
and Sockets” on
page 235.

socket-sendbuffer Size, in bytes, of the socket
send buffer. The socket send
buffer is an output buffer
used by the networking
implementation.

Positive integer. See
“Managing Connections
and Sockets” on
page 235.

socket-timeout The interval, in milliseconds,
to wait for data from the
origin server.

Positive integer. See
“Managing Connections
and Sockets” on
page 235.

streaming Whether or not to allow
streaming on the response
from the origin server.

yes (default)

no

Table 12-8. Function Request Parameters

Parameter Name Description Valid Values
DataDirect XQuery User’s Guide and Reference

436 Appendix C Built-in Functions and Options
tcp-nodelay Whether to enable or
disable an algorithm that
trades bandwidth
conservation for network
latency.

yes (default)

no

username Username associated with
“password” when the origin
server requires
authentication.

String; origin server
dependent

wrap-execution When set to yes, prevents
runtime errors from halting
query execution.

yes

no (default)

Table 12-8. Function Request Parameters

Parameter Name Description Valid Values
DataDirect XQuery User’s Guide and Reference

DataDirect XQuery Options 437
DataDirect XQuery Options
To learn more about DataDirect XQuery options and expression
extensions, see “Using Option Declarations and Extension
Expressions” on page 275.

Namespaces
This section lists predefined namespaces and namespace
prefixes.

Predefined Namespaces (Not Reserved)

Table C-1 lists namespaces that are predefined, but not reserved.

Table C-1. Predefined Namespaces

Namespace
Prefix

Namespace URI

ddtek http://www.datadirect.com/xquery

ddtek-sql http://www.datadirect.com/xquery/sql-function

ddtek-sql-jdbc http://www.datadirect.com/xquery/sql-jdbc-escape-
function
DataDirect XQuery User’s Guide and Reference

438 Appendix C Built-in Functions and Options
Predefined Namespaces and Prefixes
(Reserved)

The following predefined namespaces are reserved:

■ http://www.datadirect.com/xquery/sql-adaptor
■ http://www.datadirect.com/xquery/mediator

The following namespace prefixes are reserved:

■ ddtek-fn
■ ddtek-me
■ ddtek-me-sx
■ ddtek-sa
■ ddtek-xdt
■ ddtek-xs
DataDirect XQuery User’s Guide and Reference

439
D Serialization Support

This appendix describes DataDirect XQuery support for
serialization.

Overview
Serialization is the mechanism that allows you to specify how to
generate a query result – as XML or as text, for example. XQuery
serialization is described in XSLT 2.0 and XQuery 1.0
Serialization, W3C Recommendation 23 January 2007.

Serialization is an Optional Feature in XQuery. However, XQJ is
stricter and requires that every implementation support
serialization. XQJ does not require that every parameter defined
in the XQuery Serialization specification be supported to its full
extent, but it does require that at least a default value for each
of the parameters be documented and behave according to the
specification.

Serialization Methods
You can serialize query results into a non-XML format using
either of the following methods:

■ Using the standard XQuery support to serialize query results
into XML, XHTML, HTML, and TEXT formats.

■ Using the DataDirect XML Converters to serialize query
results into many other formats, such as Electronic Data
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/
http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/

440 Appendix D Serialization Support
Interchange (EDI) and Comma-Separated Values (CSV). See
Table D-2, “Formats Supported by the DataDirect XML
Converters,” on page 442 for a complete list of the formats
supported by the XML Converters.

DataDirect XML Converters are installed with the DataDirect
Data Integration Suite, which also includes DataDirect
XQuery.

Using Standard Support

Table D-1 specifies default values for the parameters that control
the process of serializing query results into XML, XHTML, HTML,
or TEXT notation as specified by the XSLT 2.0 and XQuery 1.0
Serialization, W3C Recommendation 23 January 2007 located at:
http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/

Table D-1. Serialization Parameters

Parameter XML XHTML HTML TEXT
Modifiable or
Hard coded

byte-order-mark yes yes yes yes Hard coded

cdata-section-elements empty empty empty N/A Modifiable

doctype-public none none none N/A Modifiable

doctype-system none none none N/A Modifiable

encoding UTF-8 UTF-8 UTF-8 UTF-8 Modifiable

escape-uri-attributes N/A no no N/A Hard coded

include-content-type N/A no no N/A Hard coded

indent no no no N/A Modifiable, has no
effect for HTML

media-type N/A empty empty empty Hard coded

method xml xhtml html text Modifiable

normalization-form NFC NFC NFC NFC Hard coded

omit-xml-declaration yes yes N/A N/A Modifiable
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/

Serialization Methods 441
To change a parameter value, use any of the following methods:

■ Set the Properties object in the XQJ API.
■ Set the serialize option declaration in a query.
■ Set the serialize option declaration in DDXQDataSource.
■ Use the function, ddtek:serialize.

Example: Setting the Properties Object

Properties indentationProperties = new Properties();
indentationProperties.setProperty("indent", "yes");
indentationProperties.setProperty("omit-xml-declaration", "no");
System.out.println(xqSequence.getSequenceAsString(indentationProperties));

Example: Setting serialize in a Query

declare option ddtek:serialize "indent=yes, omit-xml-declaration=no";
doc("orders.xml")

standalone omit omit N/A N/A Modifiable

undeclare-prefixes no no no N/A Hard coded

use-character-maps empty empty empty empty Hard coded

version 1.0 1.0 4.01 N/A Modifiable, has no
effect for XML and
XHTML

Table D-1. Serialization Parameters (cont.)

Parameter XML XHTML HTML TEXT
Modifiable or
Hard coded
DataDirect XQuery User’s Guide and Reference

442 Appendix D Serialization Support
Example: Setting serialize in DDXQDataSource

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
ds.setOptions("serialize=indent=yes,omit-xml-declaration=no");

Example: Using ddtek:serialize()

ddtek:serialize(<books><book/></books>, "indent=yes, omit-xml-declaration=no")

Using the DataDirect XML Converters™

To serialize query results using DataDirect XML Converters, set
the serialization method parameter to a value listed in Table D-2.

Table D-2. Formats Supported by the DataDirect XML Converters

Format Method Parameter Value

Base-64 encoded binary Base-64

Base-2 to Base-36 encoded binary Binary

Comma-Separated Values (CSV) CSV

dBase II, dBase III, dBase III+,
dBase IV, and dBase V

dBase_II, dBase_III, dBase_III_plus,
dBase_IV, dBase_V

Data Interchange Format (DIF) DIF

Electronic Data Interchange (EDI) EDI

E-mail MBox (MBox) MBox

HTML HTML

Java .properties JavaProps

JSON (JavaScript Object Notation) JSON

Progress OpenEdge .d data dump DotD

PYX Pyx

Rich Text Format (RTF) RTF

Super Data Interchange (SDI) SDI (Super Data Interchange
Format)

Symbolic Link (SYLK) SYLK (Symbolic Link Format)
DataDirect XQuery User’s Guide and Reference

Serialization Methods 443
Example: Setting the Properties Object

Properties serialization = new Properties();
serialization.setProperty("method", "EDI");
serialization.setProperty("encoding", "UTF-16");
serialization.setProperty("newline", "unix");
xqs.writeSequence(new FileOutputStream("/home/user1/message.x12",
 serialization);

Example: Setting serialize in a Query

declare option ddtek:serialize "method=EDI,encoding=UTF-16,newline=unix";
doc("orders.xml")

Example: Setting serialize in DDXQDataSource

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
ds.setOptions("serialize=method=EDI,encoding=UTF-16,newline=unix");

Example: Using ddtek:serialize()

ddtek:serialize(
<EANCOM>
 <UNB>
 <UNB01>
 <UNB0101>UNOC</UNB0101>
 <UNB0102>3</UNB0102>
 </UNB01>
 <UNB02>
 <UNB0201>ISENDER</UNB0201>
 <UNB0202>ZZZ</UNB0202>

Tab-separated values text TAB (tab-separated values)

Whole-line text Line

Windows .ini WinIni

Windows Write WinWrite

Table D-2. Formats Supported by the DataDirect XML Converters

Format Method Parameter Value
DataDirect XQuery User’s Guide and Reference

444 Appendix D Serialization Support
 </UNB02>
 <UNB03>
 <UNB0301>IRECIPIENT</UNB0301>
 <UNB0302>ZZZ</UNB0302>
 </UNB03>
 <UNB04>
 <UNB0401>080827</UNB0401>
 <UNB0402>1514</UNB0402>
 </UNB04>
 <UNB05>ICONTROL</UNB05>
 </UNB>
 <ORDERS>
 <UNH>
 <UNH01>MESSAGENUMBER</UNH01>
 <UNH02>
 <UNH0201>ORDERS</UNH0201>
 <UNH0202>D</UNH0202>
 <UNH0203>96A</UNH0203>
 <UNH0204>EN</UNH0204>
 <UNH0205>EAN008</UNH0205>
 </UNH02>
 </UNH>
 <BGM/>
 <DTM><DTM01><DTM0101></DTM0101></DTM01></DTM>
 <UNS><UNS01></UNS01></UNS>
 <UNT/>
 </ORDERS>
 <UNZ/>
</EANCOM>
,"method=EDI, encoding=UTF-16, newline=unix")
DataDirect XQuery User’s Guide and Reference

445
E Database Support

This appendix provides reference information for the databases
supported by DataDirect XQuery and provides additional
information specific to using them.

This appendix contains the following sections:

■ “Supported Databases” on page 445
■ “Data Type Mappings” on page 447
■ “Supported XQuery Atomic Types” on page 459
■ “Database Connection Properties” on page 460

Supported Databases
DataDirect XQuery provides support for the following relational
databases:

Table 12-9. DataDirect XQuery Relational Database Support

Database Supported Versions

DB2 ■ V9.5 for Linux, UNIX, and Windows
■ V9.1 for Linux/UNIX/Windows
■ V9.1 for z/OS (formerly OS/390)

DB2 Universal Database (UDB) ■ v8.2 for Linux/UNIX/Windows
■ v8.2 for Linux/UNIX/Windows
■ v8.1 for z/OS
■ V5R4 for iSeries (formerly AS/400)
■ V5R3 for iSeries (formerly AS/400)
■ V5R2 for iSeries (formerly AS/400)
DataDirect XQuery User’s Guide and Reference

446 Appendix E Database Support
Note: For the most current information, refer to the relational
database support table on the DataDirect web site:

http://www.datadirect.com/support/product_info/
databasesupport/index.ssp

Informix Dynamic Server ■ 11
■ 10
■ 9.4

Microsoft SQL Server ■ 2008
■ 2005
■ 2000 Desktop Edition (MSDE 2000)
■ 2000 Enterprise Edition (64-bit)

MySQL Enterprise 5.1 and 5.0.x with the following storage engines:

■ InnoDB - Transactional
■ MyISAM - Non-Transactional
■ Memory (formerly HEAP) - Non-Transactional

Oracle ■ 11g
■ 10g (R1 and R2)
■ 9i (R1 and R2)

PostgresSQL ■ 8.2
■ 8.1

NOTE: Requires the PostgreSQL JDBC driver. See
“Connection URIs for Third-Party Drivers” on
page 143 for information about obtaining and
using the driver.

Sybase Adaptive Server Enterprise ■ 15.0
■ 12.5.x

Table 12-9. DataDirect XQuery Relational Database Support

Database Supported Versions
DataDirect XQuery User’s Guide and Reference

http://www.datadirect.com/support/product_info/databasesupport/index.ssp
http://www.datadirect.com/support/product_info/databasesupport/index.ssp

Data Type Mappings 447
Data Type Mappings
This section describes how database data types are mapped to
XML schema data types for supported databases:

■ DB2

■ Informix

■ MySQL

■ Oracle

■ PostgreSQL

■ Microsoft SQL Server

■ Sybase
DataDirect XQuery User’s Guide and Reference

448 Appendix E Database Support
DB2

Table E-1 describes how DB2 data types are mapped to XML
schema data types for DataDirect XQuery. Any DB2 data type that
is not listed is not supported by DataDirect XQuery.

Table E-1. DB2 Data Types

DB2 Data Type XML Schema Data Type

Bigint 1 xs:long

Binary 2 xs:hexBinary

Blob xs:hexBinary

Char xs:string

Char for Bit Data xs:hexBinary

Clob xs:string

Date xs:date

DB2XML.XMLClob xs:anyType

DB2XML.XMLFile xs:anyType

DB2XML.XMLVarchar xs:anyType

DBClob xs:string

Decfloat 3 xs:decimal

Decimal xs:decimal

Double xs:double

Double Precision xs:double

Float xs:double

Float(n), n > 24 xs:double

Integer xs:int

Long Varchar for Bit Data xs:hexBinary

Long Vargraphic xs:string

Numeric xs:decimal

Real xs:float

Rowid 4 xs:string
DataDirect XQuery User’s Guide and Reference

Data Type Mappings 449
Informix

Table E-2 describes how Informix data types are mapped to XML
schema data types for DataDirect XQuery. Any Informix data
type that is not listed is not supported by DataDirect XQuery.

Smallint xs:short

Time xs:time

Timestamp xs:dateTime

Varbinary 2 xs:hexBinary

Varchar xs:string

Varchar for Bit Data xs:hexBinary

Xml 5 xs:anyType

1 Supported for DB2 for Linux, UNIX, and Windows v8.x and v9.x and
for DB2 for z/OS v9.x only.

2 Supported for DB2 v9.x for z/OS only.
3 Supported for DB2 for Linux, UNIX, and Windows v9.x and for DB2

for z/OS v9.x only.
4 Supported for DB2 for z/OS and DB2 for iSeries only.
5 Supported for DB2 for Linux, UNIX, and Windows v9.x only.

Table E-1. DB2 Data Types (cont.)

DB2 Data Type XML Schema Data Type

Table E-2. Informix Data Types

Informix Data Type XML Schema Data Type

BLOB xs:hexBinary

BOOLEAN xs:boolean

BYTE xs:hexBinary

CHAR xs:string
DataDirect XQuery User’s Guide and Reference

450 Appendix E Database Support
CLOB xs:string

DATE xs:date

DATETIME HOUR TO SECOND xs:time

DATETIME YEAR TO DAY xs:date

DATETIME YEAR TO FRACTION(5) xs:dateTime

DATETIME YEAR TO SECOND xs:dateTime

DECIMAL xs:decimal

FLOAT xs:double

INT8 xs:long

INTEGER xs:int

LVARCHAR xs:string

MONEY xs:decimal

NCHAR xs:string

NVARCHAR xs:string

SERIAL xs:int

SERIAL8 xs:long

SMALLFLOAT xs:float

SMALLINT xs:short

TEXT xs:string

VARCHAR xs:string

Table E-2. Informix Data Types

Informix Data Type XML Schema Data Type
DataDirect XQuery User’s Guide and Reference

Data Type Mappings 451
MySQL

Table E-3 describes how MySQL data types are mapped to XML
schema data types for DataDirect XQuery. Any MySQL data type
that is not listed is not supported by DataDirect XQuery.

Table E-3. MySQL Enterprise Data Types

MySQL Enterprise Data Type XML Schema Data Type

BIGINT xs:long

BIGINT UNSIGNED xs:decimal

BINARY xs:hexBinary

BIT xs:hexBinary

BLOB xs:hexBinary

BOOLEAN xs:boolean

DATE xs:date

DATETIME xs:dateTime

DECIMAL xs:decimal

DECIMAL UNSIGNED xs:decimal

DOUBLE xs:double

DOUBLE UNSIGNED xs:double

FLOAT xs:float

FLOAT UNSIGNED xs:float

INTEGER xs:int

INTEGER UNSIGNED xs:long

LONGBLOB xs:hexBinary

LONGTEXT xs:string

MEDIUMBLOB xs:hexBinary

MEDIUMINT xs:int

MEDIUMINT UNSIGNED xs:int

MEDIUMTEXT xs:string

SMALLINT xs:short

SMALLINT UNSIGNED xs:int
DataDirect XQuery User’s Guide and Reference

452 Appendix E Database Support
Oracle

Table E-4 describes how Oracle data types are mapped to XML
schema data types for DataDirect XQuery. Any Oracle data type
that is not listed is not supported by DataDirect XQuery.

TEXT xs:string

TIME xs:time

TIMESTAMP xs:dateTime

TINYBLOB xs:hexBinary

TINYINT xs:short

TINYINT UNSIGNED xs:short

TINYTEXT xs:string

VARBINARY xs:hexBinary

VARCHAR xs:string

YEAR xs:short

Table E-3. MySQL Enterprise Data Types

MySQL Enterprise Data Type XML Schema Data Type

Table E-4. Oracle Data Types

Oracle Data Type XML Schema Data Type

BFILE xs:hexBinary

BINARY_FLOAT xs:float

BINARY_DOUBLE xs:double

BLOB xs:hexBinary

CHAR xs:string

CLOB xs:string

DATE xs:dateTime
DataDirect XQuery User’s Guide and Reference

Data Type Mappings 453
FLOAT(n) xs:double

LONG xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB xs:string

NUMBER (p, s) xs:decimal

NUMERIC xs:decimal

NVARCHAR2 xs:string

RAW xs:hexBinary

REAL xs:double

ROWID xs:string

SMALLINT xs:decimal

TIMESTAMP xs:dateTime

TIMESTAMP WITH LOCAL TIME ZONE xs:dateTime

TIMESTAMP WITH TIME ZONE xs:dateTime

UROWID xs:string

VARCHAR2 xs:string

XMLTYPE1 xs:anyType

1 Supported for Oracle 10gR2 and 11gR1 only.

Table E-4. Oracle Data Types (cont.)

Oracle Data Type XML Schema Data Type
DataDirect XQuery User’s Guide and Reference

454 Appendix E Database Support
PostgreSQL

Table E-5 describes how PostgreSQL data types are mapped to
XML schema data types for DataDirect XQuery. Any PostgreSQL
data type that is not listed is not supported by DataDirect
XQuery.

Table E-5. PostgreSQL Data Types

PostgreSQL Data Type XML Schema Data Type

bigserial xs:long

bit xs:boolean

bool xs:boolean

bytea xs:hexBinary

char xs:string

date xs:date

float4 xs:double

float8 xs:float

int2 xs:short

int4 xs:int

int8 xs:long

money xs:float

name xs:string

numeric xs:decimal

oid xs:int

serial xs:int

text xs:string

time xs:time

timestamp xs:dateTime

timestamp with time zone xs:dateTime

time with time zone xs:time

varchar xs:string
DataDirect XQuery User’s Guide and Reference

Data Type Mappings 455
Microsoft SQL Server

Table E-6 describes how Microsoft SQL Server data types are
mapped to XML schema data types for DataDirect XQuery. Any
Microsoft SQL Server data type that is not listed is not supported
by DataDirect XQuery.

Table E-6. Microsoft SQL Server Data Types

Microsoft SQL Server Data Type XML Schema Data Type

bigint xs:long

bigint identity xs:long

binary xs:hexBinary

bit xs:boolean

char xs:string

datetime xs:dateTime

decimal xs:decimal

decimal() identity xs:decimal

double xs:double

float xs:double

image xs:hexBinary

int xs:int

int identity xs:int

money xs:decimal

nchar xs:string

ntext xs:string

numeric xs:decimal

numeric() identity xs:decimal

nvarchar xs:string

real xs:float

rowversion xs:hexBinary

sql_variant xs:string
1 Supported for Microsoft SQL Server 2005 and 2008 only.
DataDirect XQuery User’s Guide and Reference

456 Appendix E Database Support
smalldatetime xs:dateTime

smallint xs:short

smallint identity xs:short

smallmoney xs:decimal

sysname xs:string

text xs:string

timestamp xs:hexBinary

tinyint xs:short

tinyint identity xs:short

uniqueidentifier xs:string

varbinary xs:hexBinary

varchar xs:string

xml 1 xs:anyType

Table E-6. Microsoft SQL Server Data Types (cont.)

Microsoft SQL Server Data Type XML Schema Data Type

1 Supported for Microsoft SQL Server 2005 and 2008 only.
DataDirect XQuery User’s Guide and Reference

Data Type Mappings 457
Sybase

Table E-7 describes how Sybase data types are mapped to XML
schema data types for DataDirect XQuery. Any Sybase data type
that is not listed is not supported by DataDirect XQuery.

Table E-7. Sybase Data Types

Sybase Data Type XML Schema Data Type

BIGINT 1 xs:long

BINARY(n) xs:hexBinary

BIT xs:boolean

CHAR(n) xs:string

CHAR VARYING xs:string

CHARACTER xs:string

CHARACTER VARYING xs:string

DATE xs:date

DATETIME xs:dateTime

DEC xs:decimal

DECIMAL(p,s) xs:decimal

DOUBLE xs:double

FLOAT xs:double

IMAGE xs:hexBinary

INT xs:int

INTEGER xs:int

MONEY xs:decimal

NATIONAL CHAR xs:string

NATIONAL CHAR VARYING xs:string

NCHAR(n) xs:string

NUMERIC(p,s) xs:decimal

NVARCHAR(n) xs:string

REAL xs:float
1 Supported only for Sybase 15.0.
DataDirect XQuery User’s Guide and Reference

458 Appendix E Database Support
SMALLDATETIME xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

TEXT xs:string

TIME xs:time

TINYINT xs:short

UNICHAR xs:string

UNICODE CHAR VARYING xs:string

UNICODE CHARACTER xs:string

UNICODE CHARACTER VARYING xs:string

UNIVARCHAR xs:string

VARBINARY(n) xs:hexBinary

VARCHAR(n) xs:string

Table E-7. Sybase Data Types (cont.)

Sybase Data Type XML Schema Data Type

1 Supported only for Sybase 15.0.
DataDirect XQuery User’s Guide and Reference

Supported XQuery Atomic Types 459
Supported XQuery Atomic Types
Table E-8 lists the XQuery atomic types that are supported by
DataDirect XQuery for both XML and relational sources.

Table E-8. Predefined XQuery Atomic Types

xs:untypedAtomic
xs:anyAtomicType
xs:string
xs:boolean
xs:decimal
xs:float
xs:double
xs:dateTime
xs:date
xs:time
xs:integer
xs:long
xs:int
xs:short
xs:byte
xs:nonPositiveInteger
xs:negativeInteger
xs:nonNegativeInteger
xs:unsignedLong
xs:unsignedInt
xs:unsignedShort
xs:unsignedByte

xs:positiveInteger
xs:base64Binary
xs:hexBinary
xs:duration
xs:yearMonthDuration
xs:dayTimeDuration
xs:QName
xs:anyURI
xs:gDay
xs:gMonth
xs:gMonthDay
xs:gYear
xs:gYearMonth
xs:normalizedString
xs:token
xs:language
xs:NMTOKEN
xs:Name
xs:NCName
xs:ID
xs:IDREF
xs:ENTITY
DataDirect XQuery User’s Guide and Reference

460 Appendix E Database Support
Database Connection Properties
This section describes the connection properties you can specify
for databases supported by DataDirect XQuery.

See “Specifying Connection URIs” on page 141 for information
about the format of connection URLs and specifying connection
properties in connection URLs.

This section provides information for the following supported
databases:

■ “DB2” on page 460
■ “Informix” on page 466
■ “Microsoft SQL Server” on page 467
■ “MySQL Enterprise” on page 470
■ “Oracle” on page 471
■ “PostgreSQL” on page 480
■ “Sybase” on page 481

DB2

This section describes the connection properties you can specify
for DB2 and provides information about how DataDirect XQuery
creates DB2 packages.

Table E-9 lists the connection properties supported for DB2 by
DataDirect XQuery.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 461
Table E-9. DB2 Connection Properties

DB2 Property Description

AuthenticationMethod {kerberos | encryptedUIDPassword | encryptedPassword | clearText
| client}. Determines which authentication method DataDirect
XQuery uses when establishing a connection.

If set to kerberos, DataDirect XQuery uses Kerberos
authentication. DataDirect XQuery ignores any user ID or
password specified. See “Using Kerberos Authentication” on
page 147 for more information about using Kerberos.

If set to encryptedUIDPassword, DataDirect XQuery uses
user ID/password authentication. DataDirect XQuery sends an
encrypted user ID and password to the DB2 server for
authentication. If a user ID and password are not specified, an
exception is thrown.

If set to encryptedPassword, DataDirect XQuery uses
user ID/password authentication. DataDirect XQuery sends a user
ID in clear text and an encrypted password to the DB2 server for
authentication. If a user ID and password are not specified, an
exception is thrown.

If set to clearText (the default), DataDirect XQuery uses
user ID/password authentication. DataDirect XQuery sends the
user ID and password in clear text to the DB2 server for
authentication. If a user ID and password are not specified, an
exception is thrown.

If set to client, DataDirect XQuery uses client authentication. The
DB2 server relies on the client to authenticate the user and does
not provide additional authentication. DataDirect XQuery
ignores any user ID or password specified.

The User property provides the user ID. The Password property
provides the password.

If the specified authentication method is not supported by the
DB2 server, the connection fails and an exception is thrown.
DataDirect XQuery User’s Guide and Reference

462 Appendix E Database Support
CreateDefaultPackage {true | false}. If set to true, the required DB2 packages are
automatically created even if they already exist. Existing DB2
packages are replaced by the new packages. If set to false (the
default), the required DB2 packages are created automatically
only if they do not already exist.

For DB2 for Linux/UNIX/Windows, this property must be used in
conjunction with the ReplacePackage property.

For DB2 for z/OS and DB2 for iSeries, DB2 packages are created in
the collection or library specified by the PackageCollection
property.

See “Creating DB2 Packages” on page 464 for more information
about creating DB2 packages.

DatabaseName

Required for
Linux/UNIX/Windows

The name (DB2 for Linux/UNIX/Windows) or location name
(DB2 for z/OS and DB2 for iSeries) of the database you want to
connect to.

DynamicSections The maximum number of prepared statements that can be open
at any time. This value must be a positive integer. The default
is 200.

Grantee The name of the schema to which you want to grant EXECUTE
privileges for DB2 packages. The value must be a valid DB2
schema. This property is ignored if the GrantExecute property is
set to false.

The default is PUBLIC.

See “Creating DB2 Packages” on page 464 for more information
about creating DB2 packages.

GrantExecute {true | false}. Determines which DB2 schema is granted EXECUTE
privileges for DB2 packages. If set to true (the default), EXECUTE
privileges are granted to the schema specified by the Grantee
property. If set to false, EXECUTE privileges are granted to the
schema that created the DB2 packages.

See “Creating DB2 Packages” on page 464 for more information
about creating DB2 packages.

Table E-9. DB2 Connection Properties (cont.)

DB2 Property Description
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 463
InitializationString Specifies one or multiple SQL commands to be executed by
DataDirect XQuery after it has established the connection to the
database and has performed all initialization for the connection.

Multiple commands must be separated by semicolons. In
addition, if this property is specified in a connection URL, the
entire value must be enclosed in parentheses when multiple
commands are specified. The following example adds USER2 to
the CURRENT PATH special register and sets the CURRENT
PRECISION special register to DEC31.

jdbc:xquery:db2://server1:50000;
InitializationString=(SET CURRENT PATH=current_path,
USER2;SET CURRENT PRECISION='DEC31')

NOTE: Setting the CURRENT PRECISION special register is only
valid for DB2 for z/OS.

If the execution of a SQL command fails, the connection attempt
also fails and DataDirect XQuery raises an exception indicating
which SQL command or commands failed.

LocationName

Required for
z/OS and iSeries if
DatabaseName is not
specified

The name of the DB2 location that you want to access.

For DB2 for z/OS, your system administrator can determine the
name of your DB2 location using the following command:

DISPLAY DDF

For DB2 for iSeries, your system administrator can determine the
name of your DB2 location using the following command. The
name of the database that is listed as *LOCAL is the value you
should use for this property.

WRKRDBDIRE

This property is supported only for DB2 for z/OS and DB2 for
iSeries.

PackageCollection The name of the collection or library (group of packages) to
which DB2 packages are bound. The default is NULLID.

This property is ignored for DB2 for Linux/UNIX/Windows.

Table E-9. DB2 Connection Properties (cont.)

DB2 Property Description
DataDirect XQuery User’s Guide and Reference

464 Appendix E Database Support
Creating DB2 Packages

DataDirect XQuery automatically creates all required DB2
packages at connection time, which, by default, contain
200 dynamic sections and are created in the NULLID collection (or
library). You can override the default number of dynamic sections
by setting the DynamicSections property. Similarly, you can
override the collection in which packages are created by setting
the PackageCollection property.

PackageOwner The owner to be used for any DB2 packages that are created. The
default is null.

See “Creating DB2 Packages” on page 464 for more information
about creating DB2 packages.

Password A case-sensitive password used to connect to your DB2 database.
A password is required only if user ID/password authentication is
enabled on your database. Contact your system administrator to
obtain your password.

ReplacePackage {true | false}. Specifies whether the current bind process will
replace the existing DB2 packages. If set to true, the current bind
process will replace the existing DB2 packages. If set to false (the
default), the current bind process will not replace the existing
DB2 packages.

For DB2 for Linux/UNIX/Windows, this property must be used in
conjunction with the CreateDefaultPackage property.

See “Creating DB2 Packages” on page 464 for more information
about creating DB2 packages.

SecurityMechanism

DEPRECATED

This property is recognized for backward compatibility, but we
recommend that you use the AuthenticationMethod property to
set the authentication method used by DataDirect XQuery.

User The case-sensitive user name used to connect to the DB2
database.

Table E-9. DB2 Connection Properties (cont.)

DB2 Property Description
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 465
NOTE: The initial connection may take a few minutes because of
the number and size of the packages that must be created for
the connection. Subsequent connections do not incur this delay.

In most cases, you do not need to create DB2 packages because
they are automatically created at connection time. If, for some
reason, you need to explicitly create them, you can create them
using the following sets of connection properties.

NOTE: The user ID creating the DB2 packages must have
BINDADD privileges on the database. Consult with your
database administrator to ensure that you have the correct
privileges.

For DB2 for Linux/UNIX/Windows

■ CreateDefaultPackage=true
■ ReplacePackage=true
■ DynamicSections=x (where x is a positive integer)

NOTE: To create new DB2 packages, you must use
ReplacePackage=true in conjunction with
CreateDefaultPackage=true. If a DB2 package already exists, it is
replaced when ReplacePackage=true.

The following URL creates DB2 packages with 400 dynamic
sections. If any DB2 packages already exist, they are replaced by
the new ones being created.

jdbc:xquery:db2://server1:50000;databaseName=SAMPLE;
createDefaultPackage=TRUE;replacePackage=TRUE;dynamicSections=400

For DB2 for z/OS and iSeries

■ PackageCollection=collection_name (where collection_name
is the name of the collection or library to which DB2
packages are bound)

■ CreateDefaultPackage=true

■ DynamicSections=x (where x is a positive integer)
DataDirect XQuery User’s Guide and Reference

466 Appendix E Database Support
The following URL creates DB2 packages with 400 dynamic
sections.

jdbc:xquery:db2://server1:50000;locationName=SAMPLE;
packageCollection=DEFAULT;createDefaultPackage=TRUE;dynamicSections=400

Informix

This section describes the connection properties you can specify
for Informix.

Table E-10 lists the connection properties supported for Informix
by DataDirect XQuery.

Table E-10. Informix Connection Properties

Informix Property Description

DatabaseName The name of the database you want to which you want to connect.

If this property is not specified, a connection is established to the
specified server without connecting to a particular database.

InformixServer

Required

The name of the Informix database server to which you want to
connect.

InitializationString Specifies one or multiple SQL commands to be executed by
DataDirect XQuery after it has established the connection to the
database and has performed all initialization for the connection.
For example:

InitializationString=command

Multiple commands must be separated by semicolons. In addition,
if this property is specified in a connection URL, the entire value
must be enclosed in parentheses when multiple commands are
specified. For example:

jdbc:xquery:informix://server1:2003;informixServer=
test_server;databaseName=test;initializationString=
(command1;command2)

If the execution of a SQL command fails, the connection attempt
also fails and DataDirect XQuery raises an exception indicating
which SQL command or commands failed.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 467
Microsoft SQL Server

This section describes the connection properties you can specify
for Microsoft SQL Server.

Table E-11 lists the connection properties supported for
Microsoft SQL Server by DataDirect XQuery.

Password A case-insensitive password used to connect to your Informix
database. A password is required only if user ID/password
authentication is enabled on your database. If so, contact your
system administrator to obtain your password.

User The case-insensitive default user name used to connect to your
Informix database. A user name is required only if
user ID/password authentication is enabled on your database. If so,
contact your system administrator to obtain your user name.

Table E-10. Informix Connection Properties (cont.)

Informix Property Description
DataDirect XQuery User’s Guide and Reference

468 Appendix E Database Support
Table E-11. Microsoft SQL Server Connection Properties

SQL Server Property Description

AuthenticationMethod {auto | kerberos | ntlm | userIdPassword}. Determines which
authentication method DataDirect XQuery uses when establishing
a connection.

If set to auto (the default), DataDirect XQuery uses SQL Server
authentication, Kerberos authentication, or NTLM authentication
when establishing a connection. DataDirect XQuery selects an
authentication method based on a combination of criteria such as
whether the application provides a user ID, DataDirect XQuery is
running on a Windows platform, and DataDirect XQuery can load
the DLL required for NTLM authentication.

If set to kerberos, DataDirect XQuery uses Kerberos authentication.
DataDirect XQuery ignores any user ID or password specified. See
“Using Kerberos Authentication” on page 147 for more
information about using Kerberos.

If set to ntlm, DataDirect XQuery uses NTLM authentication if the
DLL required for NTLM authentication can be loaded. If DataDirect
XQuery cannot load the DLL, DataDirect XQuery raises an error.
DataDirect XQuery ignores any user ID or password specified. See
“Using NTLM Authentication” on page 159 for more information
about NTLM authentication.

If set to userIdPassword, DataDirect XQuery uses SQL Server
authentication when establishing a connection. If a user ID is not
specified, an exception is thrown.

The “User” property provides the user ID. The “Password”
property provides the password.

DatabaseName The name of the database to which you want to connect.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 469
InitializationString Specifies one or multiple SQL commands to be executed by
DataDirect XQuery after it has established the connection to the
database and has performed all initialization for the connection.
For example:

InitializationString=command

Multiple commands must be separated by semicolons. In addition,
if this property is specified in a connection URL, the entire value
must be enclosed in parentheses when multiple commands are
specified. For example:

jdbc:xquery:sqlserver://server1:1433;databaseName=
test;initializationString=(command1;command2)

If the execution of a SQL command fails, the connection attempt
also fails and DataDirect XQuery raises an exception indicating
which SQL command or commands failed.

LoadLibraryPath Specifies the directory DataDirect XQuery looks in for the DLL used
for NTLM authentication. The value is the fully qualified path of
the directory that contains the DLL. When you install DataDirect
XQuery, the NTLM DLLs are placed in the install_dir/lib
subdirectory, where install_dir is the DataDirect XQuery
installation directory.

By default, DataDirect XQuery looks for the NTLM authentication
DLLs in a directory on the Windows system path defined by the
PATH environment variable. If you install DataDirect XQuery in a
directory that is not on the Windows system path, you can set this
property to specify the location of the NTLM authentication DLLs.
For example, if you install DataDirect XQuery in a directory named
"DataDirect" that is not on the Windows system path, you can use
this property to specify the directory containing the NTLM
authentication DLLs.

jdbc:xquery:sqlserver://server3:1433;
databaseName=test;loadLibraryPath=C:\DataDirect\lib;
User=test;Password=secret

See “Using NTLM Authentication” on page 159 for more
information about NTLM authentication.

Table E-11. Microsoft SQL Server Connection Properties (cont.)

SQL Server Property Description
DataDirect XQuery User’s Guide and Reference

470 Appendix E Database Support
MySQL Enterprise

This section describes the connection properties you can specify
for MySQL Enterprise.

NOTE: You must purchase commercially licensed MySQL database
software or a MySQL Enterprise subscription in order to use
DataDirect XQuery with MySQL software.

Table E-12 lists the connection properties supported for MySQL
Enterprise by DataDirect XQuery.

Password A case-insensitive password used to connect to your Microsoft
SQL Server database. A password is required only if
user ID/password authentication is enabled on your database. If so,
contact your system administrator to obtain your password.

User The case-insensitive user name used to connect to your Microsoft
SQL Server database. A user name is required only if
user ID/password authentication is enabled on your database. If so,
contact your system administrator to obtain your user name.

Table E-11. Microsoft SQL Server Connection Properties (cont.)

SQL Server Property Description

Table E-12. MySQL Enterprise Connection Properties

MySQL Enterprise
Property Description

DatabaseName The name of the database you want to connect to.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 471
Oracle

This section describes the connection properties you can specify
for Oracle and provides information about using tnsnames.ora
files to specify connection information to an Oracle database.

Table E-13 lists the connection properties supported for Oracle
by DataDirect XQuery.

InitializationString Specifies one or multiple SQL commands to be executed by
DataDirect XQuery after it has established the connection to the
database and has performed all initialization for the connection.
For example:

InitializationString=command

Multiple commands must be separated by semicolons. In addition,
if this property is specified in a connection URL, the entire value
must be enclosed in parentheses when multiple commands are
specified. For example:

jdbc:xquery:mysql://server1:3306;databaseName=
test;initializationString=(command1;command2)

If the execution of a SQL command fails, the connection attempt
also fails and DataDirect XQuery raises an exception indicating
which SQL command or commands failed.

Password A case-insensitive password used to connect to your MySQL
Enterprise database. A password is required only if
user ID/password authentication is enabled on your database. If so,
contact your system administrator to obtain your password.

User The case-insensitive default user name used to connect to your
MySQL Enterprise database. A user name is required only if
user ID/password authentication is enabled on your database. If so,
contact your system administrator to obtain your user name.

Table E-12. MySQL Enterprise Connection Properties (cont.)

MySQL Enterprise
Property Description
DataDirect XQuery User’s Guide and Reference

472 Appendix E Database Support
Table E-13. Oracle Connection Properties

Oracle Property Description

AuthenticationMethod {auto | kerberos | kerberosUIDPassword | ntlm | client |
userIDPassword}. Determines which authentication method
DataDirect XQuery uses when establishing a connection.

If set to auto (the default), DataDirect XQuery uses
user ID/password, Kerberos, or NTLM authentication when
establishing a connection. DataDirect XQuery selects an
authentication method based on a combination of criteria, such
as whether the application provides a user ID, DataDirect XQuery
is running on a Windows platform, and DataDirect XQuery can
load the DLL required for NTLM authentication.

If set to kerberos, DataDirect XQuery uses Kerberos
authentication. DataDirect XQuery ignores any user ID or
password specified.

If set to kerberosUIDPassword, DataDirect XQuery first uses
Kerberos to authenticate the user. Next, DataDirect XQuery
reauthenticates the user using user ID/password authentication. If
a user ID and password are not specified, DataDirect XQuery
throws an exception. If either Kerberos or user ID/password
authentication fails, the connection attempt fails and DataDirect
XQuery throws an exception.

If set to ntlm, DataDirect XQuery uses NTLM authentication if the
DLL required for NTLM authentication can be loaded. If
DataDirect XQuery cannot load the DLL, it throws an exception.
DataDirect XQuery ignores any user ID or password specified. This
value is supported for Windows clients only. See “Using NTLM
Authentication” on page 159 for more information about NTLM
authentication.

If set to client, DataDirect XQuery uses client authentication. The
Oracle database server relies on the client to authenticate the user
and does not provide additional authentication. DataDirect
XQuery ignores any user ID or password specified.

If set to userIdPassword, DataDirect XQuery uses user ID/password
authentication. If a user ID and password are not specified, an
exception is thrown.

The User property provides the user ID. The Password property
provides the password.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 473
InitializationString Specifies one or multiple SQL commands to be executed by
DataDirect XQuery after it has established the connection to the
database and has performed all initialization for the connection.
For example:

initializationString=command

Multiple commands must be separated by semicolons. In addition,
if this property is specified in a connection URL, the entire value
must be enclosed in parentheses when multiple commands are
specified. For example:

jdbc:xquery:oracle://server1:1521;ServiceName=
ORCL;iInitializationString=(command1;command2)

If the execution of a SQL command fails, the connection attempt
also fails and DataDirect XQuery raises an error indicating which
SQL command or commands failed.

LoadLibraryPath Specifies the directory DataDirect XQuery looks in for the DLL
used for NTLM authentication. The value is the fully qualified
path of the directory that contains the DLL. When you install
DataDirect XQuery, the NTLM DLLs are placed in the install_dir/lib
subdirectory, where install_dir is the DataDirect XQuery
installation directory.

By default, DataDirect XQuery looks for the NTLM authentication
DLLs in a directory on the Windows system path defined by the
PATH environment variable. If you install DataDirect XQuery in a
directory that is not on the Windows system path, you can set this
property to specify the location of the NTLM authentication DLLs.
For example, if you install DataDirect XQuery in a directory named
"DataDirect" that is not on the Windows system path, you can use
this property to specify the directory containing the NTLM
authentication DLLs.

jdbc:xquery:oracle://server3:1521;serviceName=
ORCL;loadLibraryPath=C:\DataDirect\lib;User=
test;Password=secret

See “Using NTLM Authentication” on page 159 for more
information about NTLM authentication.

Table E-13. Oracle Connection Properties (cont.)

Oracle Property Description
DataDirect XQuery User’s Guide and Reference

474 Appendix E Database Support
Password A case-insensitive password used to connect to your Oracle
database. A password is required only if user ID/password
authentication is enabled on your database. If so, contact your
system administrator to obtain your password.

ServiceName The database service name that specifies the database used for
the connection. This property is mutually exclusive with the SID
property. The service name is a string that is the global database
name—a name that typically comprises the database name and
domain name. For example:

sales.us.acme.com

This property is useful to specify connections to an Oracle Real
Application Clusters (RAC) system rather than a specific Oracle
instance because the nodes in a RAC system share a common
service name.

If using a tnsnames.ora file to provide connection information, do
not specify this property.

See “Using Oracle tnsnames.ora Files” on page 476 for
information about specifying the database service name using a
tnsnames.ora file.

SID The Oracle System Identifier that refers to the instance of the
Oracle database running on the server.

The default is ORCL, which is the default SID that is configured
when installing your Oracle database.

If using a tnsnames.ora file to provide connection information, do
not specify this property.

See “Using Oracle tnsnames.ora Files” on page 476 for
information about specifying an Oracle SID using a tnsnames.ora
file.

Table E-13. Oracle Connection Properties (cont.)

Oracle Property Description
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 475
TNSNamesFile The path and filename to the tnsnames.ora file from which
connection information is retrieved. The tnsnames.ora file
contains connection information that is mapped to Oracle net
service names. Using a tnsnames.ora file to centralize connection
information simplifies maintenance when changes occur.

The value of this property must be a valid path and filename to a
tnsnames.ora file.

If you specify this property is specified, then:

■ Also specify the TNSServerName property.

■ Do not specify any of following: PortNumber (in URL),
ServerName (in URL), or SID (connection property).

If any of this connection information is specified in addition to
this property, an error is generated. See “Using Oracle
tnsnames.ora Files” on page 476 for information about using
tnsnames.ora files to connect.

TNSServerName The Oracle net service name used to reference the connection
information in a tnsnames.ora file. The value of this property
must be a valid net service name entry in the tnsnames.ora file
specified by the TNSNamesFile property.

If this property is specified, you also must specify the
TNSNamesFile property.

If this property is specified, do not specify any of the following
connection information to prevent conflicts:

PortNumber (in URL)
ServerName (in URL)
SID (connection property)

If any of this connection information is specified in addition to
this property, an error is generated. See “Using Oracle
tnsnames.ora Files” on page 476 for information about using
tnsnames.ora files to connect.

User The case-insensitive user name used to connect to your Oracle
database. A user name is required only if user ID/password
authentication is enabled on your database. If so, contact your
system administrator to obtain your user name.

Table E-13. Oracle Connection Properties (cont.)

Oracle Property Description
DataDirect XQuery User’s Guide and Reference

476 Appendix E Database Support
Using Oracle tnsnames.ora Files

The tnsnames.ora file is used to map connection information for
each Oracle service to a logical alias. DataDirect XQuery can
retrieve basic connection information from a tnsnames.ora file,
including:

■ Oracle server name and port
■ Oracle System Identifier (SID) or Oracle service name

In a tnsnames.ora file, connection information for an Oracle
service is associated with an alias, or Oracle net service name.
Each net service name entry contains connect descriptors that
define listener and service information. The following example in
Figure E-1 shows connection information in a tnsnames.ora file
configured for the net service name entry, FITZGERALD.SALES.

Figure E-1. tnsnames.ora Example

FITZGERALD.SALES =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = server1)(PORT = 1521))
 (CONNECT_DATA =
 (SID = ORCL)
)
)

Using this example, if the Oracle net service name entry
FITZGERALD.SALES is referenced, DataDirect XQuery would
connect to the Oracle database instance identified by the Oracle
SID ORCL (SID=ORCL).

Typically, a tnsnames.ora file is installed when you install an
Oracle database. By default, the tnsnames.ora file is located in
the ORACLE_HOME\network\admin directory on Windows and
the $ORACLE_HOME/network/admin directory on UNIX and
Linux.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 477
Connecting to the Database

To retrieve connection information from an Oracle tnsnames.ora
file, you must inform DataDirect XQuery which tnsnames.ora file
(using the TNSNamesFile property) and Oracle service name
entry (using the TNSServerName property) to use so that the
correct connection information is referenced. For example, the
following connection URL:

jdbc:xquery:oracle:TNSNamesFile=c:\oracle92\NETWORK\ADMIN\tnsnames.ora;
TNSServerName=FITZGERALD.SALES

specifies the path and filename of the tnsnames.ora file
(TNSNamesFile=c:\oracle92\NETWORK\ADMIN\tnsnames.ora) and
the net service name entry (TNSServerName=FITZGERALD.SALES) to
use for the connection.

NOTE: The connection URL does not specify the server name and
port of the database server; that information is specified in the
tnsnames.ora file referenced by the TNSNamesFile property.

If using tnsnames.ora files with a Security Manager on a Java 2
Platform, read permission must be granted to the tnsnames.ora
file. For example:

grant codeBase "file:/install_dir/lib/-" {
 permission java.io.FilePermission "C:\\oracle\\ora92\\network\\admin\\
 tnsnames.ora", "read";
};

where install_dir is the DataDirect XQuery installation
directory.
DataDirect XQuery User’s Guide and Reference

478 Appendix E Database Support
Configuring the tnsnames.ora File

If using a tnsnames.ora file to retrieve connection information,
do not specify any of the following connection information in a
connection URL or property to prevent conflicts:

■ PortNumber (in URL)
■ ServerName (in URL)
■ ServiceName (connection property)
■ SID (connection property)

Table E-14 lists the Oracle connection properties that correspond
to tnsnames.ora connect descriptor parameters.

Table E-14. Oracle Connection Property Mappings to tnsnames.ora Connect
Descriptor Parameters

Oracle Connection Property tnsnames.ora Parameter

PortNumber = port PORT = port

The ADDRESS_LIST parameter contains connection
information for one or multiple servers, using the ADDRESS
parameter to specify the primary and alternate servers. The
PORT parameter is used within the ADDRESS parameter to
specify the port number for each server entry. For example:

(ADDRESS_LIST=
 (ADDRESS= (PROTOCOL = TCP)(HOST = server1)
 (PORT = 1521))
 ...
)

A port of 1521, the default port number when installing an
Oracle database, is specified for server1.
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 479
ServerName = server_name HOST = server_name

The ADDRESS_LIST parameter contains connection
information for one or multiple servers, using the ADDRESS
parameter to specify the primary and alternate servers. The
HOST parameter is used within the ADDRESS parameter to
specify the server name for each server entry. The server
entry can be an IP address or a server name. For example:

(ADDRESS_LIST=
 (ADDRESS= (PROTOCOL = TCP)(HOST = server1)
 (PORT = 1521))
 ...
)

The server name server1 is specified in the first server entry.

ServiceName = service_name SERVICE_NAME = service_name

The database service name that specifies the database used
for the connection. The service name is a string that is the
global database name—a name that typically comprises the
database name and domain name. For example:

sales.us.acme.com

The service name is specified in the CONNECT_DATA
parameter. For example:

(CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)

)

This parameter is mutually exclusive with the SID attribute
and is useful to specify connections to an Oracle Real
Application Clusters (RAC) system rather than a specific
Oracle instance.

Table E-14. Oracle Connection Property Mappings to tnsnames.ora Connect
Descriptor Parameters (cont.)

Oracle Connection Property tnsnames.ora Parameter
DataDirect XQuery User’s Guide and Reference

480 Appendix E Database Support
For more information about configuring tnsnames.ora files, refer
to your Oracle documentation.

PostgreSQL

Refer to your PostgreSQL JDBC driver documentation for
information about connection properties supported by the
PostgreSQL JDBC driver.

SID = SID SID = SID

The Oracle System Identifier (SID) that refers to the
instance of the Oracle database running on the server. The
default Oracle SID that is configured when installing your
Oracle database software is ORCL. The SID is specified in
the CONNECT_DATA parameter. For example:

(CONNECT_DATA=
 (SID=ORCL)
)

This parameter is mutually exclusive with the
SERVICE_NAME attribute.

Table E-14. Oracle Connection Property Mappings to tnsnames.ora Connect
Descriptor Parameters (cont.)

Oracle Connection Property tnsnames.ora Parameter
DataDirect XQuery User’s Guide and Reference

Database Connection Properties 481
Sybase

This section describes the connection properties you can specify
for Sybase.

Table E-15 lists the connection properties supported for Sybase
by DataDirect XQuery.

Table E-15. Sybase Connection Properties

Sybase Property Description

AuthenticationMethod {kerberos | userIdPassword}. Determines which authentication
method DataDirect XQuery uses when establishing a connection.

If set to kerberos, DataDirect XQuery uses Kerberos authentication.
DataDirect XQuery ignores any user ID or password specified. If
you set this value, you also must set the ServicePrincipalName
property. See “Using Kerberos Authentication” on page 147 for
more information about using Kerberos.

If set to userIdPassword (the default), DataDirect XQuery uses
user ID/password authentication. If a user ID and password are not
specified, an exception is thrown.

The User property provides the user ID. The Password property
provides the password.

InitializationString Specifies one or multiple SQL commands to be executed by
DataDirect XQuery after it has established the connection to the
database and has performed all initialization for the connection.
For example:

InitializationString=command

Multiple commands must be separated by semicolons. In addition,
if this property is specified in a connection URL, the entire value
must be enclosed in parentheses when multiple commands are
specified. For example:

jdbc:xquery:sybase://server1:5000;DatabaseName=test;
InitializationString=(command1;command2)

If the execution of a SQL command fails, the connection attempt
also fails and DataDirect XQuery raises an exception indicating
which SQL command or commands failed.
DataDirect XQuery User’s Guide and Reference

482 Appendix E Database Support
Password A case-insensitive password used to connect to your Sybase
database. A password is required only if user ID/password
authentication is enabled on your database. If so, contact your
system administrator to obtain your password.

ServicePrincipalName Specifies the case-sensitive service principal name to be used by
DataDirect XQuery for Kerberos authentication. For Sybase, the
service principal name is the name of a server configured in your
Sybase interfaces file. If you set this property, you also must set the
value of the “AuthenticationMethod” property to Kerberos.

The value of this property can include the Kerberos realm name,
but it is optional. If you do not specify the Kerberos realm name,
the default Kerberos realm is used. For example, if the service
principal name, including Kerberos realm name, is
server/sybase125ase1@XYZ.COM and the default realm is
XYZ.COM, valid values for this property are:

server/sybase125ase1@XYZ.COM

and

server/sybase125ase1

When Kerberos authentication is not used, this property is ignored.

User The case-insensitive user name used to connect to your Sybase
database. A user name is required only if user ID/password
authentication is enabled on your database. If so, contact your
system administrator to obtain your user name.

Table E-15. Sybase Connection Properties (cont.)

Sybase Property Description
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 483
Database-Specific Query Functions
One way to query XML data on relational databases relies on
database-specific XML query features and their integration into
DataDirect XQuery. The advantage of this approach is it
leverages database capabilities (for example, XML indexing) and
allows DataDirect XQuery to retrieve only the result of the query
expression that is applied to the XML column.

The disadvantages of this approach are that XQuery you write
for data stored on one database is not portable across different
databases and database versions, and that the XML query
capabilities of some databases are limited.

Note: The namespace for using database-specific XML functions
in DataDirect XQuery is ddtek-sql.

This section covers the following topics:

■ “Querying XML on DB2” on page 484
■ “Querying XML on Oracle” on page 490
■ “Querying XML on Microsoft SQL Server 2005” on page 497

Tip: If your database supports XML Type, see “Querying XML
Type Data” on page 263 for alternatives to using
database-specific functions to query XML data on relational
databases.
DataDirect XQuery User’s Guide and Reference

484 Appendix E Database Support
Querying XML on DB2

As mentioned in “Supported Databases” on page 445, IBM DB2
databases use different storage mechanisms for XML data –
pureXML and XML Extender. The following table summarizes the
different ways you can query XML data on DB2 depending on the
type of XML storage being used.

Query Functions for DB2 XML Extender

DataDirect XQuery provides several extract functions that you
can use to query XML data on DB2 when the XML Extender
mechanism is in use. These functions are:

■ “ddtek-sql:DB2XML.extracttype()”
■ “ddtek-sql:DB2XML.extracttypes()”
■ “ddtek-sql:DB2XML.extractCLOB()”
■ “ddtek-sql:DB2XML.extractCLOBS()”

ddtek-sql:DB2XML.extracttype()

extract[Integer|Smallint|Double|Real|Char|Varchar|Date|Time|Timestamp]

This set of DB2 extract functions (extractInteger, extractSmallint,
and so on) extracts the element content or attribute value from

Table 12-10. Ways to Query XML Data on DB2

Storage Mechanism Support for XML Type You Can Use

pureXML Yes ■ DataDirect XQuery. See “Querying
XML Type Data”.

■ DB2XML functions. See “Query
Functions for DB2 XML Extender”.

XML Extender No ■ DB2 extract functions. See “Query
Functions for DB2 pureXML”.
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 485
an XML element or attribute node and returns the data as the
type indicated by the function’s name. For example:

declare function
 ddtek-sql:DB2XML.extractDouble($inp as node(),$xp as xs:string) as
 xs:double external;
for $v1 in collection('holdingsxml')/holdingsxml
return
<shares>{
 ddtek-sql:DB2XML.extractDouble(
 $v1/holdings/*,
 '/holdings/share[@company="Progress Software"]')
}</shares>

This example returns:

<shares>23</shares>
<shares>4000000</shares>

ddtek-sql:DB2XML.extracttypes()

The ddtek-sql:DB2XML.extracttypes() functionis equivalent to
ddtek-sql:DB2XML.extracttype(), but instead of returning a
single XML fragment, it returns a table.

extract[Integers|Smallints|Doubles|Reals|Chars|Varchars|Dates|Times|Timestamps]

When using the extracttypes() extract function, you must declare
it in the tableFunction element of the DataDirect XQuery source
configuration file, for example:

...
<tableFunction name="EXTRACTDOUBLES">
 <resultSet>
 <column name="RETURNEDDOUBLE" schemaType="double"/>
 </resultSet>
</tableFunction>
...

See “Using SQL Table Functions” on page 337 for more
information on this topic.
DataDirect XQuery User’s Guide and Reference

486 Appendix E Database Support
The following example shows the usage of
ddtek-sql:DB2XML.extractDoubles():

declare function ddtek-sql:DB2XML.extractDoubles($inp as node(),$xp as
 xs:string)
 as document-node(element()) external;
for $v1 in collection('holdingsxml')/holdingsxml
for $v2 in
ddtek-sql:DB2XML.extractDoubles(
 $v1/holdings/*,
 '/holdings/share')/EXTRACTDOUBLES/RETURNEDDOUBLE/data(.)
return $v2

This example returns:

3000 4000 2500 23 3000 4000 40000 4.0E6

ddtek-sql:DB2XML.extractCLOB()

As stated in the IBM DB2 documentation, the extractCLOB
function:

... extracts a fragment of XML documents, with element and
attribute markup and content of elements and attributes,
including sub-elements. This function differs from the other
extract functions, which return only the content of elements and
attributes. The extractClob(s) functions are used to extract
document fragments, whereas extractVarchar(s) and
extractChar(s) are used to extract simple values.

For example:

declare function ddtek-sql:DB2XML.extractCLOB(
 $inp as node(),$xp as xs:string) as node() external;
for $v1 in collection('holdingsxml')/holdingsxml
return
ddtek-sql:DB2XML.extractCLOB(
 $v1/holdings/*,
 '/holdings/share[@company="Progress Software"]')
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 487
This example returns:

<share company="Progress Software" userid="Jonathan">23</share>
<share company="Progress Software" userid="Minollo">4000000</share>

ddtek-sql:DB2XML.extractCLOBS()

The extractCLOBS function is equivalent to extractCLOB, but
instead of returning a single XML fragment, extractCLOBS
returns a table.

In order to use extractCLOBS, you must declare the function in
the DataDirect XQuery source configuration file as a table
function.

...
<tableFunction name="EXTRACTCLOBS">
 <resultSet>
 <column name="RETURNEDCLOB" schemaType="anyType"/>
 </resultSet>
</tableFunction>
...

See “Using SQL Table Functions” on page 337 for more
information on this topic.

The following example shows the usage of
ddtek-sql:DB2XML.extractCLOBS():

declare function ddtek-sql:DB2XML.extractCLOBS($inp as node(),$xp as
xs:string)
 as document-node(element()) external;
for $v1 in collection('holdingsxml')/holdingsxml
for $v2 in
 ddtek-sql:DB2XML.extractCLOBS(
 $v1/holdings/*,
 '/holdings/share/@company')/EXTRACTCLOBS/RETURNEDCLOB
return $v2
DataDirect XQuery User’s Guide and Reference

488 Appendix E Database Support
This example returns:

<RETURNEDCLOB>
 <share company="Amazon.com, Inc." userid="Jonathan">3000</share>
</RETURNEDCLOB>
<RETURNEDCLOB>
 <share company="eBay Inc." userid="Jonathan">4000</share>
</RETURNEDCLOB>

Query Functions for DB2 pureXML

Among the DB2 databases supported by DataDirect XQuery, DB2
pureXML is supported on DB2 V9.1, DB2 V9.5, and DB2 V9.1 for
z/OS. All of these database versions also support XML Type.
However, DB2 V9.1 for z/OS supports only XPath, and not XQuery.

You can use the following built-in functions to query XML Type
data on DB2 databases using pureXML:

■ “ddtek-sql:db2-xmlquery()”
■ “ddtek-sql:db2-xmlparse()”

NOTE: If you want to use the database’s native XQuery support,
the DB2 database server must be configured with the Unicode
character set.

ddtek-sql:db2-xmlquery()

The function declarations for ddtek-sql:db2-xmlquery are:

declare function ddtek-sql:db2-xmlquery($query as xs:string, $paramvalue as
 item()*, $paramname as xs:string) as node()* external;

declare function ddtek-sql:db2-xmlquery($query as xs:string) as
 node()* external;

The following example shows the use of the built-in DB2 XQuery
function db2-fn:xmlcolumn(string) to access XML Type data. In
this example, the XQuery expression is querying the holdings
column of the holdingsxml table. The holdings column contains
XML Type data.
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 489
ddtek-sql:db2-xmlquery('
 for $share in db2-fn:xmlcolumn("holdingsxml.holdings")//SHARE
 [@COMPANY="Progress Software"]
 return <progress-shares from="{$share/@userid}" number="{data($share)}"/>
')

Example: ddtek-sql:db2-xmlquery() using external variables

The following example shows the use of an external variable
($var) to access XML Type data:

for $v1 in collection('holdingsxml')/holdingsxml/holdings
return ddtek-sql:db2-xmlquery('
 for $v in $var//SHARE[@COMPANY="Progress Software"]
 return <progress-shares from="{$v/@userid}" number="{data($v)}"/>',
 $v1/node(), "var")

A similar example using two external variables, $var and
$companyName:

for $v1 in collection('holdingsxml')/holdingsxml/holdings
return ddtek-sql:db2-xmlquery('
 for $v in $var//share[@company=$CompanyName]
 return <progress-shares from="{$v/@userid}" number="{data($v)}"/>',
 $v1/node(), "var",
 "Progress Software", "CompanyName")

ddtek-sql:db2-xmlparse()

The function declaration for ddtek-sql:db2-xmlparse() is:

declare function ddtek-sql:db2-xmlparse($doc as xs:string) as
 node()* external;

Here is an example:

let $data := '
 <holdings>
 <SHARE COMPANY="Amazon.com, Inc."
 userid="Jonathan">00003000.00</share>
 <share company="eBay Inc." userid="Jonathan">00004000.00</share>
 <share company="Int''l Business Machines C"
 userid="Jonathan">00002500.00</share>
 <share company="Progress Software"
 userid="Jonathan">00000023.00</share>
DataDirect XQuery User’s Guide and Reference

490 Appendix E Database Support
 <share company="Amazon.com, Inc."
 userid="Minollo">00003000.00</share>
 <share company="eBay Inc." userid="Minollo">00004000.00</share>
 <share company="Lucent Technologies Inc."
 userid="Minollo">00040000.00</share>
 <share company="Progress Software"
 userid="Minollo">04000000.00</share>
 </holdings>'
return ddtek-sql:db2-xmlquery('
 for $share in $p//share[@company="Progress Software"]
 return <progress-shares from="{$share/@userid}" number="{data($share)}"/> ',
 ddtek-sql:db2-xmlparse($data), "p")

Querying XML on Oracle

Oracle supports XPath-like queries on XML data stored in an XML
Type column through these built-in SQL extension functions:

■ “ddtek-sql:existsNode()”
■ “ddtek-sql:extractValue()”
■ “ddtek-sql:extract()”
■ “ddtek-sql:xmlSequence()”
■ “ddtek-sql:ora-xmlquery()”

ddtek-sql:existsNode()

ddtek-sql:existsNode() accepts an XML value and an XPath
expression as input and returns true if the XPath expression
matches one or more nodes in the XML value. Refer to your
Oracle documentation for details.

declare function ddtek-sql:existsNode($inp as node(),$xp as xs:string) as
 xs:boolean external;
for $share in ("Amazon.com, Inc.","eBay")
let $numberofshares :=
 count(for $x in collection('holdingsxml')/holdingsxml
 where ddtek-sql:existsNode(
 $x/holdings/*,
 concat("/holdings/share/@company[.='",$share,"']"))
 return $x)
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 491
return <number-of-shareholders share="{$share}" number="{$numberofshares}" />

This example returns:

<number-of-shareholders share="Amazon.com, Inc." number="2"/>
<number-of-shareholders share="eBay" number="0"/>

ddtek-sql:extractValue()

ddtek-sql:extractValue() accepts an XML value and an XPath
expression as input and returns the scalar value of the node
selected by the XPath expression. Refer to your Oracle
documentation for details.

declare function ddtek-sql:existsNode($inp as node(),$xp as xs:string) as
 xs:boolean external;
declare function ddtek-sql:extractValue($inp as node(),$xp as xs:string) as
 xs:untypedAtomic external;
for $share in ("Progress Software","eBay")
for $x in collection('holdingsxml')/holdingsxml
where ddtek-sql:existsNode(
 $x/holdings/*,
 concat("/holdings/share/@company[.='",$share,"']"))
return
 <share share='{$share}'
 holder='{ddtek-sql:extractValue(
 $x/holdings/*,
 fn:concat("/holdings/share[@company='", $share ,"']/@userid"))}'
 number='{ddtek-sql:extractValue(
 $x/holdings/*,
 fn:concat("/holdings/share[@company='", $share ,"']"))}' />

This example returns:

<share share="Progress Software" holder="Jonathan" number="23"/>
<share share="Progress Software" holder="Minollo" number="4000000"/>

ddtek-sql:extract()

ddtek-sql:extract() accepts an XML value and an XPath
expression as input and returns an XML fragment that contains
DataDirect XQuery User’s Guide and Reference

492 Appendix E Database Support
the nodes selected by the XPath expression. Refer to your Oracle
documentation for more details.

declare function ddtek-sql:extract($inp as node(),$xp as xs:string) as
 node() external;
declare function ddtek-sql:existsNode($inp as node(),$xp as xs:string) as
 xs:boolean external;
for $share in ("Amazon.com, Inc.","Progress Software","eBay")
for $x in collection('holdingsxml')/holdingsxml
where ddtek-sql:existsNode(
 $x/holdings/*,
 concat("/holdings/share/@company[.='",$share,"']"))
return
ddtek-sql:extract($x/holdings/*,fn:concat("/holdings/share[@company='",
 $share ,"']"))

This example returns:

<share company="Amazon.com, Inc." userid="Jonathan">3000</share>
<share company="Progress Software" userid="Jonathan">23</share>
<share company="Amazon.com, Inc." userid="Minollo">3000</share>
<share company="Progress Software" userid="Minollo">4000000</share>

Because the result of ddtek-sql:extract() is a single XML fragment,
limitations exist as to where this function can be used in an
XQuery expression. The following usages of ddtek-sql:extract()
are allowed:

■ As a returned value from the expression, as shown in
“ddtek-sql:extract()” on page 491

■ As input to another Oracle SQL function (existsNode(),
extractValue(), extract()), as shown in “Example: As Input to
Another Oracle SQL Function” on page 493

■ Inside a ddtek:evaluate-in-memory extension expression, as
shown in “Example: Inside a ddtek:evaluate-in-memory
Extension Expression” on page 494

■ As input to the Oracle ddtek-sql:xmlSequence() (a table
function), as shown in “ddtek-sql:xmlSequence()” on
page 494
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 493
Here is an example of using ddtek-sql:extract() that is not
allowed:

declare function ddtek-sql:extract($inp as node(),$xp as xs:string) as
 node() external;
declare function ddtek-sql:existsNode($inp as node(),$xp as xs:string) as
 xs:boolean external;
for $share in ("Amazon.com, Inc.","Progress Software","eBay")
for $v1 in collection('holdingsxml')/holdingsxml
for $v2 in ddtek-sql:extract($v1/holdings/*,"/holdings/share")
where xs:string($v2/@userid) = "Minollo"
return $v2

This example fails and DataDirect XQuery returns the following
error:

[DataDirect][XQuery]The value of the XML column "holdings" can only be used
as a return value.

Example: As Input to Another Oracle SQL Function

The following example shows how to use the result of
ddtek-sql:extract() as input to ddtek-sql:extractValue():

declare function ddtek-sql:extract($inp as node(),$xp as xs:string) as
 node() external;
declare function ddtek-sql:extractValue($inp as node(),$xp as xs:string)
 as xs:untypedAtomic external;
for $v1 in collection('holdingsxml')/holdingsxml
let $v2 := ddtek-sql:extract($v1/holdings/*,'/holdings/share')
let $v3 := ddtek-sql:extractValue($v2,
 '/share[@company="Progress Software"]/@userid')
where xs:string($v3) = "Minollo"
return $v2
DataDirect XQuery User’s Guide and Reference

494 Appendix E Database Support
Example: Inside a ddtek:evaluate-in-memory Extension
Expression

This example shows how to use the result of ddtek-sql:extract()
with the ddtek:evaluate-in-memory extension expression.

declare function ddtek-sql:extract($inp as node(),$xp as xs:string) as
 node() external;
for $v1 in collection('holdingsxml')/holdingsxml
let $v2 := ddtek-sql:extract($v1/holdings/*,'/holdings')
for $v3 in (# ddtek:evaluate-in-memory #) {$v2/share}
return
 <shares from='{$v3/@userid}' for='{$v3/@company}' number='{$v3}' />

ddtek-sql:xmlSequence()

ddtek-sql:xmlSequence() accepts an XML value (fragment) as
input and transforms it into a sequence. This is useful if you want
to iterate over the result of a previously invoked
ddtek-sql:extract().

You must declare ddtek-sql:xmlSequence() in the DataDirect
XQuery source configuration file as a table function.

...
<schema name="">
 <tableFunction name="XMLSEQUENCE">
 <resultSet>
 <column name="COLUMN_VALUE" schemaType="anyType"/>
 </resultSet>
 </tableFunction>
</schema>
...

declare function ddtek-sql:extract($inp as node(),$xp as xs:string) as
 node() external;
declare function ddtek-sql:XMLSEQUENCE($inp as node()) as
 document-node(element()) external;
for $v1 in collection('holdingsxml')/holdingsxml
for $v3 in
 ddtek-sql:XMLSEQUENCE(
ddtek-sql:extract($v1/holdings/*,'/holdings/share'))/XMLSEQUENCE/COLUMN_VALUE/*
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 495
return <shareinfo>{$v3/*}</shareinfo>

This example returns:

<shareinfo>
 <share company="Amazon.com, Inc." userid="Jonathan">3000</share>
</shareinfo>
<shareinfo>
 <share company="eBay Inc." userid="Jonathan">4000</share>
</shareinfo>
...

ddtek-sql:ora-xmlquery()

Oracle 10g R2 and higher support native XQuery support using
SQL extensions that allow combining SQL statements and
XQuery expressions. Refer to your Oracle documentation for
details.

DataDirect XQuery supports the Oracle XMLQUERY statement
using a built-in XQuery function, ddtek-sql:ora-xmlquery. Other
Oracle XQuery related features can be supported easily through
user-defined functions that wrap the SQL extensions and that
can be invoked using DataDirect XQuery’s SQL function support.
(See “Using SQL Functions” on page 329.)

DataDirect XQuery supports the following functional
declarations of ddtek-sql:ora-xmlquery():

declare function ddtek-sql:ora-xmlquery($query as xs:string, $context-item as
 node()?) as node()? external;

declare function ddtek-sql:ora-xmlquery($query as xs:string) as
 node()? external;
DataDirect XQuery User’s Guide and Reference

496 Appendix E Database Support
Using the Oracle XQuery engine, the function evaluates the
XQuery expression passed by the $query parameter. The initial
context item from the XQuery expression is initialized with the
value of $context-item (Refer to your Oracle documentation for
details about the meaning and usage of the initial context item).
For example:

for $x in collection('holdingsxml')/holdingsxml/holdings
return
 ddtek-sql:ora-xmlquery(
 'for $v in //share[@company="Progress Software"]
 return <progress-shares from="{$v/@userid}" number="{data($v)}"/>',
 $x/node()
)

This example returns:

<progress-shares from="Jonathan" number="23"/>
<progress-shares from="Minollo" number="4000000"/>

Another example:

ddtek-sql:ora-xmlquery('ora:view("holdings")/ROW')

This example returns:

<ROW>
 <userid>Jonathan</userid>
 <stockticker>PRGS</stockticker>
 <shares>23</shares>
</ROW>
...

Note that the result of ddtek-sql:ora-xmlquery() is similar to the
result returned from ddtek-sql:extract(). The result is an XML
fragment and the same restrictions and guidelines apply.
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 497
Querying XML on Microsoft SQL Server
2005

Microsoft SQL Server 2005 introduced native XQuery support
using SQL extensions that allow combining SQL statements and
XQuery expressions. Refer to your Microsoft SQL Server
documentation for details.

DataDirect XQuery supports these Microsoft SQL Server 2005
(and higher) SQL extensions using the following proprietary
(predeclared) XQuery functions:

■ “ddtek-sql:sqs-query()”
■ “ddtek-sql:sqs-value()”
■ “ddtek-sql:sqs-exist()”
■ “ddtek-sql:sqs-nodes()”

These functions correspond to the Microsoft SQL Server 2005
query(), value(), exist(), and nodes() methods.

ddtek-sql:sqs-query()

This function evaluates the Microsoft SQL Server 2005 query()
method using $context-item as the initial context item, if
provided. Refer to your Microsoft SQL Server 2005
documentation for details about query().

declare function ddtek-sql:sqs-query($context-item as node(), $query as
 xs:string) as node()? external;
declare function ddtek-sql:sqs-query($query as xs:string) as
 node()? external;
DataDirect XQuery User’s Guide and Reference

498 Appendix E Database Support
For example:

for $x in collection('holdingsxml')/holdingsxml/holdings
return
 ddtek-sql:sqs-query(
 $x/node(),
 'for $v in //share[@company="Progress Software"]
 return <progress-shares from="{$v/@userid}" number="{data($v)}"/>'
)

This example returns:

<progress-shares from="Jonathan" number="23"/>
<progress-shares from="Minollo" number="4000000"/>

ddtek-sql:sqs-value()

This function invokes the Microsoft SQL Server 2005 value()
method on the XML value provided by $context-item. Refer to
your Microsoft SQL Server documentation for details about
value().

declare function ddtek-sql:sqs-value(
$context-item as node(),
$query as xs:string,
$type as xs:string)
 as xs:anyAtomicType? external;

For example:

for $x in collection('holdingsxml')/holdingsxml/holdings
return
 ddtek-sql:sqs-value(
 $x/node(),
 '(for $v in //share[@company="Progress Software"] return $v)[1]','bigint'
)

This example returns:

23 4000000
DataDirect XQuery User’s Guide and Reference

Database-Specific Query Functions 499
ddtek-sql:sqs-exist()

This function invokes the Microsoft SQL Server 2005 exist()
method on the XML value provided by $context-item. Refer to
your Microsoft SQL Server documentation for details about
exist().

declare function ddtek-sql:sqs-exist(
$context-item as node(),
$query as xs:string) as xs:boolean external;

ddtek-sql:sqs-nodes()

This is a predeclared SQL table function that returns a document
node containing a sequence of sqs-nodes elements, each of
which contains a single col subelement. Refer to your Microsoft
SQL Server documentation for details about node().

declare function ddtek-sql:sqs-nodes(
$context-item as node(),
$query as xs:string) as document-node(element()) external;

For example:

for $i in collection('holdingsxml')/holdingsxml/holdings
for $j in ddtek-sql:sqs-nodes($i/*,"//share")/sqs-nodes/col
return ddtek-sql:sqs-query($j/*,'.')
DataDirect XQuery User’s Guide and Reference

500 Appendix E Database Support
This example returns:

<share company="Amazon.com, Inc." userid="Jonathan">3000</share>
<share company="eBay Inc." userid="Jonathan">4000</share>
<share company="Int'l Business Machines C" userid="Jonathan">2500</share>
<share company="Progress Software" userid="Jonathan">23</share>
<share company="Amazon.com, Inc." userid="Minollo">3000</share>
<share company="eBay Inc." userid="Minollo">4000</share>
<share company="Lucent Technologies Inc." userid="Minollo">40000</share>
<share company="Progress Software" userid="Minollo">4000000</share>

Note that the result of ddtek-sql:sqs-nodes() can only be used as
input to another ddtek-sql:sqs-xxxx function.
DataDirect XQuery User’s Guide and Reference

501
F XUF Support

This appendix describes how DataDirect XQuery supports
XQuery Update Facility 1.0 (XUF) expressions, functions, and
operators according to this specification:

XQuery Update Facility 1.0 W3C Candidate Recommendation 1
August 2008 located at: This appendix also describes DataDirect
XQuery built-in functions in support of XUF.

The tables in this appendix that present XUF support
information use the following terms to describe this support for
XML data sources.

In this appendix, the headings and the items in the tables are
numbered; these numbers correspond to the sections in the W3C
Recommendation 1 August 2008 where each topic is discussed.

Term Definition

Supported DataDirect XQuery supports the feature,
function, or operator with no exceptions.

Supported with
comment

DataDirect XQuery supports the feature,
function, or operator with the comment
noted.

Not supported DataDirect XQuery does not support the
feature, function, or operator and raises an
error.
DataDirect XQuery User’s Guide and Reference

502 Appendix F XUF Support
2 Extensions to XQuery 1.0
This section describes how DataDirect XQuery supports the
following extensions to XQuery 1.0.

■ “2.1 Extensions to the Processing Model” on page 502
■ “2.2 Extensions to the Prolog” on page 503
■ “2.3 Extensions to the Static Context” on page 503
■ “2.4 New Kinds of Expressions” on page 504
■ “2.5 Extensions to Existing Expressions” on page 505
■ “2.6 Extensions to Built-in Function Library” on page 505

2.1 Extensions to the Processing Model

Table F-1 describes DataDirect XQuery’s support of the extensions
to the XQuery 1.0 processing model.

Table F-1. Extensions to the Processing Model

XQuery Language Support

Extension to the Processing Model
(2.1)

Supported.
DataDirect XQuery User’s Guide and Reference

2 Extensions to XQuery 1.0 503
2.2 Extensions to the Prolog

Table F-2 describes DataDirect XQuery’s support of the
extensions to the XQuery 1.0 prolog.

2.3 Extensions to the Static Context

Table F-3 describes DataDirect XQuery’s support of the
extensions to the XQuery 1.0 static context.

Table F-2. Extensions to the Prolog

XQuery Language Support

Revalidation Declaration
(2.2.1)

Supported with comment.

DataDirect XQuery supports the skip setting only.

Variable Declaration (2.2.2) Supported.

Function Declaration
(2.2.3)

Supported with comment.

DataDirect XQuery does not support updating of external
expressions.

Table F-3. Extensions to the Static Context

XQuery Language Support

Extensions to the Static Context
(2.3)

Supported.
DataDirect XQuery User’s Guide and Reference

504 Appendix F XUF Support
2.4 New Kinds of Expressions

Table F-4 describes DataDirect XQuery’s support for XQuery
expressions introduced by XUF.

Table F-4. New Kinds of Expressions

XQuery Language Support

Insert (2.4.1) Supported.

Use ddtek:sql* functions to update relational database
sources. See “Updating Relational Data” on page 267 for
more information.

Delete (2.4.2) Supported.

Use ddtek:sql* functions to update relational database
sources. See “Updating Relational Data” on page 267 for
more information.

Replace (2.4.3)

Replacing a Node
(2.4.3.1)

Supported.

Use ddtek:sql* functions to update relational database
sources. See “Updating Relational Data” on page 267 for
more information.

Replacing the Value
of a Node (2.4.3.2)

Supported.

Use ddtek:sql* functions to update relational database
sources. See “Updating Relational Data” on page 267 for
more information.

Rename (2.4.4) Supported.

Use ddtek:sql* functions to update relational database
sources. See “Updating Relational Data” on page 267 for
more information.

Transform (2.4.5) Supported.

Compatibility of Updating
Expressions (2.4.6)

Supported.
DataDirect XQuery User’s Guide and Reference

2 Extensions to XQuery 1.0 505
2.5 Extensions to Existing Expressions

Table F-5 describes DataDirect XQuery’s support for extensions to
existing expressions in XQuery 1.0.

2.6 Extensions to Built-in Function
Library

Table F-6 describes DataDirect XQuery’s support for extensions to
the XQuery 1.0 built-in function library.

Table F-5. Extensions to Built-in Function Library

XQuery Language Support

FLWOR Expression (2.5.1) Supported.

Typeswitch Expression
(2.5.2)

Supported.

Conditional Expression
(2.5.3)

Supported.

Comma Expression (2.5.4) Supported.

Parenthesized Expression
(2.5.5)

Supported.

Function Call (2.5.6) Supported.

Other Expressions (2.5.4) Supported.

Table F-6. Extensions to Built-in Function Library

XQuery Language Support

fn:put() (2.6.1) Supported.
DataDirect XQuery User’s Guide and Reference

506 Appendix F XUF Support
5 Conformance
DataDirect XQuery fulfills the requirements of XUF Minimal
Conformance (5.1).

5.2 Optional Features

DataDirect XQuery supports the Update Facility Static Typing
Feature (5.2.1).
DataDirect XQuery User’s Guide and Reference

507
G XQJ Support

This appendix describes how DataDirect XQuery supports
XQuery API for Java (XQJ) classes, interfaces, and methods
according to the XQJ specification, which is located at:

http://www.jcp.org/en/jsr/detail?id=225

For additional information about the XQJ classes, interfaces, and
methods, refer to the Javadoc.

The tables that present XQJ support information use the
following terms to describe this support:

This appendix also discusses exception handling, serialization,
multi-threading, accessing XML results, and mapping data types.

Term Definition

Supported DataDirect XQuery supports the method
with no exceptions.

Supported with
comment

DataDirect XQuery supports the method
with the comment noted.

Supported but
ignored

DataDirect XQuery does not implement the
method but does not throw an exception. In
this case, the method is optional in the XQJ
specification.

Not supported DataDirect XQuery does not support the
method and throws an exception (raises an
error).
DataDirect XQuery User’s Guide and Reference

http://www.jcp.org/en/jsr/detail?id=225
http://www.xquery.com/docs/ddxq3.0/javadoc/index.html

508 Appendix G XQJ Support
Java Package Name
The Java package for the XQJ interfaces is javax.xml.xquery.

XQConnection Interface
This interface describes the connection used to execute XQuery
expressions. This interface extends XQDataFactory.

Table G-1 describes how DataDirect XQuery supports the
methods of the XQConnection interface.

Table G-1. XQConnection Method Summary

Method Support

void close() Supported.

void commit() Supported. “Understanding the
Transactional Behavior of DataDirect
XQuery Updates” on page 270.

XQExpression createExpression() Supported.

XQExpression createExpression(XQStaticContext
staticContext)

Supported.

boolean getAutoCommit() Supported. See “Understanding the
Transactional Behavior of DataDirect
XQuery Updates” on page 270 for
information about auto-commit.

XQMetaData getMetaData() Supported.

XQStaticContext getStaticContext() Supported.

String[] getSupportedMetaDataPropertyNames() Not supported.

XQWarning getWarnings() Supported. Always returns null.
DataDirect XQuery does not generate
warnings.

boolean isClosed() Supported.
DataDirect XQuery User’s Guide and Reference

XQConnection Interface 509
XQPreparedExpression
prepareExpression(Inputstream xquery)

Supported. When the query is read
from a java.io.InputStream, DataDirect
XQuery assumes the encoding specified
in the XQuery version declaration.
Otherwise, DataDirect XQuery parses
the byte stream using UTF-8.

XQPreparedExpression
prepareExpression(Inputstream xquery,
XQStaticContext staticContext)

Supported. When the query is read
from a java.io.InputStream, DataDirect
XQuery assumes the encoding specified
in the XQuery version declaration.
Otherwise, DataDirect XQuery parses
the byte stream using UTF-8.

XQPreparedExpression prepareExpression(Reader
xquery)

Supported.

XQPreparedExpression prepareExpression(Reader
xquery, XQStaticContext staticContext)

Supported.

XQPreparedExpression prepareExpression(String
xquery)

Supported.

XQPreparedExpression prepareExpression(String
xquery, XQStaticContext staticContext)

Supported.

void rollback() Supported. See “Understanding the
Transactional Behavior of DataDirect
XQuery Updates” on page 270.

void setAutoCommit(boolean autoCommit) Supported. See “Understanding the
Transactional Behavior of DataDirect
XQuery Updates” on page 270 for
information about auto-commit.

void setStaticContext(XQStaticContext staticContext) Supported.

Table G-1. XQConnection Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

510 Appendix G XQJ Support
XQDataFactory
This interface represents a factory to obtain sequences, item
objects, and types, which when obtained are independent of any
connection.

Some of the methods in this interface create element, document,
or attribute nodes. DataDirect XQuery creates untyped instances
of these nodes.

Table G-2 describes how DataDirect XQuery supports the
methods of the XQDataFactory interface.

Table G-2. XQDataFactory Method Summary

Method Support

XQItemType createAtomicType(int basetype) Supported.

XQItemType createAtomicType(int basetype, QName
typename, URI schemaURI)

Supported. DataDirect XQuery does
not support user-defined XML Schema
types.

XQItemType createAttributeType(QName nodename,
int basetype)

Supported.

XQItemType createAttributeType(QName nodename,
int basetype, QName typename, URI schemaURI)

Supported. DataDirect XQuery does
not support user-defined XML Schema
types.a

XQItemType createCommentType() Supported.

XQItemType createDocumentElementType
(XQItemType elementType)

Supported.

XQItemType createDocumentSchemaElementType
(XQItemType elementType)

DataDirect XQuery does not support
user-defined XML Schema types.

XQItemType createDocumentType() Supported.

XQItemType createElementType(QName nodename,
int basetype)

Supported.
DataDirect XQuery User’s Guide and Reference

XQDataFactory 511
XQItemType createElementType(QName nodename,
int basetype, QName typename, URI schemaURI,
boolean allowNill)

Supported. schemaURI and allowNill
are ignored. If typename is not null,
then it must match the value specified
for basetype.1

XQItem createItem(XQItem item) Supported.

XQItem createItemFromAtomicValue(String value,
XQItemType type)

Supported.

XQItem createItemFromBoolean(boolean value,
XQItemType type)

Supported.

XQItem createItemFromByte(byte value, XQItemType
type)

Supported.

XQItem createItemFromDocument(InputStream
value, String baseURI, XQItemType type)

Supported.

XQItem createItemFromDocument(Reader value,
String baseURI, XQItemType type)

Supported.

XQItem createItemFromDocument(String value,
String baseURI, XQItemType type)

Supported.

XQItem createItemFromDocument(Source value,
XQItemType type)

Supported.

XQItem
createItemFromDocument(XMLStreamReader value,
XQItemType type)

Supported.

XQItem createItemFromDouble(double value,
XQItemType type)

Supported.

XQItem createItemFromFloat(float value,
XQItemType type)

Supported.

XQItem createItemFromInt(int value, XQItemType
type)

Supported.

XQItem createItemFromLong(long value,
XQItemType type)

Supported.

XQItem createItemFromNode(Node value,
XQItemType type)

Supported.

XQItem createItemFromObject(Object value,
XQItemType type)

Supported.

Table G-2. XQDataFactory Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

512 Appendix G XQJ Support
XQDataSource Interface
This interface can be used as a factory for creating XQuery
connection objects.

A DataSource object typically has a set of properties that identify
and describe the data source that it represents such as location of
the database, the name of the database, and so on.

XQItem createItemFromShort(short value,
XQItemType type)

Supported.

XQItem createItemFromString(String value,
XQItemType type)

Supported.

XQItemType createItemType() Supported.

XQItemType createNodeType() Supported.

XQItemType createProcessingInstructionType(String
piTarget)

Supported.

XQItemType createSchemaAttributeType(QName
nodename, int basetype, URI schemaURI)

DataDirect XQuery does not support
user-defined XML Schema types.

XQItemType createSchemaElementType(QName
nodename, int basetype, URI schemaURI)

DataDirect XQuery does not support
user-defined XML Schema types.

XQSequence createSequence(Iterator i) Supported.

XQSequence createSequence(XQSequence s) Supported.

XQSequenceType createSequenceType(XQItemType
item, int occurrence)

Supported.

XQItemType createTextType() Supported.

a. An example where typename does not equal basetype:
 createAttributeType(
 new QName("http://www.foo.com", "bar"),
 XQItemType.XQBASETYPE_INTEGER,
 new QNAME("http://www.w3.org/2001/XMLSchema", "decimal"),null);

Table G-2. XQDataFactory Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

XQDataSource Interface 513
The class name of the DataDirect XQuery XQDataSource
implementation is:

com.ddtek.xquery.xqj.DDXQDataSource

In addition, DataDirect XQuery uses the following class to specify
additional properties when configuring connections for multiple
databases:

com.ddtek.xquery.xqj.DDXQJDBCConnection

See “Configuring Connections Explicitly” on page 123 for
information about configuring connections using the
DDXQDataSource and DDXQJDBCConnection interfaces, and the
properties supported by DDXQDataSource and
DDXQJDBCConnection.

Table G-3 describes how DataDirect XQuery supports the
methods of the XQDataSource interface.

Table G-3. XQDataSource Method Summary

Method Support

XQConnection getConnection() Supported.

XQConnection getConnection(Connection con) Not supported.

XQConnection getConnection(String username,
String passwd)

Supported. The user name and
password value pair is used for all
underlying JDBC connections.

int getLoginTimeout() Supported. Always returns 0, which
means there is no timeout.

PrintWriter getLogWriter() Supported.

String getProperty(String name) Supported. See Table 6-1 on page 128
for a description of all supported
properties.

String[] getSupportedPropertyNames() Supported. See Table 6-1 on page 128
for a description of all supported
properties.

void setLoginTimeout(int seconds) Supported but ignored.
DataDirect XQuery User’s Guide and Reference

514 Appendix G XQJ Support
XQDynamicContext Interface
This interface provides get and bind methods for the components
of the dynamic context of an XQuery expression. This interface is
implemented through XQExpression and XQPreparedExpression.

Table G-4 describes how DataDirect XQuery supports the
methods of the XQDynamicContext interface.

void setLogWriter(PrintWriter out) Supported.

void setProperties(Properties props) Supported. See Table 6-1 on page 128
for a description of all supported
properties.

void setProperty(String name, String value) Supported. See Table 6-1 on page 128
for a description of all supported
properties.

Table G-3. XQDataSource Method Summary (cont.)

Method Support

Table G-4. XQDynamicContext Method Summary

Method Support

void bindAtomicValue(QName varName, String value,
XQItemType type)

Supported.

void bindBoolean(QName varName, boolean value, XQItemType
type)

Supported.

void bindByte(QName varname, byte value, XQItemType type) Supported.

void bindDocument(QName varName, InputStream value,
String baseURI, XQItemType type)

Supported.

void bindDocument(QName varName, Reader value,
String baseURI, XQItemType type)

Supported.
DataDirect XQuery User’s Guide and Reference

XQDynamicContext Interface 515
void bindDocument(namespaceQName varName, Source value,
XQItemType type)

Supported.

void bindDocument(QName varName, String value,
String baseURI, XQItemType type)

Supported.

void bindDocument(QName varName, XMLStreamReader value,
XQItemType type)

Supported.

void bindDouble(QName varName, double value, XQItemType
type)

Supported.

void bindFloat(QName varName, float value, XQItemType type) Supported.

void bindInt(QName varName, int value, XQItemType type) Supported.

void bindItem(QName varName, XQItem value) Supported.

void bindLong(QName varName, long value, XQItemType type) Supported.

void bindNode(QName varName, Node value, XQItemType type) Supported.

void bindObject(QName varName, Object value, XQItemType
type)

Supported.

void bindSequence(QName varName, XQSequence value) Supported.

void bindShort(QName varName, short value, XQItemType type) Supported.

void bindString(QName varName, String value, XQItemType
type)

Supported.

TimeZone getImplicitTimeZone() Not supported.

void setImplicitTimeZone(TimeZone implicitTimeZone) Not supported.

Table G-4. XQDynamicContext Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

516 Appendix G XQJ Support
XQExpression Interface
This interface describes how an XQuery expression will be
executed. This object can be created from the XQConnection
object and the execution can be performed using the
executeQuery function or executeCommand method, passing in
the XQuery expression. This interface extends
XQDynamicContext.

Table G-5 describes how DataDirect XQuery supports the
methods of the XQExpression interface.

Table G-5. XQExpression Method Summary

Method Support

void cancel() Supported but ignored.

void close() Supported.

void executeCommand(Reader cmd) Supported. However, DataDirect XQuery
does not have any proprietary commands.
Always throws an exception.

void executeCommand(String cmd) Supported. However, DataDirect XQuery
does not have any proprietary commands.
Always throws an exception.

XQResultSequence executeQuery
(Inputstream xquery)

Supported. If the query is read from a
java.io.InputStream, DataDirect XQuery
assumes the encoding specified in the
XQuery version declaration. Otherwise,
DataDirect XQuery parses the byte stream
using UTF-8.

XQResultSequence executeQuery(Reader query) Supported.

XQResultSequence executeQuery(String query) Supported.

XQStaticContext getStaticContext() Supported.

boolean isClosed() Supported.
DataDirect XQuery User’s Guide and Reference

XQItem Interface 517
XQItem Interface
This interface represents an item in the XDM (XQuery 1.0 and
XPath 2.0 Data Model). This interface extends XQItemAccessor.

Table G-6 describes how DataDirect XQuery supports the
methods of the XQItem interface.

XQItemAccessor Interface
This interface represents a common interface for accessing the
values of an XQuery item.

Table G-7 describes how DataDirect XQuery supports the
methods of the XQItemAccessor interface.

Table G-6. XQItem Method Summary

Method Support

void close() Supported.

boolean isClosed() Supported.

Table G-7. XQItemAccessor Method Summary

Method Support

String getAtomicValue() Supported.

boolean getBoolean() Supported.

byte getByte() Supported.

double getDouble() Supported.

float getFloat() Supported.
DataDirect XQuery User’s Guide and Reference

518 Appendix G XQJ Support
int getInt() Supported.

XMLStreamReader getItemAsStream() Supported.

String getItemAsString(Properties props) Supported.

XQItemType getItemType() Supported.

long getLong() Supported.

Node getNode() Supported.

URI getNodeUri() Not supported. Always throws
Unsupported.

Object getObject() Supported as explained in
Table G-18 “Mapping XQuery Data
Model Instances to Java Objects”
on page 536.

short getShort() Supported.

boolean instanceOf(XQItemType type) Supported. When an unknown
type is specified, false is returned.

void writeItem(OutputStream os, Properties props) Supported.

void writeItem(Writer ow, Properties props) Supported.

void writeItemToResult(Result result) Supported.

writeItemToSAX(ContentHandler saxhdlr) Supported.

Table G-7. XQItemAccessor Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

XQItemType Interface 519
XQItemType Interface
The XQItemType interface represents an item type as described
in XQuery 1.0: An XML Query Language. This interface extends
XQSequenceType.

Table G-8 describes how DataDirect XQuery supports the
methods of the XQItemType interface.

Table G-8. XQItemType Method Summary

Method Support

int getBaseType() Supported. See “Restrictions” on page 520.

int getItemKind() Supported.

int getItemOccurence() Supported.

QName getNodeName() Supported.

String getPIName() Supported.

URI getSchemaURI() Supported. Always returns null.

String getString() Supported.

QName getTypeName() Supported. DataDirect XQuery returns a QName that
matches the schema built-in type. For example:

XQItemType type = datafactory.createAtomicType
 (XQItemType.XQBASETYPE_STRING);
QName typeName= type.getTypeName();

The typeName is now:

new QName("http://www.w3.org/2001/XMLSchema",
"string")

See “Restrictions” on page 520.

boolean isAnonymousType() Supported. Always returns false.

boolean isElementNillable() Supported. Always returns false.

String toString() Supported.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xquery-20070123/

520 Appendix G XQJ Support
See Table G-16 “XQuery Types Supported for XQJ get Methods”
on page 533 for a list of XQuery types supported for the get
methods of the XQItemType interface.

Restrictions

Because DataDirect XQuery is not schema aware, a few
restrictions apply to the XQItemType instances that DataDirect
XQuery can accept. These restrictions are:

■ The value returned by getBaseType() must not be:

• XQBASETYPE_ENTITIES
• XQBASETYPE_IDREFS
• XQBASETYPE_NMTOKENS

■ Depending on the item kind, getBaseType() must return
specific base types, as follows:

• If XQITEMKIND_ATTRIBUTE, getBaseType() must return
either XQBASETYPE_ANYSIMPLETYPE or
XQBASETYPE_UNTYPEDATOMIC.

• If XQITEMKIND_ELEMENT or
XQITEMKIND_DOCUMENT_ELEMENT, getBaseType() must
return either XQBASETYPE_ANYTYPE or
XQBASETYPE_UNTYPED.

■ The value returned by getTypeName() must be one of the
following:

• null.

• A QNAME representing one of the built-in XML Schema
types.

• A value consistent with getBaseType(). For example, if not
null, the specified XML Schema type must match exactly
getBaseType().
DataDirect XQuery User’s Guide and Reference

XQMetaData Interface 521
XQMetaData Interface
This interface provides information about the XQJ
implementation, such as product name and version, supported
features, user information, and more.

Table G-9 describes how DataDirect XQuery supports the
methods of the XQMetaData interface.

Table G-9. XQMetaData Method Summary

Method Support

int getMaxExpressionLength() Supported. Always returns 0. There is
no limit on length.

int getMaxUserNameLength() Supported. Always returns 0. The
limit is unknown.

int getProductMajorVersion() Supported.

int getProductMinorVersion() Supported.

String getProductName() Supported. Returns "DataDirect
XQuery".

String getProductVersion() Supported. Returns version
information, including build number,
and date/time.

set getSupportedXQueryEncodings() Supported. The result is JVM
dependent, returns all supported
character sets of the JVM on which
the application is running.

String getUserName() Supported.

int getXQJMajorVersion() Supported. Always returns 1.

int getXQJMinorVersion() Supported. Always returns 0.

String getXQJVersion() Supported. Always returns "1.0".

boolean isFullAxisFeatureSupported() Supported. Always returns true.

boolean isModuleFeatureSupported() Supported. Always returns true.

boolean isReadOnly() Supported. Always returns false.

boolean isSchemaImportFeatureSupported() Supported. Always returns false.
DataDirect XQuery User’s Guide and Reference

522 Appendix G XQJ Support
XQPreparedExpression Interface
This interface describes an expression that can be prepared for
multiple subsequent executions. A prepared expression can be
created from the connection. This interface extends
XQDynamicContext.

Table G-10 describes how DataDirect XQuery supports the
methods of the XQPreparedExpression interface.

boolean isSchemaValidationFeatureSupported() Supported. Always returns false.

boolean isSerializationFeatureSupported() Supported. Always returns true.

boolean isStaticTypingExtensionsSupported() Supported. Always returns true.

boolean isStaticTypingFeatureSupported() Supported. Always returns true.

boolean isTransactionSupported() Supported. Always returns true.

boolean isUserDefinedXMLSchemaTypeSupported() Supported. Always returns false.

boolean isXQueryEncodingDeclSupported() Supported. Always returns true.

boolean isXQueryEncodingSupported
(String encoding)

Supported.

boolean isXQueryXSupported() Supported. Always returns false.

boolean wasCreatedFromJDBCConnection() Supported. Always returns false.

Table G-9. XQMetaData Method Summary (cont.)

Method Support

Table G-10. XQPreparedExpression Method Summary

Method Support

void cancel() Supported but ignored.

void close() Supported.
DataDirect XQuery User’s Guide and Reference

XQResultItem Interface 523
XQResultItem Interface
The XQSequenceType interface is used to represent the type
information of a sequence as described in the XDM (XQuery 1.0
and XPath 2.0 Data Model). This interface extends XQItem and
XQItemAccessor.

Table G-11 describes how DataDirect XQuery supports the
methods of the XQResultItem interface.

XQResultSequence executeQuery() Supported.

QName[] getAllExternalVariables() Supported.

QName[] getAllUnboundExternalVariables() Supported.

XQStaticContext getStaticContext() Supported.

XQSequenceType getStaticResultType() Supported.

XQSequenceType getStaticVariableType(QName name) Supported.

boolean isClosed() Supported.

Table G-10. XQPreparedExpression Method Summary

Method Support

Table G-11. XQResultItem Method Summary

Method Support

XQConnection getConnection() Supported.
DataDirect XQuery User’s Guide and Reference

524 Appendix G XQJ Support
XQResultSequence Interface
This interface represents a sequence of items obtained as a result
of evaluating XQuery expressions. This interface extends
XQSequence and XQItemAccessor.

Table G-12 describes how DataDirect XQuery supports the
methods of the XQResultSequence interface.

XQSequence Interface
This interface represents a sequence of items as defined in the
XPath/XQuery data model. The sequence may be materialized or
non-materialized. This interface extends XQItemAccessor.

Table G-13 describes how DataDirect XQuery supports the
methods of the XQSequence interface.

Table G-12. XQResultSequence Method Summary

Method Support

XQConnection getConnection() Supported.

Table G-13. XQSequence Method Summary

Method Support

boolean absolute(int itempos) Supported.

void afterLast() Supported.

void beforeFirst() Supported.

void close() Supported.

int count() Supported.
DataDirect XQuery User’s Guide and Reference

XQSequence Interface 525
boolean first() Supported.

XQItem getItem() Supported.

int getPosition() Supported.

XMLStreamReader getSequenceAsStream() Supported.

String getSequenceAsString(Properties props) Supported as explained in Appendix D
“Serialization Support” on page 439.

boolean isAfterLast() Supported.

boolean isBeforeFirst() Supported.

boolean isClosed() Supported.

boolean isFirst() Supported.

boolean isLast() Supported.

boolean isOnItem() Supported.

boolean isScrollable() Supported.

boolean last() Supported.

boolean next() Supported.

boolean previous() Supported.

boolean relative(int itempos) Supported.

void writeSequence(OutputStream os, Properties
props)

Supported as explained in Appendix D
“Serialization Support” on page 439.

void writeSequence(Writer ow, Properties props) Supported as explained in Appendix D
“Serialization Support” on page 439.

void writeSequenceToResult(Result result) Supported.

void writeSequenceToSAX(ContentHandler
saxhdlr)

Supported.

Table G-13. XQSequence Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

526 Appendix G XQJ Support
XQSequenceType Interface
This interface represents sequence type as described in
XQuery 1.0: An XML Query Language.

Table G-14 describes how DataDirect XQuery supports the
methods of the XQSequenceType interface.

XQStaticContext Interface
This interface represents default values for XQuery Static Context
components. Additionally, it includes the static XQJ properties for
an XQExpression or XQPreparedExpression object.

Table G-15 describes how DataDirect XQuery supports the
methods of the XQStaticContext interface.

Table G-14. XQSequenceType Method Summary

Method Support

int getItemOccurence() Supported.

XQItemType getItemType() Supported.

String toString() Supported. The return value is formatted using the string
representation of the underlying XQItemType, optionally
appended with "?", "+", or "*", depending on the item
occurrence.
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2007/REC-xquery-20070123/

XQStaticContext Interface 527
Table G-15. XQStaticContext Method Summary

Method Support

void declareNamespace(String prefix, String uri) Supported.

String getBaseURI() Supported. Returns the base URI as
specified in the BaseUri property of
DDXQDataSource or the directory of
your current JVM if no base URI is
specified.

int getBindingMode() Supported.

XQItemType getContextItemStaticType() Supported.

int getCopyNamespacesModeInherit() Supported. Always returns the same
constant value, XQConstants.
COPY_NAMESPACES_MODE_INHERIT.

int getCopyNamespacesModePreserve() Supported. Always returns the same
constant value, XQConstants.
COPY_NAMESPACES_MODE_PRESERVE.

String getDefaultCollation() Supported. Returns the collation as
specified in the Collation property of
DDXQDataSource or the default JVM
collation if no collation is specified.

String getDefaultElementTypeNamespace() Supported. Returns an empty string.

String getDefaultFunctionNamespace() Supported. Returns
http://www.w3.org/2005/xpath-functions

int getDefaultOrderForEmptySequences() Supported. Returns the default order for
empty sequences. See the "Default order
for empty sequences" description in
Table A-1 “XQuery Expression Context”
on page 342.

int getHoldability() Supported. Always returns the same
constant value. See the corresponding
set method for the value returned.

String[] getNamespacePrefixes() Supported. Returns xsi, xdt, xml,
ddtek-sql, fn, ddtek, local, ddtek-sql-jdbc,
and xs.

String getNamespaceURI(String prefix) Supported.
DataDirect XQuery User’s Guide and Reference

528 Appendix G XQJ Support
int getOrderingMode Supported. Always returns the same
constant value, XQConstants.
ORDERING_MODE_ORDERED.

int getQueryLanguageTypeAndVersion() Supported. Always returns the same
constant value,
XQConstants.LANGTYPE_XQUERY

int getQueryTimeout() Supported. Always returns 0, which
means there is no timeout.

int getScrollability() Supported. Always returns the same
constant value, XQConstants.
SCROLLTYPE_FORWARD_ONLY.

void setBaseURI(String baseUri) Supported.

void setBindingMode() Supported. See “Support of Deferred
Binding” on page 532.

void setBoundarySpacePolicy(int policy) Supported.

void setConstructionMode(int mode) Supported. mode must be set to
XQConstants.CONSTRUCTION_MODE_
PRESERVE.

void setContextItemStaticType(XQItemType
contextItemType)

Supported.

void setCopyNamespacesModeInherit(int mode) Supported. mode must be set to
XQConstants.COPY_NAMESPACES_
MODE_INHERIT.

void setCopyNamespacesModePreserve(int mode) Supported. Must be set to
XQConstants.COPY_NAMESPACES_
MODE_PRESERVE.

void setDefaultCollation(String uri) Supported.

void setDefaultElementTypeNamespace(String uri) Supported.

void setDefaultFunctionNamespace(String uri) Supported.

void setDefaultOrderForEmptySequences(int order) Supported.

void setHoldability(int holdability) Supported. holdability must be
CURSORS_OVER_COMMIT.

void setOrderingMode(int mode) Supported.

Table G-15. XQStaticContext Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

Exception Handling 529
Exception Handling
DataDirect XQuery uses two XQJ classes to report errors,
XQException and XQQueryException. DataDirect XQuery reports
errors detected in XQJ using XQException.

Errors reported through XQException contain the following
information:

■ Vendor code
■ Message
■ Cause

For example:

XQException: [DataDirect][XQuery]Exception returned by
Adaptor (Streaming Adaptor) : Unexpected close tag
</ducks>; expected </papere>.

Errors detected in any of the other DataDirect XQuery
components can be reported using either class depending on the
type of error. If the error is detected during query processing,
DataDirect XQuery reports the error using XQQueryException

void setQueryLanguageAndVersion(int langType) Supported. langType must be set to
XQConstants.LANGTYPE_XQUERY.

void setQueryTimeout(int seconds) Supported.

void setScrollability(int scrollability) Supported. scrollability must be set to
XQConstants.SCROLLTYPE_FORWARD
_ONLY

Table G-15. XQStaticContext Method Summary (cont.)

Method Support
DataDirect XQuery User’s Guide and Reference

530 Appendix G XQJ Support
because additional information is contained in the message. This
additional information might be a line number that indicates the
location of the error in the query and a module URI that indicates
the module where the error occurred.

For example:

XQQueryException:
{http://www.w3.org/2005/xqt-errors}XPST0003
file:///myXQuery.xq; line: 2
[DataDirect][XQuery][err:XPST0003]Error at line 2, column
44. Expected "]", but encountered "<end of expression>".

Multi-Threading Support
DataDirect XQuery is thread safe.

Accessing XML Results
You can access XML results of a query as:

■ DOM
■ SAX
■ StAX
■ Text

For examples showing how to access XML results, see “Returning
Results with Java XML APIs” on page 69.
DataDirect XQuery User’s Guide and Reference

Accessing XML Results 531
DOM

The DOM nodes returned from XML results are DOM Level 2
Core API compliant.

SAX

DataDirect XQuery serializes a result sequence or a single item as
SAX events in the following way:

1 The instance of the data model is normalized as described in:
http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-2005
0404/#serdm

2 The normalization process results in one of the following:

■ A well-formed XML document as described in:
http://www.w3c.org/TR/2000/REC-xml-20001006#sec-well-
formed

■ A well-formed XML external parsed entity as described in:
http://www.w3c.org/TR/2000/REC-xml-20001006#wf-
entities

3 Events are generated as defined by the SAX2 specification.

DataDirect XQuery reports comment nodes to the specified
ContentHandler if that object also implements the
LexicalHandler interface.

StAX

DataDirect XQuery serializes a result sequence or a single item as
StAX events in the following way:

1 The instance of the data model is normalized as described in
:http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-200
50404/#serdm
DataDirect XQuery User’s Guide and Reference

http://www.w3.org/TR/2005/WD-xslt-xquery-serialization-20050404/#serdm
http://www.w3c.org/TR/2000/REC-xml-20001006#sec-well-formed
http://www.w3c.org/TR/2000/REC-xml-20001006#wf-entities
http://www.w3.org/TR/2005/WD-xslt-xquery-serialization-20050404/#serdm
http://www.w3.org/TR/2005/WD-xslt-xquery-serialization-20050404/#serdm

532 Appendix G XQJ Support
2 The normalization process results in one of the following:

■ A well-formed XML document as described in:
http://www.w3c.org/TR/2000/REC-xml-20001006#sec-well-
formed

■ A well-formed XML external parsed entity as described in:
http://www.w3c.org/TR/2000/REC-xml-20001006#wf-
entities

3 Events are generated as defined by the StAX 1.0 specification.

Text

DataDirect XQuery supports serializing query results (serialization
refers to converting query results to text). The writeSequence and
getSequenceAsString methods of the XQSequence interface
allow you to serialize the results to the following Java objects:
java.lang.String, java.io.Writer, and java.io.OutputStream. This
serialization conforms to the process as described in the XSLT 2.0
and XQuery 1.0 Serialization specification, located at:
http://www.w3.org/TR/2005/CR-xslt-xquery-serialization-20050404

See Appendix D “Serialization Support” on page 439 for more
information.

Support of Deferred Binding
When configured to use deferred binding, DataDirect XQuery
does not use the value bound to a variable until the value is
needed, and it enables DataDirect XQuery to use its XML
streaming feature. For such reasons, deferred binding can result
in performance and scalability benefits. See “Querying Large
XML Documents” on page 177 for information about the XML
streaming feature.
DataDirect XQuery User’s Guide and Reference

http://www.w3c.org/TR/2000/REC-xml-20001006#sec-well-formed
http://www.w3c.org/TR/2000/REC-xml-20001006#wf-entities
http://www.w3.org/TR/2005/WD-xslt-xquery-serialization-20050404

XQuery Types Supported by XQJ get Methods 533
To set deferred binding, use the setBindingMode() method of
the XQStaticContext interface. For example:

XQStaticContext cntxt = conn.getStaticContext();
cntxt.setBindingMode(XQConstants.BINDING_MODE_DEFERRED);
conn.setStaticContext(cntxt);

XQuery Types Supported by XQJ get Methods
For a value of an XQuery result to be used by a Java application,
the value must be mapped to a Java data type using the XQJ get
methods. Table G-16 lists the XQuery types that are supported
for XQJ get methods.
.

Table G-16. XQuery Types Supported for XQJ get Methods

get Method Supported XQuery Type

getAtomicValue xs:anyAtomicType (or any of its built-in subtypes
derived by restriction)

getBoolean xs:boolean

getByte xs:decimal (or any of its built-in subtypes
derived by restriction)

getDouble xs:double

getFloat xs:float

getInt xs:decimal (or any of its built-in subtypes
derived by restriction)

getLong xs:decimal (or any of its built-in subtypes
derived by restriction)

getNode node()

getObject xs:anyAtomicType or node()

getShort xs:decimal (or any of its built-in subtypes
derived by restriction)
DataDirect XQuery User’s Guide and Reference

534 Appendix G XQJ Support
Retrieving and Binding XQuery Data Model
Instances

For each Java data type that is bound to an XQuery external
variable, there is an XQDynamicContext method to bind values of
that type to the XQuery expression. These methods and how they
map to resulting XQuery data model instances are shown in
Table G-17.

Table G-17. XQJ bind Methods and Resulting XQuery Data
Model Instances

bind Method Resulting XQuery Data Model Instance

bindAtomicValue xs:anyAtomicType (type of the specified
atomic type)

bindBoolean xs:boolean

bindByte xs:byte

bindDocument document-node()

bindDouble xs:double

bindFloat xs:float

bindInt xs:int

bindItem Type of the specified item

bindLong xs:long

bindNode element(), document-node(), attribute(),
comment(), processing-instruction(), or
text()

NOTE: The actual node type depends on the
specified org.w3c.dom.Node type.

bindObject xs:anyAtomicType or a subtype of node()

bindSequence For each item in the sequence, the type of
the item

bindShort xs:short

bindString xs:string
DataDirect XQuery User’s Guide and Reference

Retrieving and Binding XQuery Data Model Instances 535
The created data model instance is checked for compatibility
with the static type of the external variable using the
SequenceType matching rules. DataDirect XQuery supports the
following type declarations for external variables:

SequenceType ::= (ItemType OccurrenceIndicator?)
 | ("empty" "(" ")")
OccurrenceIndicator ::= "?" | "*" | "+"
ItemType ::= AtomicType | KindTest
 | ("item" "(" ")")
AtomicType ::= QName
KindTest ::= DocumentTest
 ElementTest
 AttributeTest
 PITest
 CommentTest
 TextTest
 AnyKindTest
PITest ::= "processing-instruction" "(" ")"
CommentTest ::= "comment" "(" ")"
TextTest ::= "text" "(" ")"
AnyKindTest ::= "node" "(" ")"
DocumentTest ::= "document-node" "(" ")"
ElementTest ::= "element" "(" ")"
AttributeTest ::= "attribute" "(" ")"

Table G-18 describes how XQuery data model instances map to
Java objects when the following XQJ methods are being used:

■ getObject() of XQItemAccessor interface. This method
returns a Java object corresponding to the corresponding
XQuery data model instance.

■ bindObject() of XQDynamicContext interface. This method
binds a XQuery data model instance to a Java object.

■ createItemFromObject() of XQDynamicContext interface.
This method creates an XQuery data model instance from a
Java object.
DataDirect XQuery User’s Guide and Reference

536 Appendix G XQJ Support
Table G-18. Mapping XQuery Data Model Instances to Java Objects

XQuery Data Model Instance Java Object

document node org.w3c.dom.Document

element node org.w3c.dom.Element

attribute node org.w3c.dom.Attr

comment node org.w3c.dom.Comment

processing-instruction node org.w3c.doc.ProcessingInstruction

text node org.w3c.dom.Text

xs:untypedAtomic java.lang.String

xs:string java.lang.String

xs:boolean java.lang.Boolean

xs:decimal java.math.BigDecimal

xs:float java.lang.Float

xs:double java.lang.Double

xs:dateTime javax.xml.datatype.XMLGregorianCalendara

xs:date javax.xml.datatype.XMLGregorianCalendar1

xs:time javax.xml.datatype.XMLGregorianCalendar1

xs:integer java.math.BigInteger

xs:long java.lang.Long

xs:int java.lang.Integer

xs:short java.lang.Short

xs:byte java.lang.Byte

xs:nonPositiveInteger java.math.BigInteger

xs:negativeInteger java.math.BigInteger

xs:nonNegativeInteger java.math.BigInteger

xs:unsignedLong java.math.BigInteger

xs:unsignedInt java.lang.Long

xs:unsignedShort java.lang.Integer

xs:unsignedByte java.lang.Short

xs:positiveInteger java.math.BigInteger
DataDirect XQuery User’s Guide and Reference

Retrieving and Binding XQuery Data Model Instances 537
xs:base64binary byte[]

xs:hexBinary byte[]

xs:duration javax.xml.datatype.Duration1

xs:yearMonthDuration javax.xml.datatype.Duration1

xs:dayTimeDuration javax.xml.datatype.Duration1

xs:QName java.xml.namespace.QName

xs:anyURI java.net.URI

xs:gDay javax.xml.datatype.XMLGregorianCalendar1

xs:gMonth javax.xml.datatype.XMLGregorianCalendar1

xs:gMonthDay javax.xml.datatype.XMLGregorianCalendar1

xs:gYear javax.xml.datatype.XMLGregorianCalendar1

xs:gYearMonth javax.xml.datatype.XMLGregorianCalendar1

xs:normalizedString java.lang.String

xs:token java.lang.String

xs:language java.lang.String

xs:NMTOKEN java.lang.String

xs:Name java.lang.String

xs:NCName java.lang.String

xs:ID java.lang.String

xs:IDREF java.lang.String

xs:ENTITY java.lang.String

a. When using J2SE 1.4, this XQuery data model instance cannot be retrieved through
getObject() of XQItemAccessor, bound through bindObject() of XQDynamicContext,
or created through createItemFromObject() of XQDynamicContext. However, you can
manipulate this data model instance using getAtomicValue() of XQItemAccessor,
bindAtomicValue() of XQDynamicContext, or createItemFromAtomicValue() of
XQDataFactory.

Table G-18. Mapping XQuery Data Model Instances to Java Objects (cont.)

XQuery Data Model Instance Java Object
DataDirect XQuery User’s Guide and Reference

538 Appendix G XQJ Support
DataDirect XQuery User’s Guide and Reference

539
H Examples

This appendix explains the example Java applications that are
shipped with DataDirect XQuery and provides instructions for
setting up and running them.

Required Software
This section describes the requirements that must be met before
setting up and running the DataDirect XQuery examples.

Database

DataDirect XQuery examples support specific versions of IBM
DB2, Informix, Microsoft SQL Server, MySQL, Oracle, PostgreSQL,
and Sybase. See “Relational Data Sources” on page 118 for
information about supported database versions.

DataDirect XQuery®

You must install DataDirect XQuery before using the DataDirect
XQuery examples. DataDirect XQuery requires J2SE 1.4.x or later.
DataDirect XQuery User’s Guide and Reference

540 Appendix H Examples
Configuring Your Environment to Run the
Examples

1 Configure a database instance to connect to and privileges to
create and drop tables. You must have a user ID and password
that has permission to create tables, drop tables, and insert
rows of data. The data loader provided with the examples will
create and drop tables used by the examples.

IMPORTANT: The examples data loader drops and creates the
following database tables: "users", "companies", "historical",
"holdings", and "statistical".

2 Modify the setenv.bat (Windows) or setenv.sh (UNIX/Linux)
file. In addition, you must set the JDBCURL environment
setting in the file to the connection URL of the test database
to which you want to connect. See the comments in the
setenv file for examples.

Optionally, you may need to set:

■ The PATH2LIBS environment setting to the DataDirect
XQuery lib subdirectory:

ddxq_install_directory/lib

If you are executing the examples and dataloader from
their respective directories, you do not need to modify this
value.

■ The PATH variable so that the Java executable is available
from the command line. If you must recompile the
examples, PATH should also contain the path that specifies
the location of the Java compiler (javac) executable.
DataDirect XQuery User’s Guide and Reference

About the Examples 541
3 Populate the test database. To load the data, execute:

ddxq_install_directory/examples/DataLoader/
load_example_data.bat (Windows)

or

ddxq_install_directory/examples/DataLoader/
load_example_data.sh (UNIX/Linux)

Creation of the database table and data upload may take as
few as 30 seconds; however, depending on the speed of your
network, database server, and workstation, the process may
take several minutes.

NOTES:

■ The data loader will create the following database tables:
"users", "companies", "historical", "holdings", and
"statistical".

■ Using the data loader with a Java VM that was started
with the -server option can crash the Java VM. This is
caused by a Java bug that can occur with any supported
JDK version and on different platforms. For information
about workarounds for this issue, contact Technical
Support.

About the Examples
Each example is located in a separate directory beneath the
examples directory:

ddxq_install_directory/examples/name_of_example

For example:

ddxq5_0/examples/xqjexecute
DataDirect XQuery User’s Guide and Reference

542 Appendix H Examples
Each example directory contains the following files:

■ run.bat or run.sh to execute the example program. This file
contains a commented line, that when uncommented,
recompiles the example.

■ Zero or more .xq files that contain the XQuery expressions
that will be executed by the example program.

■ Zero or more .xml files that contain XML files that will be
queried by the XQuery expressions.

■ One or more source and class files that contain the source and
compiled source code for the example.

The following examples are provided with the product:

■ Connect demonstrates some of DataDirect XQuery's advanced
connection options.

■ CustomDocumentURIResolver shows how to implement a
custom URI resolver.

■ JNDIDataSource shows how to persist and load a
DDXQDataSource using a JNDI provider.

■ ExternalFunctions shows different types of external functions
supported by DataDirect XQuery and how they can be used.

■ ExternalVariables shows binding Java variables to external
XQuery variables.

■ RDBMSUpdate shows how to insert, update, and delete data
stored in a relational database.

■ ResultRetrieval shows how you can retrieve the results of an
XQuery expression as SAX, StAX, or DOM.

■ UpdateFacility shows how to update data in XML documents.

■ XMLQuery shows how to query data in XML documents.
DataDirect XQuery User’s Guide and Reference

About the Examples 543
■ XQJExecute is a simple XQJ example that shows how to
execute an XQuery expression from a file or string and
retrieve the results as a string.

For information about how to use each of these examples, see
the following sections.

Connect

Before using this example, you must edit two source
configuration files located in the Connect directory:

■ config_basic.xml
■ config_advanced.xml

You must specify the correct values for the following elements in
these files: url, user, and password. In addition, in the
config_advanced.xml file, you must enter the correct values for
the name attributes for the catalog and schema elements. See
“Using a Source Configuration File” on page 533 for more
information about source configuration files.

From the Connect directory, enter the following command line
to execute the example:

Windows:

run.bat

UNIX:

run.sh

A prompt appears asking you to enter one of the following
numbers that corresponds to the connection method you want
to use:

1 - Connect using config_basic.xml source configuration
 file.
2 - Connect using config_advanced.xml source configuration
DataDirect XQuery User’s Guide and Reference

544 Appendix H Examples
 file, this example shows the use of a table alias.
3 - Connect using config_advanced.xml source configuration
 file, this example shows the use of a target namespace
 for a database table.
4 - Connect using config_advanced.xml source configuration
 file, this example shows how to eliminate certain table
 columns from the SQL/XML view of the table.
5 - Connect using config_advanced.xml source configuration
 file, this example shows the use of a base URI.
6 - Connects using config_advanced.xml source configuration
 file, this example illustrates the use of
 DataDirect Spy for XQJ.

CustomDocumentURIResolver

From the CustomURIResolver directory, enter the following
command line to execute the example:

Windows:

run.bat [xquery_file]

UNIX:

run.sh [xquery_file]

where xquery_file is the XQuery file you want to execute. If you
do not specify a query file name, the XQuery file in the
CustomURIResolver directory is executed. Optionally, you can
write your own query, save it to a file, and execute that XQuery
file by entering the file name as the argument to run.bat or
run.sh.

This example returns an XML document that contains a top-level
directory element and a child element named file that represents
each XML file found in the specified directory. The file element
has a size attribute with a value of the file size in bytes, and the
value of the file element is the name of the XML file. For
example:
DataDirect XQuery User’s Guide and Reference

About the Examples 545
<directory>
 <file size="10000">one.xml</file>
 <file size="15550">two.xml</file>
</directory>

The resulting XML structure can be used in other XQuery
expressions, as shown in the query of this example.

ExternalFunctions

From the ExternalFunctions directory, enter the following
command line to execute the example:

Windows:

run.bat [xquery_file]

UNIX:

run.sh [xquery_file]

where xquery_file is one of the following query files in the
ExternalFunctions directory:

■ javaFunction.xq invokes a static Java method.

■ javaInstanceMethod.xq invokes a Java instance method.

■ sqlFunction.xq invokes a SQL function.

■ sqlFunctionFromModule_db2luw.xq invokes a SQL function
from a module that declares SQL functions for DB2 for
Linux/UNIX/Windows.

■ sqlFunctionFromModule_ora.xq invokes a SQL function from
a module that declares SQL functions for Oracle.

■ sqlFunctionFromModule_sqlserver.xq invokes a SQL function
from a module that declares SQL functions for Microsoft
SQL Server.

■ jdbcEscapeFunction.xq invokes a JDBC escape function.
DataDirect XQuery User’s Guide and Reference

546 Appendix H Examples
If you do not specify an XQuery file in the command line, a
prompt appears asking you to enter a number that corresponds
to the XQuery file you want to execute.

The result of the query is written to standard output.

ExternalVariables

From the ExternalVariables directory, enter the following
command line to execute the example:

Windows:

run.bat

UNIX:

run.sh

A prompt appears asking you to enter one of the following
numbers that correspond to the type of external variable you
want to execute:

1 - Bind an xs:int external variable
2 - Bind an xs:string external variable
3 - Bind a DOM node to an external variable
4 - Bind an XQItem to an external variable
5 - Bind an XQSequence to an external variable

JNDIDataSource

Before using this example, you must have a JNDI provider on your
machine. If you do not have one, you can download one from:

http://javashoplm.sun.com/ECom/docs/
Welcome.jsp?StoreId=22&PartDetailId=
7110-jndi-1.2.1-oth-JPR&SiteId=JSC&TransactionId=noreg
DataDirect XQuery User’s Guide and Reference

https://sdlc6b.sun.com/ECom/EComActionServlet;jsessionid=E79F62120D58475A02917DF3F95A664C
https://sdlc6b.sun.com/ECom/EComActionServlet;jsessionid=E79F62120D58475A02917DF3F95A664C

About the Examples 547
You must place the providerutil.jar and fscontext.jar files in your
CLASSPATH. You can edit the setenv.bat (Windows) or setenv.sh
(UNIX/Linux) files to do this.

From the JNDIDataSource directory, enter the following
command line to execute the example:

Windows:

run.bat

UNIX:

run.sh

RDBMSUpdate

From the RDBMSUpdate directory, enter the following command
line to execute the example:

Windows:

run.bat [xquery_file]

UNIX:

run.sh [xquery_file]

where xquery_file is one of the following query files in the
RDBMSUpdate directory:

■ insert-holdings.xq inserts data into the holdings table.

■ update-holdings.xq updates data in the holdings table.

■ delete-holdings.xq deletes data from the holdings table.

■ update-holdings-from-xml.xq uses data provided in an XML
document to update data in the holdings table.

■ update-function.xq updates data in the holdings table using
a user-defined function.
DataDirect XQuery User’s Guide and Reference

548 Appendix H Examples
■ shredding-xml.xq shreds data provided in an XML document
into multiple tables.

If you do not specify a query file name, a prompt appears asking
you to enter the number that corresponds to the XQuery file you
want to use:

1 - insert-holdings.xq
2 - update-holdings.xq
3 - delete-holdings.xq
4 - update-holdings-from-xml.xq
5 - update-function.xq
6 - shredding-xml.xq

Optionally, you can write your own query, save it to a file, and
execute that XQuery file by entering the file name as the
argument to run.bat or run.sh.

ResultRetrieval

From the ResultRetrieval directory, enter the following command
line to execute the example:

Windows:

run.bat

UNIX:

run.sh

A prompt appears asking you to enter one of the following
numbers that correspond to the type of retrieval method you
want to use:

1 - SAX
2 - STAX
3 - DOM

The results of the retrieval method are displayed in the standard
output.
DataDirect XQuery User’s Guide and Reference

About the Examples 549
UpdateFacility

From the UpdateFacility directory, enter the following command
line to execute the example:

Windows:

run.bat [xquery_file]

UNIX:

run.sh [xquery_file]

where xquery_file is one of the following query files in the
UpdateFacility directory:

■ change-values.xq uses the replace expression to replace the
node value of a queried document .

■ insert-nodes.xq uses the insert expression to insert a new
node.

■ rename-nodes.xq uses the rename expression to rename an
existing node.

■ transform-change-values.xq uses copy, modify, and return
clauses to replace the value of an existing node.

■ transform-insert-nodes.xq uses copy, modify, and return
clauses to insert a new node.

If you do not specify a query file name, a prompt appears asking
you to enter the number that corresponds to the XQuery file you
want to use:

1 - rename-nodes.xq
2 - change-values.xq
3 - insert-nodes.xq
4 - transform-change-values.xq
5 - transfor-insert-nodes.xq
DataDirect XQuery User’s Guide and Reference

550 Appendix H Examples
Optionally, you can write your own query, save it to a file, and
execute that XQuery file by entering the file name as the
argument to run.bat or run.sh.

XMLQuery

From the XMLQuery directory, enter the following command line
to execute the example:

Windows:

run.bat [xquery_file]

UNIX:

run.sh [xquery_file]

where xquery_file is one of the following query files in the
XMLQuery directory:

■ query-initial-context.xq queries the initial context document.

■ query-doc-function.xq queries an XML document using the
fn:doc() function.

■ query-external-variable.xq queries an XML document using
an external variable.

■ query-directory.xq queries multiple XML documents
contained in the same directory.

■ query-pipeline-1.xq uses the result of a one XQuery to provide
input into another XQuery.

If you do not specify a query file name, a prompt appears asking
you to enter the number that corresponds to the XQuery file you
want to use:

1 - query-initial-context.xq
2 - query-doc-function.xq
3 - query-external-variable.xq
DataDirect XQuery User’s Guide and Reference

About the Examples 551
4 - query-directory.xq
5 - query-pipeline-1.xq

Optionally, you can write your own query, save it to a file, and
execute that XQuery file by entering the file name as the
argument to run.bat or run.sh.

XQJExecute

From the XQJExecute directory, enter the following command
line to execute the example:

Windows:

run.bat [xquery_file]

UNIX:

run.sh [xquery_file]

where xquery_file is one of the following query files in the
XQJExecute directory:

■ collection-users.xq returns all data from the users table.

■ collection-holdings.xq returns all data from the holdings
table.

■ flwor.xq joins data from two relational tables using a nested
FLWOR expression.

■ JoinXMLToRelational.xq joins data from an XML file with
data from a relational table.

■ function.xq uses local function declarations.

■ portfolioHTML.xq serializes the query result as HTML.

■ MainModule.xq and LibraryModule.xq use XQuery modules.

■ nodeId.xq uses a path expression to eliminate duplicate XML
nodes.
DataDirect XQuery User’s Guide and Reference

552 Appendix H Examples
If you do not specify an XQuery file in the command line, a
prompt appears asking you to enter a number that corresponds
to the XQuery file you want to execute. Or, you can enter the
number "9" and then type in the text of your own query, which
will be executed.
DataDirect XQuery User’s Guide and Reference

553
I Troubleshooting

This appendix provides information about using DataDirect Spy
for XQJ and Java logging to troubleshoot problems, and
information about resolving the following types of errors:

■ fn:collection errors
■ Static type errors

Logging XQJ Calls with DataDirect Spy™
for XQJ

DataDirect Spy passes XQJ calls issued by an application to
DataDirect XQuery and logs detailed information about those
calls, which you can use for troubleshooting.

DataDirect Spy logging for connections is not enabled by
default. You can enable DataDirect Spy logging and configure it
for your needs by setting one or multiple options (attributes) for
DataDirect Spy. For example, you may want to direct logging to
a local file on your machine.

When DataDirect Spy logging is enabled for a connection, you
can turn logging on and off at runtime using the
setEnableLogging() method in the
com.ddtek.xquery.xqj.ExtLogControl interface. See “Generating
a DataDirect Spy™ Log” on page 559 for information about using
a DataDirect Spy log for troubleshooting.
DataDirect XQuery User’s Guide and Reference

554 Appendix I Troubleshooting
Enabling DataDirect Spy™ Logging

To enable DataDirect Spy logging, set one or multiple
DataDirect Spy attributes using any of the following methods:

■ Using the SpyAttributes property of the DDXQDataSource
class to set DataDirect Spy attributes explicitly in your
application

■ Using the SpyAttributes property of the DDXQDataSource
class to set DataDirect Spy attributes in a data source object in
JNDI

Setting DataDirect Spy Attributes Explicitly in a
Java Application

To set DataDirect Spy attributes explicitly in your application, use
XQJ to construct a DDXQDataSource instance in your Java
application and specify the SpyAttributes property of the
DDXQDataSource class. The format for the value of the
SpyAttributes property is:

spy_attribute=value[;spy_attribute=value]...

where spy_attribute=value is a DataDirect Spy attribute and a
valid value for that attribute. See “DataDirect Spy Attributes” on
page 557 for a list of supported attributes.
DataDirect XQuery User’s Guide and Reference

Logging XQJ Calls with DataDirect Spy™ for XQJ 555
Example on Windows

The following example enables DataDirect Spy logging and
configures DataDirect Spy to log all XQJ activity to a log file,
including the content of SAX streams passed through XQJ to the
spy.log file located in the C:\temp directory
(log=(file)C:\\\\temp\\\\spy.log;logSAX=yes).

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks");
ds.setSpyAttributes("log=(file)C:\\\\temp\\\\spy.log;logSAX=yes");
Context ctx = new InitialContext();
ctx.bind("holdings_ds", ds);
XQConnection conn = ds.getConnection("myuserid", "mypswd");

NOTE: If coding a path on Windows to the log file in a Java
string, the backslash character (\) must be preceded by the Java
escape character, a backslash, as shown in this example.

Example on UNIX/Linux

The following example enables DataDirect Spy logging and
configures DataDirect Spy to log all XQJ activity to a log file
located in the /tmp directory
(log=(file)/tmp/spy.log;logTimestamp=yes). The spy.log file
includes a timestamp on each line in the log.

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:oracle://server1:1521;SID=ORCL");
ds.setSpyAttributes("log=(file)/tmp/spy.log;logTimestamp=yes");
Context ctx = new InitialContext();
ctx.bind("holdings_ds", ds);
XQConnection conn = ds.getConnection("myuserid", "mypswd");
DataDirect XQuery User’s Guide and Reference

556 Appendix I Troubleshooting
Setting DataDirect Spy Attributes in JNDI

To set DataDirect Spy attributes in JNDI, configure a data source
object that specifies the SpyAttributes property of the
DDXQDataSource class and use XQJ to load the DDXQDataSource
object. The format for the value of the SpyAttributes property is:

(spy_attribute=value[;spy_attribute=value]...)

where spy_attribute=value is a DataDirect Spy attribute and a
valid value for that attribute. See “DataDirect Spy Attributes” on
page 557 for a list of supported attributes.

Example on Windows

The following example enables DataDirect Spy logging and
configures DataDirect Spy to log all XQJ activity to a log file
located in the C:\temp directory
(log=(file)C:\\\\temp\\\\spy.log;logTimestamp=yes). The
spy.log file includes a timestamp on each line in the log.

XQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:oracle://server1:1521;SID=ORCL");
ds.setSpyAttributes("log=(file)C:\\\\temp\\\\spy.log;logSAX=yes");
Context ctx = new InitialContext();
ctx.bind("holdings_ds", ds);
XQConnection conn = ds.getConnection("myuserid","mypswd");

NOTE: If coding a path on Windows to the log file in a Java string,
the backslash character (\) must be preceded by the Java escape
character, a backslash, as shown in this example.
DataDirect XQuery User’s Guide and Reference

Logging XQJ Calls with DataDirect Spy™ for XQJ 557
Example on UNIX/Linux

The following example enables DataDirect Spy logging and
configures DataDirect Spy to log all XQJ activity to a log file
located in the /tmp directory
(log=(file)/tmp/spy.log;logTimestamp=yes). The spy.log file
includes a timestamp on each line in the log.

XQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:oracle://server1:1521;SID=ORCL");
ds.setSpyAttributes("log=(file)/tmp/spy.log;logTimestamp=yes");
Context ctx = new InitialContext();
ctx.bind("holdings_ds", ds);
XQConnection conn = ds.getConnection("myuserid", "mypswd");

DataDirect Spy Attributes

Table I-1 describes the attributes you can set for DataDirect Spy.

Table I-1. DataDirect Spy Attributes

Attribute Description

enable={yes | no} Enables and disables DataDirect Spy
logging. The default is yes (if any
DataDirect Spy attributes are set as
described in “Enabling DataDirect Spy™
Logging” on page 554, DataDirect Spy
logging is enabled). Once enabled, you
can turn DataDirect Spy logging on and
off at runtime using the
setEnableLogging() method in the
com.ddtek.xquery.xqj.ExtLogControl
interface. See “Turning On and Off
DataDirect Spy™ Logging” on page 560
for more information.

linelimit=numberofchars Sets the maximum number of characters
that DataDirect Spy will log on any one
line. The default is 0 (no maximum limit).
DataDirect XQuery User’s Guide and Reference

558 Appendix I Troubleshooting
log=System.out Directs logging to the Java output
standard, System.out.

log=(file)filename Redirects logging to the file specified by
filename.

logDOM={yes | no} Specifies whether DataDirect Spy logs the
content of DOM trees passed through
XQJ. The default is no (DOM tree content
is not logged). To log the content of
DOM trees, set the value of this attribute
to yes.

logSAX={yes | no} Specifies whether DataDirect Spy logs the
content of SAX event streams passed
through XQJ. The default is no (SAX
event stream content is not logged). To
log the content of SAX events, set the
value of this attribute to yes.

logStAX={yes | no} Specifies whether DataDirect Spy logs the
content of StAX event streams passed
through XQJ (StAX event stream content
is not logged). To log the content of StAX
events, set the value of this attribute to
yes.

logTName={yes | no} Specifies whether DataDirect Spy logs the
name of the current thread. The default
is no (name of the current thread is not
logged). To log the name of the current
thread, set the value of this attribute to
yes.

logTimestamp={yes | no} Specifies whether a timestamp is logged
on each line of the DataDirect Spy log.
The default is no. To log the timestamp
on each line of the log, set the value of
this attribute to yes.

Table I-1. DataDirect Spy Attributes (cont.)

Attribute Description
DataDirect XQuery User’s Guide and Reference

Logging XQJ Calls with DataDirect Spy™ for XQJ 559
Generating a DataDirect Spy™ Log

This section provides an example of a typical DataDirect Spy log
and instructions for turning on and off DataDirect Spy logging at
runtime.

DataDirect Spy™ Log Example

The following example shows a DataDirect Spy log. The numbers
in superscript are note indicators that correspond to the notes
following the example. They provide explanations for the
referenced text to help you understand the content of your own
DataDirect Spy logs.

NOTE: The following example does not show logging of XML
results that occur when the logDOM, logSAX, or logStAX
attributes are set to yes.

spy>> XQConnection(0).createExpression()
spy>> OK (XQExpression(0))1

spy>> XQExpression(0).executeQuery(String query)
spy>> query : 123,'hello world!'
spy>> OK (XQResultSequence(0)) 2

spy>> XQResultSequence(0).next()
spy>> OK (true) 3

spy>> XQResultSequence(0).getObject()
spy>> OK (123) 4

spy>> XQResultSequence(0).next()
spy>> OK (true) 3

spy>> XQResultSequence(0).getObject()
spy>> OK (hello world!) 4

spy>> XQResultSequence(0).next()
spy>> OK (false) 5

spy>> XQExpression(0).close()
spy>> OK 6

spy>> XQConnection(0).close()
spy>> OK 7
DataDirect XQuery User’s Guide and Reference

560 Appendix I Troubleshooting
1 An XQExpression is created. Further in the DataDirect Spy
output, this XQExpression is identified by XQExpression(0).

2 The query 123,'hello world!' is executed. An
XQResultSequence is returned.

3 The application moved to the next item in the result
sequence. True is returned, indicating that there is another
item in the result sequence.

4 The item’s data is retrieved into the application.

5 The application moved to the next item in the result
sequence. False is returned, indicating that the end of the
sequence has been reached.

6 The application closes the XQExpression.

7 The application closes the XQConnection.

Turning On and Off DataDirect Spy™ Logging

Once DataDirect Spy logging is enabled for a connection, you can
turn on and off the logging at runtime using the
setEnableLogging() method in the
com.ddtek.xquery.xqj.ExtLogControl interface. When logging is
enabled, all Connection objects returned to an application
provide an implementation of the ExtLogControl interface.

For example, the following code turns off logging using
setEnableLogging(false):

import com.ddtek.xquery.xqj.ExtLogControl

DDXQDataSource ds = new DDXQDataSource();
ds.setJdbcUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=stocks;
ds.setSpyAttributes("log=(file)/tmp/spy.log");
XQConnection conn = ds.getConnection("myuserid","mypswd");

((ExtLogControl) conn).setEnableLogging(false);
...
DataDirect XQuery User’s Guide and Reference

Logging XQJ Calls with DataDirect Spy™ for XQJ 561
The setEnableLogging() method only turns on and off logging if
DataDirect Spy logging has already been enabled for a
connection; it does not set or change DataDirect Spy attributes.
See “Enabling DataDirect Spy™ Logging” on page 554 for
information about enabling and customizing DataDirect Spy
logging.

ExtLogControl Class

ExtLogControl Class
Methods

Description

void setEnableLogging(boolean) If DataDirect Spy was enabled when the
connection was created, you can turn on or off
DataDirect Spy logging at runtime using this
method. If true, logging is turned on. If false,
logging is turned off. If DataDirect Spy logging
was not enabled when the connection was
created, calling this method has no effect.

boolean getEnableLogging() Indicates whether DataDirect Spy logging was
enabled when the connection was created and
whether logging is turned on. If the returned
value is true, logging is turned on. If the returned
value is false, logging is turned off.
DataDirect XQuery User’s Guide and Reference

562 Appendix I Troubleshooting
Java Logging
NOTE: Enable Java logging only when DataDirect technical
support instructs you to do so.

DataDirect XQuery uses standard Java logging as provided in
J2SE 1.4.x or later. The simplest way to enable and disable
logging is through the logging.properties file, which is installed
as part of your J2SE installation in the /jre/lib subdirectory in your
J2SE installation directory.

In the logging.properties file, you can specify the level of logging
that you want to use, whether you want to write messages as
text (simple) or as XML, and whether the messages are written to
a console or to a file. Note that the logging level must be set to
FINE for DataDirect XQuery to log messages.

Examples: Modifying logging.properties

■ Log all messages to standard out using the SimpleFormatter
and limit all messages that are logged to equal to or lower
than FINE by:

a Modifying the default global logging level to:
.level = FINE

b Modifying the java.util.logging.ConsoleHandler.level
line to:
java.util.logging.ConsoleHandler.level = FINE

c Modifying the java.util.logging.ConsoleHandler.formatter
line to:
java.util.logging.ConsoleHandler.formatter =
 java.util.logging.SimpleFormatter
DataDirect XQuery User’s Guide and Reference

Java Logging 563
■ Log all messages to standard out using the SimpleFormatter,
log only SEVERE messages for all software other than
DataDirect XQuery, and limit the messages logged for
DataDirect XQuery to equal to or lower than FINE by:

a Modifying the default global logging level to:
 .level = SEVERE

b Modifying the facility-specific properties line to:
com.ddtek.xquery.level = FINE

c Modifying the java.util.logging.ConsoleHandler.level
line to:
java.util.logging.ConsoleHandler.level = FINE

d Modifying the
java.util.logging.ConsoleHandler.formatter line to:
java.util.logging.ConsoleHandler.formatter =
 java.util.logging.SimpleFormatter

■ Disable logging by modifying the default global logging
level to:
.level = CONFIG

To enable logging that uses a file other than the default:

1 Create a local copy of the logging.properties file.

2 Modify the file.

3 Enable logging by using the following command line:

java -Djava.util.logging.config.file =
 path/name_of_loggingfile
DataDirect XQuery User’s Guide and Reference

564 Appendix I Troubleshooting
Resolving fn:collection Errors
DataDirect XQuery uses fn:collection to access a relational table
or to access multiple XML files in a directory. For example, the
following query accesses the holdings database table:

collection('holdings')

When DataDirect XQuery cannot resolve the fn:collection
argument to a specific database object or to a file system
directory, it raises an error.

Guidelines for Resolving Errors

When DataDirect XQuery cannot resolve the fn:collection
argument to a specific database object, it raises an error such as:

Table x not found in any JDBC connection or Table x found
in multiple JDBC connections.

If you encounter these types of errors when using DataDirect
XQuery, the following guidelines will help you troubleshoot and
correct the cause of the error:

■ Qualify table names in fn:collection arguments if you have
multiple database tables with the same name or the default
catalog and schema associated with the connection do not
provide access to the database table.

■ Escape special characters in catalog, schema, and table names.

■ Verify connections associated with the query.

■ When querying XML files in a directory, make sure you specify
the directory URL correctly. One typical mistake is that the
file:/// URL prefix was not specified as part of the directory
URL.
DataDirect XQuery User’s Guide and Reference

Resolving fn:collection Errors 565
Qualifying Table Names

If you have multiple database tables with the same name or the
default catalog and schema associated with the connection do
not provide access to the database table, you can qualify the
database table name in the fn:collection argument to target the
specific table. For example, if the default catalog (database) and
schema (user) associated with the connection is financial and
joseph, respectively, and the target table is owned by the schema
mary, qualify the table name in the fn:collection argument:

collection('financial.mary.holdings')

Using Catalog and Schema Names

To verify that you know the correct catalog name, schema name,
and table name, start the SQL tool shipped with your database
and connect to the database server. Once connected, execute the
following SQL statement against the database:

DB2 and Microsoft SQL Server

SELECT * FROM "catalog"."schema"."table" WHERE 1=0

Informix

SELECT * FROM "catalog":"schema"."table" WHERE 1=0

MySQL

SELECT * FROM 'catalog'.'table' WHERE 1=0

Oracle and PostgreSQL

SELECT * FROM "schema"."table" WHERE 1=0

Sybase

SELECT * FROM catalog.schema."table" WHERE 1=0
DataDirect XQuery User’s Guide and Reference

566 Appendix I Troubleshooting
where catalog, schema, and table are the catalog name, schema
name, and table name of the database object you are trying to
access.

NOTE: Oracle and PostgreSQL databases do not have catalogs.
MySQL databases do not have schemas.

If the SQL statement returns an empty result, the values you
entered correspond to the correct catalog name, schema name,
and table name. Use these values in the fn:collection argument to
qualify the table name. If the SQL statement returns an error, the
values you entered are incorrect.

IMPORTANT: The case of the values specified in the fn:collection
argument must match the case of the database.

On Microsoft SQL Server and Sybase, a user can have the special
status of database owner. For example, if the SQL name of the
target table is "financial"."dbo"."holdings," qualify the table
name in the fn:collection argument with the schema name dbo:

collection('financial.dbo.holdings')

Using JDBC Connection Names

If the table name in the fn:collection argument is qualified with a
catalog name or schema name (or both) and DataDirect XQuery
returns an error indicating that multiple tables with the same
name exist, you need to qualify the table name using a JDBC
connection name. A JDBC connection name identifies a specific
connection associated with the database table.

Suppose two tables of the same name, holdings, exist on
different database servers with the same schema name, joseph. In
this case, the following query does not provide enough
information for DataDirect XQuery to locate the target table:

collection('joseph.holdings')
DataDirect XQuery User’s Guide and Reference

Resolving fn:collection Errors 567
To identify the correct table, you can qualify the table name in
the fn:collection argument with a JDBC connection name. Here's
an example that shows a connection made explicitly in the
application to two different databases; each connection is
assigned a unique JDBC connection name, stocks1 and stocks2,
respectively:

DDXQJDBCConnection jc1 = new DDXQJDBCConnection();
jc1.setUrl("jdbc:xquery:sqlserver://server1:1433;databaseName=financial");
jc1.setName("stocks1");
DDXQJDBCConnection jc2 = new DDXQJDBCConnection();
jc2.setUrl("jdbc:xquery:oracle://server2:1521;SID=ORCL");
jc2.setName("stocks2");
DDXQDataSource ds = new DDXQDataSource();
ds.setDdxqJdbcConnection(new DDXQJDBCConnection[] {jc1, jc2});
XQConnection conn = ds.getConnection("myuserid", "mypswd");

Here's an example showing the same connection information
configured in a DataDirect XQuery source configuration file:

...
 <JDBCConnection name="stocks1">
 <description>connection to stocks1 data</description>
 <url>jdbc:xquery:sqlserver://localhost:1433;DatabaseName=financial</url>
 <user>myuserid</user>
 <password>mypswd</password>
 ...
<JDBCConnection name="stocks2">
 <description>connection to stocks2 data</description>
 <url>jdbc:xquery:oracle://localhost:1521;SID=ORCL</url>
 <user>myuserid</user>
 <password>mypswd</password>
 ...

To target the holdings table on server1, qualify the table name
with the JDBC connection name stocks1 in addition to the
catalog name and schema name:

collection('stocks1:joseph.holdings')
DataDirect XQuery User’s Guide and Reference

568 Appendix I Troubleshooting
See “Choosing a Connection Method” on page 123 for more
information about connecting with DataDirect XQuery.

Escaping Special Characters

If the catalog name, schema name, or table name in the
fn:collection argument contains a period (.), colon (:), or
backslash (\), escape the character with a backslash (\) so that
DataDirect XQuery can parse the argument into its different
parts. For example, if the target table is named a.holdings and
you specify the following query, DataDirect XQuery parses 'A' as
the schema name, not as part of the table name:

collection('a.holdings')

Escaping the period (.) in the fn:collection argument using the
backslash character allows DataDirect XQuery to parse the
argument correctly:

collection('a\.holdings')

In addition, XQuery string literal syntax applies to the
fn:collection argument. If a table name contains double quotes,
for example, a"holdings, and the fn:collection argument uses
double quote delimiters, you must repeat the double quotes:

collection("a""holdings")

Or, you can use:

collection('a"holdings')

See the next section “Using Aliases” for details about how to
avoid escaping characters.

Using Aliases

To avoid escaping period (.), colon (:), and double quotes ("), and
to avoid the SQL/XML escaping of non-supported XML characters,
DataDirect XQuery User’s Guide and Reference

Resolving fn:collection Errors 569
DataDirect XQuery supports an alias attribute for the catalog,
schema, and table elements of the source configuration file.

For example, assume a table exists named tab"le that contains a
single integer column named c with one row. In this case, the
following query:

collection("tab""le")

returns:

<tab_x0022_le>
 <c>1</c>
</tab_x0022_le>

Using the alias attribute for the table element as shown in the
following source configuration file example:

<catalog name="catalog">
 <schema name="schema">
 <table name='tab"le' alias="tablealias"/>
 </schema>
</catalog>

you can specify tablealias as the table name in fn:collection:

collection("tablealias")

which results in:

<tablealias>
 <c>1</c>
</tablealias/>

Verifying Connections

Using DataDirect XQuery, an application establishes a
connection to the database to execute a query. The application
can establish a connection to the database in multiple ways:
explicitly specifying connection information in the application,
using a data source registered with JNDI, or using a DataDirect
DataDirect XQuery User’s Guide and Reference

570 Appendix I Troubleshooting
XQuery source configuration file. If DataDirect XQuery cannot
access the database because connection information is specified
incorrectly or because the structure of the configuration file is
incorrect, it raises an error.

Verifying Connection URLs

Verify that the following information in your connection URL is
correct:

■ Type of database to which the application is connecting.

■ TCP/IP address or host name of the database server to which
the application is connecting.

■ Number of the TCP/IP port.

■ User name used to connect to the database.

■ Password used to connect to the database.

■ Database-specific connection properties that provide
additional connection information. DatabaseName (for DB2
and Microsoft SQL Server) and SID (for Oracle) are commonly
used properties. For a list of available database-specific
connection properties, see the tables in “Specifying
Connection URIs” on page 141.

Checklist

If you encounter an error when using fn:collection with
DataDirect XQuery when accessing a relational table, examine
the following checklist to resolve the problem:

■ Qualify table names in fn:collection arguments if you have
multiple database tables with the same name or the default
catalog and schema associated with the connection do not
provide access to the database table.
DataDirect XQuery User’s Guide and Reference

Resolving fn:collection Errors 571
• Make sure that you know the correct catalog name,
schema name, and table name (including case).

• If you are accessing Microsoft SQL Server or Sybase and
the database table is owned by dbo, make sure that you
qualify the table name with the schema name dbo. For
example:

collection('financial.dbo.holdings')

• If you qualify the table name with a catalog name or
schema name (or both) and DataDirect XQuery returns an
error indicating that multiple collections are found, you
may want to qualify the table name with a JDBC
connection name.

■ Escape special characters in catalog, schema, and table
names. See “Case Sensitivity” on page 122 for details about
how to avoid escaping characters.

■ Verify connections associated with the query.

• Make sure that the information specified in your
connection URL is correct including: database type, server
name, port, user, password, and any database-specific
connection properties.

• If using a DataDirect XQuery source configuration file,
make sure that it validates against the source_config.xsd
schema shipped with DataDirect XQuery. This schema is
located in the examples/config subdirectory of your
DataDirect XQuery installation directory. You can validate
the configuration file using a tool such as <oXygen> XML
Editor for Eclipse (DataDirect XQuery Edition) or Stylus
Studio.

• If using a DataDirect XQuery source configuration file,
make sure that the values of the catalog, schema, and
table elements are correct.
DataDirect XQuery User’s Guide and Reference

572 Appendix I Troubleshooting
Querying XML Files in a Directory

The fn:collection argument value is a URL referencing a directory.
The URL must use the file:// scheme. See “Querying Multiple Files
in a Directory” on page 288 for complete details.

Some typical errors made when specifying the directory URL are:

■ The specified URL is missing the file:/// URL prefix. For
example, collection(c:/myDir) must be
collection(file:///c:/myDir).

■ A forward slash (/) is missing in the directory URL. For
example, collection(file://c:/myDir) must be
collection(file:///c:/myDir).

■ The specified URL does not reference a directory.

In addition, you may receive an error when querying XML files in
a directory if:

■ Some of the files in the specified directory are not
well-formed XML documents. Using the select property as
part of the specified URL, you can control which files are
accessed in the specified folder, for example:

collection("file:///c:/myDir?select=*.xml")

■ The XQuery regular expression you specified is not a valid
expression. For example,
collection("file:///c:/myDir?select=*.xml;
xquery-regex=yes") must be
collection("file:///c:/myDir?select=.*%5C.xml$;
xquery-regex=yes").

See “Querying Multiple Files in a Directory” on page 288 for the
collection function’s declaration for this feature.
DataDirect XQuery User’s Guide and Reference

Resolving Static Type Errors 573
Resolving Static Type Errors
DataDirect XQuery implements the Static Typing feature of
XQuery, which is pessimistic. This means that DataDirect XQuery
raises errors if an expression cannot be guaranteed to be
typesafe.

Static typing provides the following advantages:

■ It provides the information needed to perform better SQL
generation.

■ It can prevent programming errors because it involves
analyzing the query before its actually executed.

The disadvantage of static typing is that you must rewrite
queries if they do not provide specific type information for
certain expressions. For example, you may need to specify the
type of an external variable.

Typically, static type errors occur because more specific type
information is needed during static analysis, which occurs before
any data is encountered. Errors typically are resolved by adding
the missing type declaration or making the declaration more
specific. For example:

■ An arithmetic or comparison operator can work only on
certain data types. Static typing ensures that the operand has
the correct type. To ensure that $j + 1 can execute, the type
of $j must be known statically. DataDirect XQuery raises a
type error if this type information is not known statically. The
solution is to declare the type of the operand.

■ In a path expression, the left part of a step must be a node.
For example, in the query $x/*, static typing ensures that $x is
a node. DataDirect XQuery raises a type error if this type
information is not known statically. The solution is to declare
the type of the variable as an element or a document node.
DataDirect XQuery User’s Guide and Reference

574 Appendix I Troubleshooting
■ An order by clause needs to know the type to be used for
comparing values. Static typing raises an error if this type
information is not known statically. The solution is to use a
constructor function, a cast expression, or treat as to indicate
the correct type.

For all these errors, as well as for other static errors that can
occur, a static type error message is raised. The solution is to
specify more accurate type information, either by specifying the
type of a variable or by using constructor functions, casting, treat
as, or typeswitch. Now, let’s look at some common cases where
this occurs in queries.

Types for External Variables

Static type errors often are encountered in expressions that use
external variables, if they do not have a specific type declared.
Consider the following example:

declare variable $i external;
declare variable $j external;

$i + $j

Error: [DataDirect][XQuery][err:XP0004]Error at line 3,
column 7. Static type error. Types 'item()*' and 'item()*'
are invalid argument types for binary operator '+'.

If you see this type of static type error for an expression that uses
an external variable, make sure the type of the variable is
declared:

declare variable $i as xs:integer external;
declare variable $j as xs:decimal external;

$i + $j

Suppose $x is bound to the value <x><a/><c/></x>. The
following query raises a static error, because the query does not
provide the type of $x.
DataDirect XQuery User’s Guide and Reference

Resolving Static Type Errors 575
declare variable $x external;
$x/*

The solution is to declare $x to be an element.

declare variable $x as element() external;
$x/*

In DataDirect XQuery, XML bound to an external variable is
always untyped. It is often convenient to declare it to be
untyped in the external variable declaration, which makes it
easier to use in queries. For example, consider the following
query.

declare variable $y as element() external;
$y/b + 1

Static type error. Types 'element(b, xs:untyped)*' and
'xs:integer' are invalid argument types for binary operator
'+'.

Static typing cannot look at the actual value to which $y will be
bound, so it raises an error for the query, because the query does
not state that $y is an element with untyped content. The
solution is to explicitly declare that $y is bound to an XML
element, and also to state that this element is untyped.

declare variable $y as element(*, xs:untyped) external;
$y/b + 1

Now, the query executes as expected. Suppose $y is bound to an
XML document containing the same element used in the
preceding query. If the external variable is bound to an untyped
XML document, rather than an element, you can declare it like
this:

declare variable $y as document-node(element(*,
 xs:anyType)) external;
DataDirect XQuery User’s Guide and Reference

576 Appendix I Troubleshooting
Types for Initial Context Items

Just as with external variables, static type errors often are
encountered in expressions that use the initial context item if
they do not have a specific type declared. Unlike external
variables, the type of the initial context item is not specified as
part of the XQuery, but through the XQJ API, using the
XQStaticContext object associated with an XQuery expression.

For example, if you want to bind the external variable $y to an
untyped XML document, you would do this:

declare variable $y as document-node(element(*,
 xs:anyType)) external;

If you need to do the same for the initial context item, you would
define the type of the initial context item and bind it to a
document using XQJ:

XQStaticContext context = xqConnection.getStaticContext();
cntxt.setContextItemStaticType(xqConnection.createDocumentElementType
 (xqConnection.createElementType(null, XQItemType.XQBASETYPE_UNTYPED)));
xqExpression = xqConnection.createExpression(cntxt);
xqExpression.bindDocument(XQConstants.CONTEXT_ITEM, new
FileInputStream("myXMLDocument.xml"));
...

Union Types

Sometimes an expression can return more than one type of data,
but the query writer knows it will be of a given type. Static typing
may need to know the types that are expected. Consider the
following expression.

(1, 'a')[1] + 2

The static typing rules of XQuery do not examine the value of the
subscript, so they do not know whether the left operand is an
DataDirect XQuery User’s Guide and Reference

Resolving Static Type Errors 577
integer or a string. Therefore, DataDirect XQuery raises the
following error.

Error: [DataDirect][XQuery][err:XP0004]Error at line 1,
column 15. Static type error. Types
'(xs:integer?,xs:string?)' and 'xs:integer' are invalid
argument types for binary operator '+'.

When you know that an expression returns the correct type,
often the simplest approach is to use a constructor function or a
cast expression to guarantee the correct type.

xs:integer((1, 'a')[1]) + 2

You also can use treat as to tell XQuery which type to expect:

((1, 'a')[1] treat as xs:integer) + 2

In DataDirect XQuery, using treat as is generally slower because
it is compensated.

Types for Sorting

When sorting data, XQuery must be able to compare all the
values it encounters. Because static typing cannot examine the
values in an expression, it uses the static type information from
the query to guarantee that no runtime type errors will be
generated because values of incomparable types are being
compared. For example, if the query sorts the holdings table and
the shares column is a decimal value, the following query is
sorted by comparing decimals:

for $h in collection("holdings")//holdings
order by $h/shares
return $h

Static analysis also applies to XML documents, but all XML
documents are untyped, because DataDirect XQuery does not
support schema validation. Therefore, the following query is
DataDirect XQuery User’s Guide and Reference

578 Appendix I Troubleshooting
statically valid, but the shares are sorted as strings, not using their
decimal values:

for $h in doc("holdings.xml")//holdings
order by $h/shares
return $h

In most cases, you would sort based on the numeric value of
shares, which is easily done using a constructor function:

for $h in doc("holdings.xml")//holdings
order by xs:decimal($h/shares)
return $h

Static analysis does not allow sorting unless all types used for
sorting are comparable. For example, if you wanted to return the
holdings in both the holdings database table and an XML file
named holdings.xml, you would have a mixture of types that
cannot be compared:

for $h in doc("holdings.xml")//holdings
collection("holdings")//holdings
order by $h/shares
return $h

Error: [DataDirect][XQuery][err:XP0004]Error at line 30,
column 11. Static type error. Order spec contains invalid
comparison of types 'xs:string' and 'DECIMAL_19_4'.

The solution is to use a constructor function to ensure that all
values are compared as decimals:

for $h in doc("holdings.xml")//holdings
collection("holdings")//holdings
order by xs:decimal($h/shares)
return $h
DataDirect XQuery User’s Guide and Reference

Resolving Static Type Errors 579
Static Typing Extensions

For static typing analysis, DataDirect XQuery follows the rules of
the XQuery Formal Semantics with the following exceptions:

■ DataDirect XQuery does not raise static errors for quantifiers
that do not match.

■ DataDirect XQuery provides more precise typing rules for
parent and fn:root.

■ The static type of a parameter is determined by the
argument expression, not the parameter declaration. The
following function executes without raising a static error
although types for the function parameters are not declared:

declare function local:add($left, $right)
{
$left + $right
};
local:add(1, 1)

■ The static type of a function return is determined by the
function expression, not the declared type. The following
example executes without raising a static error although the
function return type is not declared:

declare function local:one()
{
1
};
local:one() + 1

■ Static typing for constructors use knowledge of the resulting
structure as specified by the constructor expression. For
example, the expression <a>1 + 1 succeeds because
DataDirect XQuery knows statically that the value of the a
element is an integer. Similarly, <a>/c fails with
error XPST0005 because DataDirect XQuery knows statically
that the constructed <a/> element does not have a <c/>
element as a child.
DataDirect XQuery User’s Guide and Reference

580 Appendix I Troubleshooting
■ The XPST0005 error can be disabled by specifying the
detect-XPST0005 option declaration.
DataDirect XQuery User’s Guide and Reference

581
Index

A

accessing
values of an XQuery item 517
XML results of a query 530

accessors 362
adding and subtracting durations 379
advantages, static typing 573
aggregate functions 386
aggregating data

Streaming XML and 183
AllowJavaFunctions property 128
anyURI data type, functions and operators

for 372
applet, Java 2 Platform, permissions for 151,

162
architecture, DataDirect XQuery 55
arithmetic expressions 350
assembling strings 369
atomic types

constructor functions 364
mapping to XQJ 533
supported 459

authentication
client (SSL) 168
Kerberos 147
NTLM 159
server (SSL) 166
support for 146
types of 146

AuthenticationMethod property
DB2 461
SQL Server 468
Sybase 481

B

base URI 129
base64Binary, functions and operators on

382
BaseUri property 129
basics, XQuery 341
benefits of XQuery 48
binding sequence

definition 93
books

online 29
using 26

boolean constructor functions 373
boolean values

functions on 373
operators on 373

built-in functions
ddtek:analyze-edi-from-string() 390
ddtek:analyze-edi-from-url() 391
ddtek:convert-to-xml() 393
ddtek:decimal() 394
ddtek:edi-to-xml-from-string() 394
ddtek:edi-to-xml-from-url() 396
ddtek:format-date 397
ddtek:format-date-time 401
ddtek:format-number 402
ddtek:format-time 405
ddtek:http-delete 407
ddtek:http-get 408
ddtek:http-head 409
ddtek:http-options 410
ddtek:http-post 411
ddtek:http-put 412
ddtek:http-trace 414
ddtek:info 415
ddtek:is-valid() 416
DataDirect XQuery User’s Guide and Reference

582 Index
ddtek:javaCast() 416
ddtek:parse() 418
ddtek:serialize-to-url() 420
ddtek:trim() 417
ddtek:validate() 424
ddtek:validate-and-report 427
ddtek:wscal() 430

C
case sensitivity 122
cast to varchar 282
casting 388
certificate

SSL 166
Certificate Authority (CA), SSL 167
choosing a connection method 123
CLASSPATH, setting 35
client authentication

SSL 168
Collation property 129
collation, default 129, 315
collations

comparing strings 314
handling Unicode characters 315
list of 314
specifying 312
user-defined 314
W3C Unicode Codepoint 314

collection
NULLID (DB2) 464
resolving errors 564
specifying in a query 118

collection URI resolver 298
CollectionURIResolver property 129
command line utility 40
comparing strings, collations 314
comparison expressions 351
comparison of

duration, date, and time values 375
numeric values 368
strings 369

comparisons
value compared to general 190

comparisons in where clauses 189
compensating for functions with no SQL

equivalent 191
component extraction functions 377
conditional expressions 354
configuring

environment to run DataDirect XQuery
examples 540

Kerberos authentication 149
NTLM authentication 160
SSL encryption

configuring connections
quick start 36
XQJ

explicitly 123
using JNDI 127

configuring data source connections
multiple databases 124
single databases 124

connect descriptor parameters in
tnsnames.ora file (Oracle) 478

connection pooling 193
XQueryWebService framework and 214

connection properties
DB2 460
Informix 466
MySQL Enterprise 470
Oracle 471
SQL Server 467
Sybase 481

connection URLs 141
connections

choosing a data source connection
method 123

configuring 36
configuring data source connections 115
managing client-server connections 235
multiple databases 124
permissions 162
settings for sockets and connections 236
single database 124
specifying connection URIs for 141
DataDirect XQuery User’s Guide and Reference

Index 583
using DDXQDataSource to connect to a
data source 123

constructing an XQDataSource instance 123
constructor functions

boolean 373
for QNames 381
for user-defined types 366
for XML schema built-in types 364
for xs:dateTime 366

constructors 352
contacting Technical Support 33
context functions 387
controlling precision and scale for

xs:decimal() 279
conventions, typographical 31
converting

EDI to XML 299
converting EDI to XML

built-in function for 393
validating EDI streams 390, 391, 394, 396

cookies
managing cookies in Web service

applications 242
CreateDefaultPackage property (DB2) 462
creating

an XDM instance 418
DB2 packages 464
XML 83

custom URI resolver 295, 298

D
data

aggregating 183
grouping data 92
streaming XML data 177, 237
updating data sources 101, 112
updating relational data sources 267

data bases
using relational data in XQuery 118

data encryption
database-specific encryption 164
SSL

for DB2 170
for Microsoft SQL Server 172
for Oracle 171
for Sybase 175

SSL support 164
support for 163
supported types of 164

data model
SQL 2003 standard for XML mappings 120

data model representation
relational database tables 120
XML documents 117

data source
configuring connections to a single source

124
configuring connections to multiple

sources 124
data source connections

authentication 145
built-in drivers for 141
connection URI format 141

third-party drivers 143
data encryption 163
securing 145

data sources
authenticating connections 146
configuring connections explicitly 123
configuring connections using JNDI 127
connection methods for 123
relational 118
relational data bases 118
Streaming XML and 180
updating 112
updating using XUF 101
using data sources in queries 115
using in queries 115
XML 116

data types
DB2 448
Informix 449
DataDirect XQuery User’s Guide and Reference

584 Index
mapping database data types to XML
schema data types 447

MySQL 451
Oracle 452
SQL Server 455
support for XML Type 263
support for XML Type data 263
Sybase 457
XML 117

database connections
XQueryWebService framework example

213
DatabaseName property

DB2 462
Informix 466
MySQL Enterprise 470
SQL Server 468

databases
authenticating connections 146
configuring connections to a single source

124
configuring connections to multiple

sources 124
updating 267

DataDirect Spy
attributes

setting explicitly in a Java application
554

setting in JNDI 556
generating a log 559
log example 559
logging

content of DOM trees 558
content of SAX event streams 558
content of StAX event streams 558
generating a log 559
turning on and off 560
XQJ calls to System.out 558

setEnableLogging() method 560
setting attributes for using

DDXQDataSource 135
SpyAttributes property, specifying 554

DataDirect XML Converters
using with DataDirect XQuery 56

DataDirect XML Converters, serialization
support 442

DataDirect XQuery
about 25
architecture 55
atomic types supported 459
authentication support 146
building a Web service client 229
built-in functions 389
comments, support of 347
configuring connections 36
data encryption support 163
ddtek:info built-in function 415
features 47
jar files in CLASSPATH variable 35
Kerberos authentication support 147
overview 47
SAX events 531
serializing, text 532
SQL adaptor 56
StAX events 531
threading 530
tutorial 59
using with DataDirect XML Converters 56
using with Stylus Studio 57
XML adaptor 56
XQJ support 507
XQuery expressions 347
XQueryWebService framework 201

dates
formatting 397, 401
formatting examples 400

date-time
formatting examples 402

dateTime, date, and time
adding and subtracting durations 379
values, timezone adjustment on 379

DB2
AuthenticationMethod property 461
BINDADD privileges 465
collection name 463
configuring SSL 170
connection properties 460
CreateDefaultPackage property 462
DataDirect XQuery User’s Guide and Reference

Index 585
creating packages 462
data encryption for 165
data types 448
DatabaseName property 462
dynamic sections 464
DynamicSections property 462
Grantee property 462
GrantExecute property 462
InitializationString property 463
Kerberos authentication

permissions 152
service principal name 152

Kerberos authentication support 147
library name 463
location 463
LocationName property 463
owner 464
PackageCollection property 463
PackageOwner property 464
packages, creating 462, 464
password 464
Password property 464
prepared statements, maximum 462
ReplacePackage property 464
replacing packages 464
schema for DB2 packages 462
user name 464
User property 464
versions supported 118
XML-typed data examples 484

DB2 external functions 332
DB2 for z/OS Unicode database, connecting

to 132, 139
DB2 V9.1

XML-typed data examples 488
ddtek:analyze-edi-from-string() 390
ddtek:analyze-edi-from-url 391
ddtek:convert-to-xml 393
ddtek:decimal 394
ddtek:edi-to-xml-from-string() 394
ddtek:edi-to-xml-from-url() 396
ddtek:is-valid 416
ddtek:javaCast() 416
ddtek:parse() 418

ddtek:serialize() 419
ddtek:serialize-to-url 420
ddtek:sql-delete 270, 421
ddtek:sql-insert 268, 422
ddtek:sql-update 269, 423
ddtek:trim() 417
ddtek:validate() 424
ddtek:wscall() 430
DDXQDataSource 129

AllowJavaFunctions property 128
BaseUri property 129
Collation property 129
constructing an XQDataSource instance

123
DocumentUriResolver property 129
JdbcName property 129
JdbcOptions property 130
JdbcSqlXmlForest property 130
JdbcSqlXmlIdentifierEscaping property

131
JdbcTempTableColumns property 132
JdbcTempTableSuffix property 132
JDBCTransactionIsolationLevel property

133
JdbcUrl property 134
loading object from JNDI 127
MaxPooledQueries property 134
ModuleUriResolver property 134
Password property 135
properties 128
SpyAttributes property 135
User property 135

DDXQJDBCConnection
Name property 136
Options property 137
Password property 137
properties 128
SqlXmlIdentifierEscaping property 138
TempTableColumns property 139
TempTableSuffix property 139
Url property 141
User property 141

declaring Java functions 317
default collation 129, 315
DataDirect XQuery User’s Guide and Reference

586 Index
deferred binding 532
deleting relational data 270, 421
detect-XPST0005 option declaration 277
disassembling strings 369
document order 346
documentation, about 29
DocumentUriResolver property 129
DOM

compliance level 531
logging content of using DataDirect Spy

558
returning results 69

DOM trees, querying data from 65
domain controller 159
durations, dates, and times

comparison of values 375
functions on 374
operators on 374

durations, ordered subtypes of 375
DynamicSections property (DB2) 462

E
EDI

analyzing data sources 299
converting to XML 299
detecting errors in 299

enabling
logging that uses a file other than the

default 563
Plan Explain 310

enclosed expressions 83
encoding

encoding XQuery Web service results 238
encryption

configuring SSL
for DB2 170
for Microsoft SQL Server 172
for Oracle 171
for Sybase 175

data encryption 163
data encryption for DB2 165

database-specific 164
performance optimization 163
SSL support 164
support 164
supported types of 164

equality of strings 369
equals 385
err:XPST0005, raising during static analysis

277
error function 363
error handling

static type errors 573
support 345

errors, fn:collection() 564
escaping of identifiers 131, 138
evaluate-in-memory extension expression

287
events, StAX 531
examples

combining data from XML and relational
sources 51

configuring 540
connecting to multiple databases 124
creating a specific XML structure 51
DataDirect Spy, log 559
execution plan 311
Java example using XQJ 54
modifying logging.properties 562
net service name entry in tnsnames.ora file

476
obtaining a javax.security.auth.Subject for

authentication 156
provided with DataDirect XQuery

about 541
required software 539

simple query using a FLWOR expression 50
using the XMLFOREST variable 121

except 385
executing updates in XQJ 74, 108
execution plans

example 311
format of 307
generating 307

expression context 342
DataDirect XQuery User’s Guide and Reference

Index 587
expression, prepared 522
expressions

arithmetic 350
comparison 351
conditional 354
constructors 352
extension expressions 275
FLWOR 353
introduction 347
logical 351
on SequenceTypes 355
ordered 353
path 349
primary 348
quantified 354
sequence 350
unordered 353
validate 356

extension expressions
description 275
evaluate-in-memory 287
using 275, 287

extensions, static typing 579
external functions

Java 317
SQL 329
supported by DataDirect XQuery 315

external variables
types 574
XQJ 117

ExtLogControl class 561

F
features, DataDirect XQuery 47
files

querying multiple 290
querying multiple files 288

finding XML nodes 76
FLWOR expression

binding sequence 93
definition of 75

example 50
grouping data 92
restructuring data 84
sliding windows 94
support for 353
tumbling windows 94
window clause 93
XMLFOREST 121

fn:collection() errors 564
format, connection URI

third-party drivers 143
format, execution plans 307
formatting dates

examples 400
formatting date-time

examples 402
formatting methods

ddtek:format-date built-in function 397
ddtek:format-date-time built-in function

401
ddtek:format-number built-in function

402
ddtek:format-time built-in function 405

formatting numbers
examples 404

formatting time
examples 406

function calls
resolving Java function calls 324

functions
aggregate 386
aggregation and streaming XML 183
based on substring matching 371
compensating for functions with no SQL

equivalent 191
component extraction 377
constructor 364
external functions 315
for anyURI 372
introduction 361
Java external functions 317
on base64Binary and hexBinary 382
on boolean values 374
on durations, dates, and times 374
DataDirect XQuery User’s Guide and Reference

588 Index
on nodes 383
on NOTATION 383
on numeric 367
on numeric values 368
on sequences 384
on string values 370
on strings 369
related to QNames 381
SQL external functions 329
SQL table functions 337
that generate sequences 386
to assemble and disassemble strings 369
trace 363

G
general comparisons

compared to value comparisons 190
generated SQL, simplifying 253
generating

DataDirect Spy log 559
XQuery execution plan 307

getting started
configuring connections 36
with DataDirect XQuery after installation

35
with DataDirect XQuery examples 45
XQJ 38

global option declaration 134, 276
Grantee property (DB2) 462
GrantExecute property (DB2) 462
grouping data 92

H
handling Unicode characters for collations

315
handshake, SSL 166
help, online 29
hexBinary, functions and operators on 382

HTTP functions
DataDirect XQuery implementations of

231
settings for connections and sockets 236
XML Schema for requests 247
XML Schema for responses 249

HTTP GET
XQueryWebService framework and 203

HTTP methods
ddtek:http-delete built-in function 407
ddtek:http-get built-in function 408
ddtek:http-head built-in function 409
ddtek:http-options built-in function 410
ddtek:http-post built-in function 411
ddtek:http-put built-in function 412
ddtek:http-trace built-in function 414

HTTP POST
XQueryWebService framework and 203

I
identifiers, escaping of 131, 138
ignore-whitespace option declaration 277
Index 581
Informix

connection properties 466
data types 449
DatabaseName property 466
InformixServer property 466
InitializationString property 466
password 467
Password property 467
user name 467
User property 467
versions supported 118, 446

InformixServer property (Informix) 466
Infoset mapping 117, 359
initial naming context 127
InitializationString property

DB2 463
Informix 466
MySQL Enterprise 471
DataDirect XQuery User’s Guide and Reference

Index 589
Oracle 473
SQL Server 469
Sybase 481

initializing JNDI environment 127
insert expression 106
inserting relational data 268, 422
instance method, Java functions 319
interface

XQConnection 508
XQDataSource 512
XQDynamicContext 514
XQExpression 516
XQItem 517
XQItemAccessor 517
XQItemType 519
XQMetaData 521
XQPreparedExpression 522
XQResultItem 523
XQResultSequence 524
XQSequence 524
XQSequenceType 526
XQStaticContext 526

intersection 385
invoking a Web service operation 430
isolation levels 133

J
JAR files, querying 292
jar files, setting in CLASSPATH 35
Java

built-in function to return Java system
properties 415

developing an application that executes a
query 38

logging 562
specifying connection information in the

application 123
Java 2 Platform

applet permissions 162
permissions

for establishing connections 162

Kerberos authentication 151
Security Manager 151, 162

Java functions
declaring 317
disabling 128, 328
instance method 319
mapping types to XQuery 320
resolving the function call 324
SequenceType 320
static method 318
using 317

Java instance methods
notes about using 326

Java Keystore (JKS)
SSL authentication and 168

Java locale, collations 314
Java static methods 318
Java system properties

built-in function for 415
javax.security.auth.Subject 156
JDBC connection name 129

DDXQDataSource property 129
DDXQJDBCConnection property 136
qualifying table name with 119

JDBC scalar functions 336
JDBC URL 134, 141
JdbcName property 129
JdbcOptions property 130
JdbcPragmas property 130
JdbcSqlXmlForest property 130
JdbcSqlXmlIdentifierEscaping property 131
JdbcTempTableColumns property 132
JdbcTempTableSuffix property 132
JDBCTransactionIsolationLevel property 133
JdbcUrl property 134
JNDI

advantages of 123
initializing environment 127
loading a DDXQDataSource object from

127
registering data source object 127
using initial naming context to find name

of data source object 127
DataDirect XQuery User’s Guide and Reference

590 Index
using JNDIDataSource example file as a
template 127

JNDIDataSource example file
using as a template to create data source

object for JNDI 127
joining data 67
JSR 255 53

K
Kerberos

authentication 147
Kerberos authentication 158

configuring 149
database support 147
Java 2 platform permissions 151
javax.security.auth.Subject 156
Kerberos configuration file 149
Kerberos server 149
Key Distribution Center (KDC) 149
kinit command (UNIX and Linux) 158
MIT Kerberos 149
permissions

DB2 152
Kerberos 151
Oracle 153
SQL Server 154
Sybase 155

requirements 148
service principal name

DB2 152
Sybase 155

specifying user credentials 156
Ticket Granting Ticket (TGT) 158
user credentials, specifying 156

Kerberos configuration file 149
Kerberos Key Distribution Center (KDC) 150
Kerberos realm

DB2 152
Oracle 153
SQL Server 154
Sybase 155

keystore, SSL 168
kinit command, Kerberos authentication 158

L
large XML documents, querying 177
literal expressions 348
literal translation 281
literal XML constructors 83
loading a DDXQDataSource object from JNDI

127
LoadLibraryPath property

Oracle 473
SQL Server 469

LocationName property (DB2) 463
log for DataDirect Spy, generating 559
logging

DataDirect Spy 553
Java 562
using a file other than the default 563

logging.properties file 562
logging.properties, modifying 562
logical expressions 351

M
mapping

a function call to a Java method 416
data types between XQuery and Java for

Java functions 320
Oracle connection properties to

tnsnames.ora 478
matching

pattern 372
substring 371

maximum number of prepared statements
(DB2) 462

maximum number of queries in the pool 134
MaxPooledQueries property 134
Mediator, DataDirect XQuery 55
DataDirect XQuery User’s Guide and Reference

Index 591
method, serialization
DataDirect XML Converters, using 442
standard 440

methods
using Java instance methods 326

methods, ExtLogControl class 561
Microsoft SQL Server

configuring SSL 172
Kerberos authentication support 147

MIT Kerberos 149
modules 357
ModuleUriResolver property 134
MS Office Open documents

querying 292
multiple databases, configuring connections

to 124
multiple files, querying 288, 290
multi-threading 530
MySQL Enterprise

connection properties 470
DatabaseName property 470
InitializationString property 471
password 471
Password property 471
user name 471
User property 471
versions supported 118, 446

MySQL, data types 451

N
Name property 136
name, JDBC connection 129
named instances (SQL Server)

permissions required for 163
namespaces, reserved 360
nodes

inserting node values 106
renaming node values 108
replacing node values 105

nodes, functions and operators on 383
NOTATION, functions and operators on 383

NTLM authentication
configuring 160
DLL 161
requirements 159

numbers
formatting 402
formatting examples 404

numeric values
comparison of 368
functions on 368
operators on 367

numerics, functions and operators on 367

O
object, ExtConnection 561
obtaining a Ticket Granting Ticket 158
OpenDocument Format documents

querying 292
operators

for anyURI 372
introduction 361
on base64Binary and hexBinary 382
on boolean values 373
on durations, dates, and times 374
on nodes 383
on NOTATION 383
on numeric values 367
on numerics 367
related to QNames 381
that generate sequences 386

option declarations
connection-specific 275
description 275
detect-XPST0005 277
global 134, 275, 276
ignore-whitespace 277
plan-explain 277
serialize 277
specifying

methods of 284
using DDXQDataSource 130
DataDirect XQuery User’s Guide and Reference

592 Index
using DDXQJDBCConnection 137
sql-decimal-cast 279
sql-extra-checks-trailing-spaces 279
sql-ignore-trailing-spaces 279
sql-ora10-use-binary-float-double 283
sql-order-by-on-values 280
sql-rewrite-algorithm 280
sql-rewrite-exists-into-count 283
sql-simple-convert-functions 280
sql-simple-string-functions 281
sql-sybase-temptable-index 284
sql-sybase-use-derived-tables 284
sql-unicode-literals 281
sql-unicode-strings 281
sql-varchar-cast 282
using 275
xml-streaming 278

optional XQuery features 358
optional XUF features

support for 506
Options property 137
ORACLE

XML-typed data examples 490
Oracle

configuring
tnsnames.ora file 478
to retrieve connection information from

tnsnames.ora file 477
configuring SSL 171
connect descriptors in tnsnames.ora files

476
connection information, retrieving from

tnsnames.ora files 476
connection properties 471
data types 452
InitializationString property 473
Kerberos authentication support 147
Kerberos authentication, permissions

required for 153
net service name entries in tnsnames.ora

files 476
password 474
Password property 474

preventing conflicts when using a
tnsnames.ora file 478

Real Application Clusters (RAC) 474
SID property 474
System Identifier (SID) 474
tnsnames.ora file

configuring file 478
configuring to reference 477
connect descriptor parameters 478
connection property mappings to 478
retrieving connection information from

475
using 476

TNSNamesFile property 475
TNSServerName property 475
User property 475
versions supported 446

ORACLE 10g
XML-typed data examples 495

Oracle 10g, using BINARY_FLOAT and
BINARY-DOUBLE data types 283

Oracle external functions 334
ordered expressions 353
ordered subtypes of duration 375
overview

DataDirect XQuery 47
XQJ 53
XQuery 48

P
PackageCollection property (DB2) 463
PackageOwner property (DB2) 464
packages, creating (DB2) 464
parameterizing XML views 120
Password property

DB2 464
DDXQDataSource 135
DDXQJDBCConnection 137
Informix 467
MySQL Enterprise 471
Oracle 474
DataDirect XQuery User’s Guide and Reference

Index 593
SQL Server 470
Sybase 482

path expressions
for relational sources 81
for XML sources 76
support for 349

pattern matching on strings, functions 372
performance

improving XQuery performance 177
performance considerations

SQL generation algorithms 261
understanding compensation 191
using comparisons 189
using query pooling 192

performance optimization
encryption 163

permissions
for establishing connections 162
Kerberos authentication 151
named instances (SQL Server) 163

PKCS #12
SSL authentication and 168

Plan Explain 307
about 307
enabling 310
Streaming XML and 181

plan-explain option declaration 277
pooling connections 193
pooling, queries 134, 192
PostgreSQL

versions supported 446
PostgreSQL JDBC driver 143, 446
PostgreSQL, versions supported 118
precision 394
precision and scale 348
precision for xs:decimal(), controlling 279
predefined namespaces

not reserved 360, 437
reserved 438

predicates
defined 79
numeric 80

prepared expression 522
preparing XQuery statements 72

preventing conflicts when using a
tnsnames.ora file 478

primary expressions 348
processing

Plan Explain feature and 181
processing model 345
processing XQuery

Streaming XML and 178
prologs 357
properties

DDXQDataSource 128
DDXQJDBCConnection 136

proprietary functions
ddtek:serialize() 419

PSVI mapping 359

Q
QNames

constructor functions 381
functions and operators related to 381
functions related to 381

qualifying, table name with JDBC connection
name 119

quantified expressions 354
queries

data sources for 115
query

accessing XML results 530
developing a Java application that

executes a query 38
making queries available as Web services

201
syntax

for extension expression 284
for option declaration 284

query optimization 132, 139
query plan 307
query pooling

description 192
effect on performance 192
DataDirect XQuery User’s Guide and Reference

594 Index
specifying number of queries in the pool
134

XQJ and 192
query results

transforming 109
querying

data from DOM trees 65
data from XML files 65
large XML documents 177
multiple files in a directory 288, 290

querying XML
files archived in a ZIP or JAR file 292
MS Office Open documents 292
OpenDocument Format documents 292

quick start 35

R
Real Application Clusters (RAC) (Oracle) 474
registering data source object with JNDI 127
relational data

data source for queries 118
executing XQuery against 251
processing with XML 91
querying 251
XML views and 120

relational data sources
supported databases 118

relational database tables
data model representation 120
specifying in a query 118

relational databases
deleting data 270, 421
inserting data 268, 422
updating 267
updating data 269, 423

relative URIs, resolving 129
rename expression 108
replace expression 105
ReplacePackage property (DB2) 464
required software for examples provided

with DataDirect XQuery 539

reserved namespaces 360
resolving

fn:collection() errors 564
static type errors 573
URIs 129, 134

REST
Web services and 216
XQueryWebService framework and 203
XQueryWebService framework example

217
restructuring data 84
results

transforming query results 109
writing query results to I/O 420

returning results with Java XML APIs 69
reusing connections 193

S
SAX

logging content of using DataDirect Spy
558

returning results 69
serializing result sequence in events 531

scale 394
scale for xs:decimal(), controlling 279
schema for DB2 packages 462
Secure Sockets Layer (SSL)

See SSL
security

authentication for data source
connections 145

data encryption for data source
connections 163

supported methods for securing data
source connections 145

Security Manager for Java 2 Platform 151,
162

sequence expressions 350
sequence of items 524
sequences, functions and operators 384, 386
SequenceType for Java functions 320
DataDirect XQuery User’s Guide and Reference

Index 595
SequenceTypes, expressions on 355
serialization support

DataDirect XML Converters, using for 442
standard 440

serialize option declaration 277
serializing query results 419
server authentication, SSL 166
service principal name for Kerberos

authentication
DB2 152
Sybase 155

ServicePrincipalName property (Sybase) 482
setEnableLogging(), using to turn on and off

DataDirect Spy logging 560
setting, CLASSPATH 35
SID property (Oracle) 474
sliding windows

definition 94
SOAP 49, 51

Web services and 216
XQueryWebService framework and 203
XQueryWebService framework example

218
sockets

managing client-server connections 235
settings for sockets and connections 236

sorting static typing 577
specifying

collations 312
connection URLs 141
option declarations 284
precision and scale 394
URI resolver 294

SpyAttributes property 135
SQL

comparison to XQuery 48
compensating for functions with no SQL

equivalent 191
translating XQuery into SQL 251
XQuery functionality that cannot be

directly translated into 191
SQL 2003

data model for XML mappings 120
SQL adaptor, DataDirect XQuery 56

SQL functions
DB2 examples 332
JDBC scalar functions 336
Oracle examples 334
requirements and restrictions 329
SQL Server examples 330
table functions 337
user-defined 335
using 329

SQL generation algorithms 260
SQL Server

AuthenticationMethod property 468
connection properties 467

LoadLibraryPath 469
data types 455
DatabaseName property 468
InitializationString property 469
Kerberos authentication, permissions

required for 154
named instances, permissions required for

163
password 470
Password property 470
user name 470
User property 470
versions supported 118, 446
XML-typed data examples 497

SQL Server external functions 330
SQL table functions 337
SQL/XML

mappings 120
parameterizing views 120
views 120

sql-decimal-cast option declaration 279
sql-extra-checks-trailing-spaces option

declaration 279
sql-ignore-trailing-spaces option declaration

279
sql-ora10-use-binary-float-double option

declaration 283
sql-order-by-on-values option declaration

280
sql-rewrite-algorithm option declaration 280
DataDirect XQuery User’s Guide and Reference

596 Index
sql-rewrite-exists-into-count option
declaration 283

sql-simple-convert-functions option
declaration 280

sql-simple-string-functions option
declaration 281

sql-sybase-temptable-index option
declaration 284

sql-sybase-use-derived-tables declaration
option 284

sql-unicode-literals option declaration 281
sql-unicode-strings option declaration 281
sql-varchar-cast option declaration 282
SqlXmlIdentifierEscaping property 138
SSL

about 166
certificate 166
Certificate Authority (CA) 167
client authentication 168
configuring

for DB2 170
for Microsoft SQL Server 172
for Oracle 171
for Sybase 175

handshake 166
Java Keystore (JKS) 168
keystore 168
PKCS #12 Keystore 168
server authentication 166
support for 164
truststore 167

static context of a query 526
static method, Java function 318
static typing

advantages 573
extensions 579
external variables 574
overview 573
sorting 577
union types 576

StAX
event 531
logging content of using DataDirect Spy

558

returning results 69
Streaming XML

aggregating data and 183
examples

expression with attribute predicate 186
path expression with predicate 186
simple path expressions 185
two XML documents 187
XQuery expression with exists 187
XQuery expression with fn:data 186
XQuery expression with function on

Node 186
examples of 185
illustrating with Plan Explain 181
when it is not used 188
XML headers and 182

Streaming XML feature
data sources for 180
description 178

strings
assembling and disassembling 369
comparison 369
equality 369
functions

that use pattern matching 372
to assemble and disassemble 369

functions on values 370
Stylus Studio

using with DataDirect XQuery 57
substring matching, functions based on 371
support

authentication 146
encryption 164

SupportLink 33
Sybase

AuthenticationMethod property 481
configuring SSL 175
connection properties 481
data types 457
InitializationString property 481
Kerberos authentication

permissions 155
service principal name 155

Kerberos authentication support 147
DataDirect XQuery User’s Guide and Reference

Index 597
password 482
Password property 482
ServicePrincipalName property 482
sql-sybase-temptable-index option

declaration 284
user name 482
User property 482
versions supported 118, 446

syntax for
extension expression 284
option declaration 284

system information
ddtek:info built-in function 415

System.out, logging XQJ calls to using
DataDirect Spy 558

T
Technical Support, contacting 33
template for creating data source objects for

JNDI 127
temporary tables 132, 139
TempTableColumns property 139
TempTableSuffix property 139
testing

Web service operations 219
testing queries 40
text, serializing a result sequence into 532
threading 530
Ticket Granting Ticket 158
time

formatting 401, 405
formatting examples 406

timezone adjustment 379
tnsnames.ora file

configuring
options for 478
to reference file 477

connect descriptor parameters 478
connection information, retrieving 476
mapping Oracle connection properties to

478

retrieving connection information from
475

TNSNamesFile property (Oracle) 475
TNSServerName property (Oracle) 475
trace function 363
transaction isolation levels 133
transforming query results 109
translation, literal 281
trimming whitespaces 417
truststore file, SSL 167
tumbling windows

definition 94
turning on and off DataDirect Spy logging

560
tutorial

DataDirect XQuery
configuring connections to relational

databases 61
executing queries 62
joining data from XML and relational

sources 67
preparing XQuery statements 72
querying data from XML files or DOM

trees 65
returning results as DOM tree 70
returning results as SAX event stream 71
returning results as StAX event stream

71
returning results with Java XML APIs 69

XQuery
creating XML 83
finding XML nodes, path expressions 76
FLWOR expressions 84, 92
grouping data 92
processing XML and relational together

91
restructuring data 84

types
for external variables 574
for XQuery 346
DataDirect XQuery User’s Guide and Reference

598 Index
U
Unicode

characters, handling for collations 315
setting the default encoding for string

literals to 348
union 385
union types 576
unordered expressions 353
updating data sources 112
updating relational data 74

using built-in functions 268
using XUF 102

URI resolver
collection 298
specifying 294

URI schemes 116
URIs

resolving 129, 134
specifying for XML data source

connections 117
Url property 141
user credentials, specifying with Kerberos

authentication 156
user name, database 135, 141
User property

DB2 464
DDXQDataSource 135
DDXQJDBCConnection 141
Informix 467
MySQL Enterprise 471
Oracle 475
SQL Server 470
Sybase 482

user-defined collations 314
user-defined functions 335
using

book 26
extension expressions 275, 285
initial naming context to find name of

data source object registered with JNDI
127

Java functions 317

option declarations 275
Oracle tnsnames.ora files 476
SQL functions 329

utility for testing queries 40

V
validate expressions 356
validating query results 427
validating XML results 416
value comparisons

compared to general comparisons 190
versions

specifying the XQuery version 60
XQuery versions supported by DataDirect

XQuery 60

W
W3C Unicode Codepoint collation 314
Web service applications

building a Web service client 229
connection authentication 233
data streaming and 237
HTTP functions for Web service clients 231
managing connections and sockets 235
managing cookies 242
response encodings 238
settings for connections and sockets 236
supported authentication methods 233
supported encryption methods 235
XML Schema for HTTP requests 247
XML Schema for HTTP responses 249

Web service client
definition 229
response encodings 238

Web Service Description Language (WSDL)
221
See also WSDL

Web service operations
DataDirect XQuery User’s Guide and Reference

Index 599
invoking 430
testing 219

Web services
building a Web service client 229
HTTP functions for 231
REST interface 216
SOAP interface 216
Web service client 229
WSDL service references 223
XQueryWebService framework 201

whitespace
option for ignoring 277

whitespaces, trimming 417
window clause

definition 93
Windows Active Directory

Kerberos authentication and 149
Windows Domain

DB2 152
Oracle 153
SQL Server 154
Sybase 155

writing results to I/O 420
WSDL

generating 221
using WSDL service references 223

X
XML

case sensitivity of element and attribute
names 122

constructors 83
data model representation 117
data source for queries 116
data type 117
DOM compliance 531
parameterizing views 120
processing with relational data 91
schema data types 447
specifying XML documents as query

sources 116

stored in relational database using an XML
data type 117

streaming XML data 177
text files/streams 116
validating 427
validating query results 416

XML adaptor, DataDirect XQuery 56
XML constructors 83
XML constructors, literal 83
XML data

streaming 177, 237
XML documents,querying 177
XML files

querying in a ZIP or JAR file 292
XML headers

Streaming XML and 182
XML nodes, finding using path expressions

76
XML Schema

for HTTP requests 247
for HTTP responses 249
validating query results 427

XML Type data
support for 263

XML views
parameterizing 120
relational data and 120

XMLFOREST variable
default 120
parameterizing views 120
setting 120

xml-streaming option declaration 278
XML-typed data

DB2 examples 484
DB2 V9.1 examples 488
ORACLE 10g examples 495
ORACLE examples 490
SQL Server examples 497

XPath 1.0 and XQuery 2.0 Data Model
specification 117

XQConnection interface 508
XQDataSource interface 512
XQDynamicContext interface 514
XQExpression interface 516
DataDirect XQuery User’s Guide and Reference

600 Index
XQItem interface 517
XQItemAccessor interface 517
XQItemType interface 519
XQJ

DataDirect XQuery support for classes,
interfaces, and methods 507

example, executing an XQuery query 54
examples 38
executing updates 108
external variables 117
getting started 38
JSR 225 53
mapping using get methods 533
overview 53
query pooling and 192
using to configure data source

connections explicitly 123
using to configure data source

connections using JNDI 127
XQMetaData interface 521
XQPreparedExpression interface 522
XQResultItem interface 523
XQResultSequence interface 524
XQSequence interface 524, 532
XQSequenceType interface 526
XQStaticContext interface 526
XQuery

accessing XML results of a query 530
accessors for functions and operators 362
adding and subtracting durations 379
aggregate functions 386
atomic types 459, 533
basics 341
benefits 48
boolean constructor functions 373
building a Web service client 229
comparison of

duration, date, and time values 375
numeric values 368
strings 369

component extraction functions 377
concepts supported by DataDirect XQuery

346
Conformance, Data Model 359

constructor functions 364
for QNames 381
for user-defined types 366
for XML schema built-in types 364

context functions 387
equality of strings 369
equals 385
error function 363
error handling 345
example

combining data from XML and
relational sources 51

creating a specific XML structure 51
simple query using a FLWOR expression

50
except 385
executing against relational data 251
expression context 342
expressions

arithmetic 350
comparison 351
conditional 354
constructors 352
FLWOR 353
logical 351
on SequenceTypes 355
path 349
primary 348
quantified 354
sequence 350
unordered 353
validate 356

extension expressions 275
extensions of expressions to support XUF

505
extensions that support XUF 502
extensions to built-in functions library to

support XUF 505
functionality that cannot be directly

translated into SQL 191
functions

based on substring matching 371
for anyURI 372
introduction 361
DataDirect XQuery User’s Guide and Reference

Index 601
on base64Binary and hexBinary 382
on boolean values 373, 374
on durations, dates, and times 374
on nodes 383
on NOTATION 383
on numeric values 368
on numerics 367
on sequences 384
on string values 370
on strings 369
related to QNames 381
that generate sequences 386
to assemble and disassemble strings 369

improving performance 177
intersection 385
making queries available as Web services

201
modules 357
operators

for anyURI 372
introduction 361
on base64Binary and hexBinary 382
on boolean values 373
on durations, dates, and times 374
on nodes 383
on NOTATION 383
on numeric values 367
on numerics 367
on sequences 384
related to QNames 381
that generate sequences 386

option declarations 275
optional features 358
ordered subtypes of duration 375
overview 48
predicates 79
processing model 345
prologs 357
query pooling 192
static typing

external variables 574
overview 573
union types 576

Streaming XML feature 178

string functions that use pattern matching
372

timezone adjustment 379
trace function 363
types 346
union 385
updating data sources 101
version support 60
XML constructors 83
XQuery Update Facility (XUF) 101
XQueryWebService framework 201

XQuery 1.1
binding seqeunce 93
sliding windows 94
tumbling windows 94
window clause 93

XQuery execution plan 307
XQuery expressions, not translated to SQL

287
XQuery processing

Plan Explain 181
XQuery statements, preparing 72
XQueryWebService framework

architecture 204
database connections and 213
example 211
generating WSDL for 221
HTTP GET 203
HTTP POST 203
overview 201
REST 203, 216
SOAP 203, 216
testing 219
Web service interfaces 216
WSDL service references and 223

XUF
copy clause 109
examples

inserting node values 107
overview 103
renaming node values 108
replacing node values 105

expressions 102
insert expression 106
DataDirect XQuery User’s Guide and Reference

602 Index
inserting node values 106
modify clause 109
rename expression 108
renaming node values 108
replace expression 105
replacing node values 105
return clause 109
support for 102
transforming query results 109
updating data sources 112

XUF support
conformance to specification 506
extensions of existing XQuery expressions

505
extensions to the XQuery processing mode

502
extensions to the XQuery static context

503
extensions to XQuery 1.0 502
extensions to XQuery built-in function

library 505
new kinds of expressions 504
optional features 506

XUF suppport
extensions to the XQuery prolog 503

Z
ZIP files

creating with ddtek:serialize-to-url() 420,
421

updating files in with
ddtek:serialize-to-url() 421

ZIP files, querying 292
DataDirect XQuery User’s Guide and Reference

	Table of Contents
	List of Tables
	Preface
	What Is DataDirect XQuery®?
	Using This Book
	About the Product Documentation
	HTML Version
	PDF Version

	Typographical Conventions
	Contacting Technical Support

	1 Quick Start
	Getting Started with DataDirect XQuery
	Using the Command Line Utility
	Additional Resources

	2 Introduction
	What Is DataDirect XQuery®?
	What Is XQuery?
	The XQuery Standard

	What Is XQJ?
	DataDirect XQuery® Architecture
	Using DataDirect XML Converters™
	Using Stylus Studio®

	3 Tutorial: Using DataDirect XQuery®
	Specifying the XQuery Version
	Where to Specify Version
	When to Specify Version
	How to Specify Version

	Configuring Connections
	Specifying Connection Information

	Executing Queries
	Querying Data from XML Files or DOM Trees
	Querying an XML File
	Querying a DOM
	Querying a Directory

	Joining Data from XML and Relational Sources
	Returning Results with Java XML APIs
	DOM
	SAX
	StAX

	Preparing XQuery Statements
	Updating Data in Relational Databases

	4 Tutorial: Using XQuery
	Finding XML Nodes: Path Expressions
	Path Expressions for XML Sources
	Path Expressions for Relational Sources
	DataDirect XQuery Speaks SQL

	Creating XML: XML Constructors
	Literal XML constructors
	Enclosed Expressions

	Restructuring Data: FLWOR Expressions
	XML Reporting for Relational Sources
	Processing XML and Relational Together

	Grouping Data
	What Is Grouping
	The window Clause
	Example: Tumbling Windows
	Example: Positional Grouping
	Example: Sliding Windows

	Summary

	5 Tutorial: The XQuery Update Facility
	Support Overview
	XUF Expressions

	XUF Examples
	Sample Files

	Storing Query Results
	Example

	Replacing Node Values
	Example

	Inserting a New Node
	Example

	Renaming a Node
	Example
	Example - Using XQJ

	Transforming Query Results
	Example - Replacing a Node Value
	Example - Inserting a Node

	Updating Data Sources
	Enabling Automatic Update
	How Updates are Performed
	Example

	6 Understanding Data Sources and Connections
	Using Data Sources in Queries
	XML Data Sources
	Relational Data Sources

	Choosing a Connection Method
	Configuring Connections Explicitly
	Configuring Connections Using JNDI
	DDXQDataSource and DDXQJDBCConnection Properties
	DDXQDataSource Properties
	DDXQJDBCConnection Properties

	Specifying Connection URIs
	Connection URIs for Built-In Drivers
	Connection URIs for Third-Party Drivers

	7 Securing Data Source Connections
	About Authentication
	Using Kerberos Authentication
	Configuring Kerberos Authentication
	Specifying User Credentials with Kerberos Authentication
	Obtaining a Kerberos Ticket Granting Ticket

	Using NTLM Authentication
	Configuring NTLM Authentication

	Data Encryption Across the Network
	Supported Encryption Methods
	Database-Specific Data Encryption
	SSL Encryption
	Configuring SSL for DB2
	Configuring SSL for Oracle
	Configuring SSL for Microsoft SQL Server
	Configuring SSL for Sybase

	8 Improving Performance
	Querying Large XML Documents
	What is Streaming XML?
	Enabling Streaming XML
	Data Sources
	Using Plan Explain
	Taking Advantage of Streaming XML
	Streaming XML Examples

	Using Comparisons
	Understanding Compensation
	Using Query Pooling
	Using Connection Pooling
	Configuring a Connection Through the JDBC Driver Manager
	Configuring a Connection Through a Data Source
	Configuring Connection Pooling
	Example of Servlet Using Connection Pooling

	9 Building a Web Service
	XQueryWebService Framework Overview
	Third Party Dependencies
	Web Service Interfaces

	XQueryWebService Framework Architecture
	Example XQuery
	The Web Service Description Language (WSDL)

	Example - Employee Lookup
	Other Examples
	Before You Begin
	Setting Up
	Next Steps

	Specifying a Database Connection
	Specifying a Single Connection
	Database Connection Pooling
	Next Steps

	Choosing an Interface for Web Service Access
	Sample XQuery
	Next Steps

	Tools for Testing Web Service Operations
	The HTML Test Interface
	Next Steps

	Generating WSDL
	Next Steps

	Using WSDL Service References
	Augmenting WSDL with External XML Schema

	10 Building a Web Service Client
	Overview
	Choosing a Function Type

	DataDirect HTTP Functions
	Function Overview
	Connection Authentication
	Managing Connections and Sockets
	Data Streaming
	Response Encoding
	Managing Cookies
	Specifying HTTP Client-Server Options

	Example: Web Service Client Comparison
	Using HTTP Functions
	Using ddtek:wscall

	HTTP Function Request and Response XML Schemas
	Request XML Schema
	Response XML Schema

	11 Support for Relational Databases
	Querying Relational Data
	XML and SQL Data Structures
	Simplifying Generated SQL
	Using an Order By Clause
	Using a SQL EXISTS Subclause in DB2
	Using BINARY_DOUBLE and BINARY_FLOAT Data Types (Oracle 10g and higher)
	Using DataDirect XQuery SQL Generation Algorithms

	Querying XML Type Data
	Supported Databases
	Evaluating Queries in Memory

	Updating Relational Data
	ddtek:sql-insert
	ddtek:sql-update
	ddtek:sql-delete

	Understanding the Transactional Behavior of DataDirect XQuery Updates
	Transactions
	Transaction Isolation Levels
	Distributed Transactions

	12 Using Advanced Features
	Using Option Declarations and Extension Expressions
	Option Declarations
	Using Extension Expressions

	Querying Multiple Files in a Directory
	XML Files
	Non-XML Files

	Querying ZIP, JAR, and MS Office Files
	Creating and Updating ZIP Files

	Using URI Resolvers
	Document URI Resolvers
	Library Module URI Resolvers
	Collection URI Resolvers

	Analyzing EDI to XML Conversions
	Overview
	Built-in EDI Analysis and Conversion Functions
	Examples

	Generating XQuery Execution Plans
	Format of an XQuery Execution Plan
	Enabling Plan Explain
	Example of an XQuery Execution Plan

	Specifying Collations
	Using External Functions
	Supported External Functions
	Using Java Functions
	Using SQL Functions

	A XQuery Support
	Terminology
	In This Appendix
	2 Basics
	Expression Context
	Processing Model
	Error Handling
	Concepts
	Types
	Comments

	3 Expressions
	Primary Expressions
	Path Expressions
	Sequence Expressions
	Arithmetic Expressions
	Comparison Expressions
	Logical Expressions
	Constructors
	FLWOR Expressions
	Ordered and Unordered Expressions
	Conditional Expressions
	Quantified Expressions
	Expressions on SequenceTypes
	Validate Expressions
	Extension Expressions

	4 Modules and Prologs
	5 Conformance
	Optional Features
	Data Model Conformance

	Namespaces
	Predefined Namespaces (Not Reserved)

	B Functions and Operators
	2 Accessors
	3 Error Function
	4 Trace Function
	5 Constructor Functions
	6 Functions and Operators on Numerics
	7 Functions on Strings
	8 Functions and Operators for anyURI
	9 Functions and Operators on Boolean Values
	10 Functions and Operators on Durations, Dates, and Times
	11 Functions Related to QNames
	12 Operators on base64Binary and hexBinary
	13 Functions and Operators on NOTATION
	14 Functions and Operators on Nodes
	15 Functions and Operators on Sequences
	16 Context Functions
	17 Casting

	C Built-in Functions and Options
	DataDirect XQuery Built-In Functions
	ddtek:analyze-edi-from-string
	ddtek:analyze-edi-from-url
	ddtek:convert-to-xml
	ddtek:decimal
	ddtek:edi-to-xml-from-string
	ddtek:edi-to-xml-from-url
	ddtek:format-date
	ddtek:format-date-time
	ddtek:format-number
	ddtek:format-time
	ddtek:http-delete
	ddtek:http-get
	ddtek:http-head
	ddtek:http-options
	ddtek:http-post
	ddtek:http-put
	ddtek:http-trace
	ddtek:info
	ddtek:isValid
	ddtek:javaCast
	ddtek:ltrim, ddtek:rtrim, and ddtek:trim
	ddtek:parse
	ddtek:serialize
	ddtek:serialize-to-url
	ddtek:sql-delete
	ddtek:sql-insert
	ddtek:sql-update
	ddtek:validate
	ddtek:validate-and-report
	ddtek:wscall

	HTTP Functions <request> Element
	DataDirect XQuery Options
	Namespaces
	Predefined Namespaces (Not Reserved)
	Predefined Namespaces and Prefixes (Reserved)

	D Serialization Support
	Overview
	Serialization Methods
	Using Standard Support
	Using the DataDirect XML Converters™

	E Database Support
	Supported Databases
	Data Type Mappings
	DB2
	Informix
	MySQL
	Oracle
	PostgreSQL
	Microsoft SQL Server
	Sybase

	Supported XQuery Atomic Types
	Database Connection Properties
	DB2
	Informix
	Microsoft SQL Server
	MySQL Enterprise
	Oracle
	PostgreSQL
	Sybase

	Database-Specific Query Functions
	Querying XML on DB2
	Querying XML on Oracle
	Querying XML on Microsoft SQL Server 2005

	F XUF Support
	2 Extensions to XQuery 1.0
	2.1 Extensions to the Processing Model
	2.2 Extensions to the Prolog
	2.3 Extensions to the Static Context
	2.4 New Kinds of Expressions
	2.5 Extensions to Existing Expressions
	2.6 Extensions to Built-in Function Library

	5 Conformance
	5.2 Optional Features

	G XQJ Support
	Java Package Name
	XQConnection Interface
	XQDataFactory
	XQDataSource Interface
	XQDynamicContext Interface
	XQExpression Interface
	XQItem Interface
	XQItemAccessor Interface
	XQItemType Interface
	XQMetaData Interface
	XQPreparedExpression Interface
	XQResultItem Interface
	XQResultSequence Interface
	XQSequence Interface
	XQSequenceType Interface
	XQStaticContext Interface
	Exception Handling
	Multi-Threading Support
	Accessing XML Results
	DOM
	SAX
	StAX
	Text

	Support of Deferred Binding
	XQuery Types Supported by XQJ get Methods
	Retrieving and Binding XQuery Data Model Instances

	H Examples
	Required Software
	Database
	DataDirect XQuery®

	Configuring Your Environment to Run the Examples
	About the Examples
	Connect
	CustomDocumentURIResolver
	ExternalFunctions
	ExternalVariables
	JNDIDataSource
	RDBMSUpdate
	ResultRetrieval
	UpdateFacility
	XMLQuery
	XQJExecute

	I Troubleshooting
	Logging XQJ Calls with DataDirect Spy™ for XQJ
	Enabling DataDirect Spy™ Logging
	Generating a DataDirect Spy™ Log

	Java Logging
	Resolving fn:collection Errors
	Guidelines for Resolving Errors
	Qualifying Table Names
	Using Catalog and Schema Names
	Using JDBC Connection Names
	Escaping Special Characters
	Verifying Connections
	Checklist
	Querying XML Files in a Directory

	Resolving Static Type Errors
	Types for External Variables
	Types for Initial Context Items
	Union Types
	Types for Sorting
	Static Typing Extensions

	Index

