
SequeLink®

Developer’s Reference 

Release 6.0
April 2008



© 2008 Progress Software Corporation. All rights reserved. Printed in the U.S.A.

DataDirect, DataDirect Connect, DataDirect Connect64, DataDirect Spy, DataDirect Test, DataDirect XML Converters, 
DataDirect XQuery, OpenAccess, SequeLink, Stylus Studio, and SupportLink are trademarks or registered trademarks 
of Progress Software Corporation or one of its subsidiaries or affiliates in the United States and other countries. Java 
and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the 
United States and other countries. MySQL and MySQL Enterprise are registered trademarks of MySQL AB in the 
United States, the European Union and other countries.

Other company or product names mentioned herein may be trademarks or registered trademarks of their respective 
companies.

DataDirect products for the Microsoft SQL Server database:

These products contain a licensed implementation of the Microsoft TDS Protocol.

DataDirect Connect for ODBC, DataDirect Connect64 for ODBC, and DataDirect SequeLink include:

ICU Copyright © 1995-2003 International Business Machines Corporation and others. All rights reserved. Permission 
is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation 
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, 
copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all 
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting 
documentation.

Software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http:/www.openssl.org/). Copyright © 
1998-2006 The OpenSSL Project. All rights reserved. And Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All 
rights reserved.

DataDirect SequeLink includes:

Portions created by Eric Young are Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All Rights Reserved. 
OpenLDAP, Copyright © 1999-2003 The OpenLDAP Foundation, Redwood City, California, US. All rights reserved. 

DataDirect OpenAccess SDK client for ODBC, DataDirect OpenAccess SDK client for ADO, DataDirect Open Access 
SDK client for JDBC and DataDirect OpenAccess SDK server include DataDirect SequeLink.

No part of this publication, with the exception of the software product user documentation contained in electronic 
format, may be copied, photocopied, reproduced, transmitted, transcribed, or reduced to any electronic medium or 
machine-readable form without prior written consent of DataDirect Technologies.

Licensees may duplicate the software product user documentation contained on a CD-ROM or DVD, but only to the 
extent necessary to support the users authorized access to the software under the license agreement. Any 
reproduction of the documentation, regardless of whether the documentation is reproduced in whole or in part, 
must be accompanied by this copyright statement in its entirety, without modification. 



3

Table of Contents

List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

What Is DataDirect SequeLink®? . . . . . . . . . . . . . . . . . . . . . . . . 19

Using This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Other SequeLink® Documentation . . . . . . . . . . . . . . . . . . . . . . 22
HTML Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
 PDF Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Typographical Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Environment-Specific Information . . . . . . . . . . . . . . . . . . . . . . 26

Contacting Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Part 1: Developing ODBC Applications

1 Using the ODBC Client  . . . . . . . . . . . . . . . . . . . . . . . 31

About the ODBC Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Using the ODBC Administrator. . . . . . . . . . . . . . . . . . . . . . . . . 32

Configuring ODBC Client Data Sources on Windows . . . . . . . 33
Configuring ODBC User and System Client Data 
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Configuring ODBC File Client Data Sources . . . . . . . . . . . . 42
ODBC Connection Dialogs. . . . . . . . . . . . . . . . . . . . . . . . . . 46
Testing ODBC Connections on Windows . . . . . . . . . . . . . . 52

Configuring ODBC Client Data Sources on Linux and 
UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Configuring the System Information File. . . . . . . . . . . . . . 53
Example: odbc.ini for Solaris. . . . . . . . . . . . . . . . . . . . . . . . 54
SequeLink Developer’s Reference



4 Table of Contents
Example: odbc64.ini for Solaris . . . . . . . . . . . . . . . . . . . . . 54
Setting Environment Variables  . . . . . . . . . . . . . . . . . . . . . 55
Using a Centralized System Information File . . . . . . . . . . 56

Connecting Using a Connection String . . . . . . . . . . . . . . . . . . 57
DSN-less Connections in Linux and UNIX  . . . . . . . . . . . . . 58

ODBC Connection Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . 60

Configuring Connection Failover  . . . . . . . . . . . . . . . . . . . . . . 76
Connection Failover Properties . . . . . . . . . . . . . . . . . . . . . 79

Using Client Load Balancing  . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Using Connection Retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2 Developing ODBC Applications  . . . . . . . . . . . . . . . . 83

Required ODBC Libraries and Header Files. . . . . . . . . . . . . . . 84

Compiler Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ODBC API Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Binding SQL Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Support for Unicode ODBC W (Wide) Function Calls . . . . 89

SQL Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Data Types and Isolation Levels. . . . . . . . . . . . . . . . . . . . . . . . 91

Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Threading Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Cancelling Functions in Multithreaded Applications . . . . 92

Using Scrollable Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Static and Keyset-Driven Cursors . . . . . . . . . . . . . . . . . . . . 93
Using Static Scrollable Cursors . . . . . . . . . . . . . . . . . . . . . . 94
Using Keyset-Driven Scrollable Cursors . . . . . . . . . . . . . . . 95

Using Stored Procedures with Oracle . . . . . . . . . . . . . . . . . . . 95

Specifying Application IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Specifying Application IDs Explicitly . . . . . . . . . . . . . . . . . 99
Generating Application IDs Automatically . . . . . . . . . . . . 100
SequeLink Developer’s Reference  



Table of Contents 5
Sending Arrays of Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . 101

Persisting a Result Set as an XML Data File . . . . . . . . . . . . . . . 101

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SequeLink® for ODBC Driver Errors. . . . . . . . . . . . . . . . . . . 103
SequeLink® Client Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SequeLink® Server Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Database Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Developing Performance-Optimized ODBC Applications . . . . 105
Catalog Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Retrieving Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Selecting ODBC Function. . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Managing Connections and Updates . . . . . . . . . . . . . . . . . 120

Part 2: Developing ADO Applications

3 Using the ADO Client  . . . . . . . . . . . . . . . . . . . . . . . . 127

About the ADO Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Using the DataDirect Configuration Manager  . . . . . . . . . . . . 128
Working with the DataDirect Configuration Manager. . . 130
Displaying Data Source Properties . . . . . . . . . . . . . . . . . . . 131

Configuring ADO Client Data Sources . . . . . . . . . . . . . . . . . . . 133
Creating an ADO Client Data Source . . . . . . . . . . . . . . . . . 133
Modifying an ADO Client Data Source. . . . . . . . . . . . . . . . 140
Renaming an ADO Client Data Source . . . . . . . . . . . . . . . . 141
Deleting an ADO Client Data Source . . . . . . . . . . . . . . . . . 141
Copying an ADO Client Data Source  . . . . . . . . . . . . . . . . . 142
Changing Data Source Directories . . . . . . . . . . . . . . . . . . . 143
Defining Default Setup Options . . . . . . . . . . . . . . . . . . . . . 143

Connecting to an ADO Client . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Testing ADO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 147
ADO Connection Dialogs. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Connecting with a Provider String . . . . . . . . . . . . . . . . . . . 155
ADO Connection Attributes  . . . . . . . . . . . . . . . . . . . . . . . . 156
SequeLink Developer’s Reference



6 Table of Contents
Configuring Connection Failover  . . . . . . . . . . . . . . . . . . . . . . 164
Connection Failover Properties . . . . . . . . . . . . . . . . . . . . . 167

Using Client Load Balancing  . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Using Connection Retry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4 Developing ADO Applications . . . . . . . . . . . . . . . . . 171

OLE DB Objects and Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . 172

Supported Schema Rowsets. . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Supported OLE DB Property Groups . . . . . . . . . . . . . . . . . . . . 175
Data Source Property Group . . . . . . . . . . . . . . . . . . . . . . . 176
Data Source Information Property Group. . . . . . . . . . . . . 176
Initialization Property Group. . . . . . . . . . . . . . . . . . . . . . . 182
Rowset Property Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Session Property Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

OLE DB Interfaces Supported in ADO . . . . . . . . . . . . . . . . . . . 188

Mapping ADO Methods and Properties . . . . . . . . . . . . . . . . . 190
ADO Command Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Connection Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Recordset Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Data Shaping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Persisting Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Using Rowsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Mapping Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Specifying Application IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Specifying Application IDs Explicitly . . . . . . . . . . . . . . . . . 208
Generating Application IDs Automatically . . . . . . . . . . . . 209

Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
SequeLink® for ADO Provider Errors . . . . . . . . . . . . . . . . . 210
SequeLink® Client Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . 210
SequeLink® Server Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Database Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
SequeLink Developer’s Reference  



Table of Contents 7
Part 3: Developing JDBC Applications

5 Using the JDBC Client . . . . . . . . . . . . . . . . . . . . . . . . 215

About the JDBC Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
JDBC Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
SequeLink® Proxy Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
DataDirect Spy™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
DataDirect Test™. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
DataDirect Connection Pool Manager . . . . . . . . . . . . . . . . 218
J2EE Connector Architecture (JCA) Resource Adapter  . . . 219
JDBC Client Directory Structure  . . . . . . . . . . . . . . . . . . . . . 220

Registering the JDBC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Specifying JDBC Driver Connection URLs . . . . . . . . . . . . . . . . . 224

Configuring JDBC Data Sources . . . . . . . . . . . . . . . . . . . . . . . . 225
Creating and Managing JDBC Data Sources  . . . . . . . . . . . 226
Calling a Data Source in an Application. . . . . . . . . . . . . . . 227
Using JNDI for Naming Databases  . . . . . . . . . . . . . . . . . . . 228
Using Connection Pooling. . . . . . . . . . . . . . . . . . . . . . . . . . 229

Using the Java Transaction API . . . . . . . . . . . . . . . . . . . . . . . . . 231

J2EE Connector Architecture Resource Adapter . . . . . . . . . . . 232
Using the Resource Adapter with an Application 
Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Using the Resource Adapter from an Application. . . . . . . 233

Specifying Connection Properties. . . . . . . . . . . . . . . . . . . . . . . 235
Using Connection URLs or the JDBC Driver Manager . . . . 236
Using JDBC Data Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . 236

JDBC Connection Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Configuring Connection Failover . . . . . . . . . . . . . . . . . . . . . . . 254

Using Client Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Using Connection Retry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
SequeLink Developer’s Reference



8 Table of Contents
Testing JDBC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Using the JDBC Client on a Java 2 Platform . . . . . . . . . . . . . . 259

6 Using DataDirect Test™  . . . . . . . . . . . . . . . . . . . . . . . 263

DataDirect Test™ Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Configuring DataDirect Test™  . . . . . . . . . . . . . . . . . . . . . . 264
Starting DataDirect Test™  . . . . . . . . . . . . . . . . . . . . . . . . . 265
Connecting Using DataDirect Test™  . . . . . . . . . . . . . . . . . 267
Executing a Simple Select Statement  . . . . . . . . . . . . . . . . 272
Executing a Prepared Statement. . . . . . . . . . . . . . . . . . . . 274
Retrieving Database Metadata . . . . . . . . . . . . . . . . . . . . . 278
Scrolling Through a Result Set. . . . . . . . . . . . . . . . . . . . . . 281
Batch Execution on a Prepared Statement . . . . . . . . . . . . 284
Returning ParameterMetaData. . . . . . . . . . . . . . . . . . . . . 288
Establishing Savepoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Updatable Result Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
LOB Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

7 Tracking JDBC Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . 315

About DataDirect Spy™. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Enabling DataDirect Spy™  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Using the JDBC Driver Manager  . . . . . . . . . . . . . . . . . . . . 317
Using JDBC Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Using the DataDirect Spy™ URL . . . . . . . . . . . . . . . . . . . . . 320

Registering the DataDirect Spy™ JDBC Driver . . . . . . . . . . . . . 322
DataDirect Spy™ Attributes  . . . . . . . . . . . . . . . . . . . . . . . . 323

Using DataDirect Spy™ with JDBC Data Sources . . . . . . . . . . . 324

Checking the DataDirect Spy™ Version . . . . . . . . . . . . . . . . . . 325
SequeLink Developer’s Reference  



Table of Contents 9
8 Developing JDBC Applications . . . . . . . . . . . . . . . . . 327

JDBC 3.0 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

JCA Resource Adapter Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

SQL Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Binding SQL Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Data Types and Isolation Levels  . . . . . . . . . . . . . . . . . . . . . . . . 331

Threading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Threading Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Cancelling Functions in Multithreaded Applications  . . . . 332

Using Scrollable Cursors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Result Set Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Concurrency Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Using Scrollable Cursors  . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Specifying Application IDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Parameter Metadata Support. . . . . . . . . . . . . . . . . . . . . . . . . . 337
INSERT and UPDATE Statements . . . . . . . . . . . . . . . . . . . . . 337
Select Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

ResultSet Metadata Support. . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Unicode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Rowset Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Driver Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
SequeLink® Server Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Database Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Fine-Tuning JDBC Application Performance  . . . . . . . . . . . . . . 344
Reducing Download Time . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Fetching BigDecimal Objects. . . . . . . . . . . . . . . . . . . . . . . . 346
Using Database Metadata Methods . . . . . . . . . . . . . . . . . . 346
Retrieving Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Selecting JDBC Objects and Methods . . . . . . . . . . . . . . . . . 351
Using get Methods Effectively  . . . . . . . . . . . . . . . . . . . . . . 354
SequeLink Developer’s Reference



10 Table of Contents
Designing JDBC Applications . . . . . . . . . . . . . . . . . . . . . . . 355
Updating Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Part 4: Developing .NET Applications

9 Using the .NET Client  . . . . . . . . . . . . . . . . . . . . . . . . 363

About the .NET Client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Using Connection Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Creating a Connection Pool . . . . . . . . . . . . . . . . . . . . . . . . 364
Adding Connections to a Pool . . . . . . . . . . . . . . . . . . . . . . 365
Removing Connections from a Pool  . . . . . . . . . . . . . . . . . 366
Handling Dead Connection in a Pool  . . . . . . . . . . . . . . . . 367
Handling Distributed Transactions in a Pool. . . . . . . . . . . 368
Tracking Connection Pool Performance . . . . . . . . . . . . . . 369

Specifying Connection Options . . . . . . . . . . . . . . . . . . . . . . . . 369

Using Connection Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Client Load Balancing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Using .NET Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Assemblies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Parameter Markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Parameter Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Transaction Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Using Local Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Using Distributed Transactions  . . . . . . . . . . . . . . . . . . . . . 381

Connecting to a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
SequeLink Developer’s Reference  



Table of Contents 11
10 Developing .NET Applications  . . . . . . . . . . . . . . . . . 389

Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Mapping Parameter Data Types . . . . . . . . . . . . . . . . . . . . . 392

Isolation Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Threading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Event Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

.NET Public Objects/Interfaces Supported  . . . . . . . . . . . . . . . . 396
SequeLinkCommand Object . . . . . . . . . . . . . . . . . . . . . . . . 397
SequeLinkCommandBuilder Object . . . . . . . . . . . . . . . . . . 398
SequeLinkConnection Object . . . . . . . . . . . . . . . . . . . . . . . 399
SequeLinkDataAdapter Object . . . . . . . . . . . . . . . . . . . . . . 400
SequeLinkDataReader Object . . . . . . . . . . . . . . . . . . . . . . . 401
SequeLinkError Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
SequeLinkErrorCollection Object . . . . . . . . . . . . . . . . . . . . 401
SequeLinkException Object. . . . . . . . . . . . . . . . . . . . . . . . . 402
SequeLinkInfoMessageEventArgs Object. . . . . . . . . . . . . . 402
SequeLinkParameter Object . . . . . . . . . . . . . . . . . . . . . . . . 403
SequeLinkTrace Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
SequeLinkTransaction Object . . . . . . . . . . . . . . . . . . . . . . . 405

Setting .NET Security Permissions . . . . . . . . . . . . . . . . . . . . . . . 405
Code Access Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Security Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
.NET Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
ADO.NET Data Provider Errors . . . . . . . . . . . . . . . . . . . . . . 407
SequeLink® Server Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Database Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Diagnostic Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Tracing Method Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
PerfMon Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
SequeLink Developer’s Reference



12 Table of Contents
Designing .NET Applications for Performance . . . . . . . . . . . . 412
Selecting .NET Objects and Methods. . . . . . . . . . . . . . . . . 412
Designing .NET Applications . . . . . . . . . . . . . . . . . . . . . . . 416
Retrieving Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Updating Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

For More Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Part 5: Reference

A SQL Escape Sequences  . . . . . . . . . . . . . . . . . . . . . . . 431

Date, Time, and Timestamp Escape Sequences  . . . . . . . . . . . 432

Scalar Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
String Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Numeric Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Date and Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 444
System Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Like Predicate Escape Characters. . . . . . . . . . . . . . . . . . . . . . . 447

Outer Join Escape Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . 448

Procedure Call Escape Sequences  . . . . . . . . . . . . . . . . . . . . . . 449

Procedure Call Escape Sequences  . . . . . . . . . . . . . . . . . . . . . . 449

B Data Types and Isolation Levels . . . . . . . . . . . . . . . . 451

Supported Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
DB2 UDB on z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
DB2 UDB on Linux, UNIX, and Windows  . . . . . . . . . . . . . 456
Informix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Microsoft SQL Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Oracle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Sybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
Using Snapshot Isolation Level (Microsoft 
SQL Server 2005 Only)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
SequeLink Developer’s Reference  



Table of Contents 13
C JDBC Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

JDBC Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Supported Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

D JDBC Connection Pool Manager . . . . . . . . . . . . . . . . 541

Creating a Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Creating a DataDirect SequeLink® Data Source Object . . . 542
Creating a Data Source Using the DataDirect® 
Connection Pool Manager  . . . . . . . . . . . . . . . . . . . . . . . . . 544

Connecting to a Data Source  . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Closing the Connection Pool. . . . . . . . . . . . . . . . . . . . . . . . . . . 550

E Troubleshooting Using DataDirect Spy™  . . . . . . . . . 551

Generating a DataDirect Spy™ Log  . . . . . . . . . . . . . . . . . . . . . 551
Turning On and Off DataDirect Spy™ Logging. . . . . . . . . . 551
ExtLogControl Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
DataDirect Spy™ Log Example . . . . . . . . . . . . . . . . . . . . . . . 553

F Developing ODBC Applications for 
Internationalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Unicode and Non-Unicode ODBC Drivers. . . . . . . . . . . . . . . . . 559
Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Developing ODBC Applications on Linux/UNIX . . . . . . . . . . . . 565
Using Double-Byte Character Sets on Linux/UNIX . . . . . . . 565
Using UTF-16 for your Applications on Linux/UNIX. . . . . . 566

The Driver Manager on Linux/UNIX . . . . . . . . . . . . . . . . . . . . . 567
SequeLink Developer’s Reference



14 Table of Contents
Values for IANAAppCodePage Connection String 
Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Solaris  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
HP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
AIX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

G .NET Code Examples  . . . . . . . . . . . . . . . . . . . . . . . . . 577

Sample Tables Used in the Code Examples . . . . . . . . . . . . . . . 577
Sample Tables for Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Sample Tables for Sybase . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Retrieving Data Using a DataReader  . . . . . . . . . . . . . . . . . . . 580

Using a Local Transaction With a DataReader . . . . . . . . . . . . 582

Using a Distributed Transaction . . . . . . . . . . . . . . . . . . . . . . . 583

Using the CommandBuilder. . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Retrieving a Result Set Using a DataAdapter Object . . . . . . . 587

Limiting the Rows Returned by a Select Statement. . . . . . . . 588

Updating Data in a DataSet. . . . . . . . . . . . . . . . . . . . . . . . . . . 589

Calling a Stored Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Retrieving Warning Information. . . . . . . . . . . . . . . . . . . . . . . 593

Retrieving a Scalar Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
SequeLink Developer’s Reference  



15
List of Tables

Table 1-1. ODBC Connection Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 1-2. Summary: Connection Failover Attributes for the ODBC Driver . . . . 79

Table 2-1. Sources for Required ODBC Development Tools. . . . . . . . . . . . . . . . . 84

Table 2-2. Compiler Requirements for Windows . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 2-3. Compiler Requirements for Linux and UNIX . . . . . . . . . . . . . . . . . . . . 85

Table 2-4. Function Conformance for 2.x ODBC Application  . . . . . . . . . . . . . . . 86

Table 2-5. Function Conformance for 3.x ODBC Applications. . . . . . . . . . . . . . . 87

Table 2-6. Support for Unicode ODBC W (Wide) Function Calls . . . . . . . . . . . . . 90

Table 2-7. Using SQLCancel in Multithreaded Applications  . . . . . . . . . . . . . . . . 92

Table 2-8. Support for Keyset-Driven Cursors (ODBC) . . . . . . . . . . . . . . . . . . . . . 93

Table 3-1. DataDirect Technologies Configuration Manager: Parts and 
Functions for ADO Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Table 3-2. ADO Connection Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Table 3-3. Summary: Connection Failover Properties for the ADO Data 
Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Table 4-1. Objects and Interfaces Supported by the ADO Data Provider . . . . . . 172

Table 4-2. OLE DB Schema Rowsets Supported by the ADO Data Provider . . . . 174

Table 4-3. OLE DB Property Groups Supported by the ADO Provider  . . . . . . . . 175

Table 4-4. OLE DB Data Source Property Supported by the ADO Data 
Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Table 4-5. OLE DB Data Source Information Properties Supported by the 
ADO Data Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Table 4-6. Initialization Properties Supported by the ADO Data Provider . . . . 182

Table 4-7. Rowset Properties Supported by the ADO Data Provider  . . . . . . . . . 184
SequeLink Developer’s Reference



16 List of Tables
Table 4-8. Session Properties Supported by the ADO Data Provider . . . . . . . . . 188

Table 4-9. Supported OLE DB Interfaces Used by ADO. . . . . . . . . . . . . . . . . . . . 188

Table 4-10. Dynamic Properties Used for the ADO Command Object. . . . . . . . . 190

Table 4-11. Mapping Methods Supported by the ADO Connection Object . . . . 193

Table 4-12. Dynamic Properties Supported for the ADO Connection Object . . . 194

Table 4-13. Mapping Methods Supported by the Recordset Object  . . . . . . . . . 201

Table 4-14. Dynamic Properties Used for the Recordset Object. . . . . . . . . . . . . . 203

Table 5-1. JDBC Client Directory and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Table 5-2. Support for the Java Transaction API (JTA) by the JDBC Client  . . . . 231

Table 5-3. JDBC Connection Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Table 8-1. Supported JDBC Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Table 8-2. Using Cancel in Multithreaded JDBC Applications  . . . . . . . . . . . . . . 332

Table 8-3. Support for Scroll-Sensitive Cursors (JDBC)  . . . . . . . . . . . . . . . . . . . . 334

Table 9-1. .NET Connection String Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Table 10-1. Mapping of SequeLink Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Table 10-2. Mapping of the System.Data.DbTypes to SequeLinkDbTypes  . . . . . 392

Table 10-3. Mapping .NET Framework Data Types to SequeLinkDbTypes  . . . . . 394

Table 10-4. Properties of the SequeLinkCommand Object. . . . . . . . . . . . . . . . . . 397

Table 10-5. Properties of the SequeLinkCommandBuilder Object. . . . . . . . . . . . 399

Table 10-6. Properties of the SequeLinkConnection Object. . . . . . . . . . . . . . . . . 400

Table 10-7. Properties of the SequeLinkParameter Object  . . . . . . . . . . . . . . . . . 403

Table 10-8. Properties of the SequeLinkTrace Object. . . . . . . . . . . . . . . . . . . . . . 404

Table 10-9. Methods of the SequeLinkTransaction Object. . . . . . . . . . . . . . . . . . 405

Table 10-10. PerfMon Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Table A-1. Language Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Table A-2. Scalar Functions Supported on DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . 433
SequeLink Developer’s Reference



List of Tables 17
Table A-3. Scalar Functions Supported on Informix . . . . . . . . . . . . . . . . . . . . . . . 435

Table A-4. Scalar Functions Supported on Microsoft SQL Server. . . . . . . . . . . . . 436

Table A-5. Scalar Functions Supported on Oracle. . . . . . . . . . . . . . . . . . . . . . . . . 437

Table A-6. Scalar Functions Supported on Sybase . . . . . . . . . . . . . . . . . . . . . . . . 438

Table A-7. Scalar String Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Table A-8. Scalar Numeric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Table A-9. Scalar Time and Date Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Table A-10. Scalar System Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Table A-11. Outer Join Escape Sequences Supported. . . . . . . . . . . . . . . . . . . . . . . 448

Table B-1. Mapping Data Types for DB2 UDB on z/OS to ODBC Data Types. . . . 452

Table B-2. Mapping Data Types for DB2 UDB for z/OS to ADO Data Types . . . . 453

Table B-3. Mapping Data Types for DB2 UDB on z/OS to JDBC Data Types  . . . . 454

Table B-4. Mapping Data Types for DB2 UDB on z/OS to .NET Data Types. . . . . 455

Table B-5. Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to 
ODBC Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Table B-6. Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to 
ADO Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Table B-7. Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to 
JDBC Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Table B-8. Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to 
.NET Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Table B-9. Mapping Informix Data Types to ODBC Data Types . . . . . . . . . . . . . . 462

Table B-10. Mapping the Informix Data Types to ADO Data Types. . . . . . . . . . . . 463

Table B-11. Mapping Informix Data Types to JDBC Data Types. . . . . . . . . . . . . . . 464

Table B-12. Mapping Informix Data Types to .NET Data Types . . . . . . . . . . . . . . . 465

Table B-13. Mapping Data Types for Microsoft SQL Server to ODBC Data 
Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
SequeLink Developer’s Reference



18 List of Tables
Table B-14. Mapping Microsoft SQL Server Data Types to ADO Data Types . . . . 468

Table B-15. Mapping Microsoft SQL Server Data Types to JDBC Data Types. . . . 470

Table B-16. Mapping Microsoft SQL Server Data Types to .NET Framework 
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Table B-17. Mapping the Oracle Data Types to ODBC Data Types. . . . . . . . . . . . 473

Table B-18. Mapping the Data Types for Oracle to ADO Data Types. . . . . . . . . . 475

Table B-19. Mapping the Data Types for Oracle to JDBC Data Types  . . . . . . . . . 477

Table B-20. Mapping Oracle Data Types to .NET Framework Types. . . . . . . . . . . 478

Table B-21. Mapping the Data Types for Sybase to ODBC Data Types  . . . . . . . . 480

Table B-22. Mapping the Data Types for Sybase to ADO Data Types . . . . . . . . . 481

Table B-23. Mapping the Data Types for Sybase to JDBC Data Types . . . . . . . . . 483

Table B-24. Mapping Data Types for Sybase Data Types to .NET  Framework 
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Table B-25. Isolation Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Table F-1. IANAAppCodePage Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

Table F-2. Code Pages Supported on Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Table F-3. Code Pages Supported on HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

Table F-4. Code Pages Supported on AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Table F-5. Code Pages Supported on Linux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

Table F-6. Code Pages Supported on Windows  . . . . . . . . . . . . . . . . . . . . . . . . . 576
SequeLink Developer’s Reference



19
Preface

This book is your guide to developing client applications for 
DataDirect SequeLink® 6.0 from DataDirect Technologies. Read 
on to find out more about developing client applications to run 
in a SequeLink environment and how to use this book.

What Is DataDirect SequeLink®?
DataDirect SequeLink is a middleware product that provides 
point-to-point connections from a client to a server for the latest 
data access standards, including Open Database Connectivity 
(ODBC), JDBC, ActiveX Data Objects (ADO), and ADO.NET. 

In this documentation, references to SequeLink Server and 
SequeLink Client apply to both the 32-bit and 64-bit versions. 
Information that applies to a specific version of SequeLink Server 
or SequeLink Client is identified. 

Using This Book
This book assumes that you are familiar with your operating 
system and its commands; the definition of directories; and 
accessing a database through an end-user application.
SequeLink Developer’s Reference



20   Preface  
This book contains the following information:

Part 1: Developing ODBC Applications

■ Chapter 1 “Using the ODBC Client” on page 31 provides 
information about using ODBC applications with the 
SequeLink Client for ODBC.

■ Chapter 2 “Developing ODBC Applications” on page 83 
provides information about developing ODBC applications for 
SequeLink environments.

Part 2: Developing ADO Applications

■ Chapter 3 “Using the ADO Client” on page 127 provides 
information about using ADO applications with the 
SequeLink Client for ADO.

■ Chapter 4 “Developing ADO Applications” on page 171 
provides information about developing ADO applications for 
SequeLink environments.

Part 3: Developing JDBC Applications

■ Chapter 5 “Using the JDBC Client” on page 215 provides 
information about using JDBC applications with the 
SequeLink Client for JDBC.

■ Chapter 6 “Using DataDirect Test™” on page 263 introduces 
DataDirect Test for JDBC, a development software component 
that allows you to test and learn the JDBC API. It also contains 
a tutorial that takes you through a working example of its 
use.

■ Chapter 7 “Tracking JDBC Calls” on page 315 introduces 
DataDirect Spy for JDBC, a development software component 
that allows you to track JDBC calls, and describes how to use 
it.

■ Chapter 8 “Developing JDBC Applications” on page 327 
provides information about developing JDBC applications for 
SequeLink environments.
SequeLink Developer’s Reference



Using This Book 21
Part 4: Developing .NET Applications

■ Chapter 9 “Using the .NET Client” on page 363 provides 
information about using .NET applications with the 
SequeLink Client for .NET.

■ Chapter 10 “Developing .NET Applications” on page 389 
provides information about developing .NET applications for 
SequeLink environments.

Part 5: Appendixes

■ Appendix A, “SQL Escape Sequences,” on page 431 describes 
the scalar functions supported for SequeLink. Your data store 
may not support all these functions.

■ Appendix B, “Data Types and Isolation Levels,” on page 451 
lists the data types and isolation levels supported for each 
data store supported by SequeLink.

■ Appendix C, “JDBC Support,” on page 489 provides 
information about JDBC compatibility and developing JDBC 
applications for SequeLink environments.

■ Appendix D, “JDBC Connection Pool Manager,” on page 541 
provides sample code as an example of using the DataDirect 
Connection Pool Manager to allow your applications to 
handle connection pooling.

■ Appendix E, “Troubleshooting Using DataDirect Spy™,” on 
page 551 provides information to help you troubleshoot 
ODBC applications.

■ Appendix F, “Developing ODBC Applications for 
Internationalization,” on page 557 provides an overview of 
how to design your applications for internationalization, and 
provides the valid values for the IANAAppCodePage 
connection string attribute.

■ Appendix G, “.NET Code Examples,” on page 577 provides 
code examples of typical database access tasks in ADO.NET. 
All of the examples are written in C#. 
SequeLink Developer’s Reference



22   Preface  
NOTE: This book refers the reader to Web URLs for more 
information about specific topics, including Web URLs not 
maintained by DataDirect Technologies. Because it is the nature 
of Web content to change frequently, DataDirect Technologies 
can guarantee only that the URLs referenced in this book were 
correct at the time of publishing.

Other SequeLink® Documentation
The following table provides a guide for finding information in 
your SequeLink documentation: 

HTML Version

All of these books can be placed on your system as HTML-based 
online help during a normal installation of the product. They are 
located in the help subdirectory of the product installation 

For information about... Go to...

SequeLink concepts and 
planning your SequeLink 
environment

Getting Started with SequeLink

Installing the SequeLink 
middleware components

SequeLink Installation Guide

Administering your 
SequeLink environment

SequeLink Administrator’s Guide

Developing ODBC, ADO, 
JDBC, and .NET 
applications for the 
SequeLink environment

SequeLink Developer’s Reference

Troubleshooting and 
referencing error 
messages

SequeLink Troubleshooting Guide 
and Reference
SequeLink Developer’s Reference



Other SequeLink® Documentation 23
directory. To use the help, you must have one of the following 
browsers installed:

■ Internet Explorer 5.x or higher
■ Netscape 4.x, 6.1, or higher
■ FireFox 1.0 or higher

If you choose to install the online books, you can access the 
entire help system by selecting the help icon that appears in the 
DataDirect program group.

On UNIX and Linux platforms, if you want the help files, copy the 
/bookshtml subdirectory from the product DVD to a local 
directory.

To open the help system from a command-line environment, at a 
command prompt, enter:

browser_exe my_local_dir/bookshtml/help.htm

where browser_exe is the name of your browser executable and 
my_local_dir is the path to the product installation directory.

After the browser opens, the left pane displays the Table of 
Contents, Index, and Search tabs for the entire documentation 
library. When you have opened the main screen of the help 
system in your browser, you can bookmark it in the browser for 
quick access later.

NOTE: Security features set in your browser can prevent the help 
system from launching. A security warning message is displayed. 
Often, the warning message provides instructions for unblocking 
the help system for the current session. To allow the help system 
to launch without encountering a security warning message, the 
security settings in your browser can be modified. Check with 
your system administrator before disabling any security features.

Help is available from the setup dialog box for the ODBC driver 
and ADO data provider. When you click Help, your browser 
opens to the correct topic in the help system, without opening 
SequeLink Developer’s Reference



24   Preface  
the help Table of Contents. A grey toolbar appears at the top of 
the browser window.

This tool bar contains previous and next navigation buttons.

 PDF Version

DataDirect product documentation is also provided in PDF 
format, which allows you to view it, perform text searches, or 
print it. You can view the PDF documentation using the Adobe 
Acrobat Reader. The PDF documentation is available on the 
product DVD and also on the DataDirect Technologies Web site:

http://www.datadirect.com/support/product_info/proddoc_produ
ct/index.ssp

You can download the entire library in a compressed file. When 
you uncompress the file, it appears in the correct directory 
structure.

If you want to copy the documentation library from the product 
DVD, you must maintain the same directory structure that is on 
the DVD.

■ To copy all product books, copy the entire \bookspdf directory 
to your local or network drive. 

■ To copy a specific book, copy that book’s directory structure 
(beneath the \bookspdf subdirectory) to your local or network 
drive. For example, to copy the SequeLink Administrator’s 
Guide, you would copy the entire \admin subdirectory:

\bookspdf\admin

Maintaining the correct directory structure allows cross-book text 
searches and cross-references. If you download or copy the books 
SequeLink Developer’s Reference

http://www.datadirect.com/support/product_info/proddoc_product/index.ssp


Typographical Conventions 25
individually outside of their normal directory structure, their 
cross-book search indexes and hyperlinked cross-references to 
other volumes will not work. You can view a book individually, 
but it will not automatically open other books to which it has 
cross-references. 

To help you navigate through the library, a file, called books.pdf, 
is provided. This file lists each online book provided for the 
product. We recommend that you open this file first and, from 
this file, open the book you want to view.

Typographical Conventions
This section uses the following typographical conventions:

Convention Explanation

italics Introduces new terms that you may not be 
familiar with, and is used occasionally for 
emphasis.

bold Emphasizes important information. Also 
indicates button, menu, and icon names on 
which you can act. For example, click Next.

UPPERCASE Indicates keys or key combinations that you 
can use. For example, press the ENTER key.

monospace Indicates syntax examples, values that you 
specify, or results that you receive.

monospaced 
italics

Indicates names that are placeholders for 
values you specify; for example, filename.

forward slash / Separates menus and their associated 
commands. For example, Select File / Copy 
means to select Copy from the File menu.

vertical rule | Indicates an OR separator to delineate items.
SequeLink Developer’s Reference



26   Preface  
Environment-Specific Information
This book supports users of various operating environments. 
Where it provides information that does not apply to all 
supported environments, the following symbols are used to 
identify that information.

brackets [ ] Indicates optional items. For example, in the 
following statement: SELECT [DISTINCT], 
DISTINCT is an optional keyword.

braces { } Indicates that you must select one item. For 
example, {yes | no} means you must specify 
either yes or no.

ellipsis . . . Indicates that the immediately preceding item 
can be repeated any number of times in 
succession. An ellipsis following a closing 
bracket indicates that all information in that 
unit can be repeated.

Convention Explanation

Symbol Environment

Windows. Information specific to the Microsoft 
Windows 2000, Windows Server 2003, Windows XP, 
and Windows Vista environments is identified by the 
Windows symbol.

Linux and UNIX. Information specific to Linux and 
UNIX 32-bit and 64-bit environments is identified by 
this symbol, which applies to all supported Linux and 
UNIX environments. UNIX is a registered trademark 
of The Open Group in the United States and other 
countries.

z/OS. Information specific to z/OS environments is 
identified by the characters z/OS.z/OS
SequeLink Developer’s Reference



Contacting Technical Support 27
Contacting Technical Support
DataDirect Technologies offers a variety of options to meet your 
technical support needs. Please visit our Web site for more 
details and for contact information:

http://support.datadirect.com

The DataDirect Technologies Web site provides the latest 
support information through our global service network. The 
SupportLink program provides access to support contact details, 
tools, patches, and valuable information, including a list of FAQs 
for each product. In addition, you can search our 
Knowledgebase for technical bulletins and other information.

To obtain technical support for an evaluation copy of the 
product, go to:

http://www.datadirect.com/support/eval_help/index.ssp

or contact your sales representative.

When you contact us for assistance, please provide the following 
information:

■ The serial number that corresponds to the product for which 
you are seeking support, or a case number if you have been 
provided one for your issue. If you do not have a SupportLink 
contract, the SupportLink representative assisting you will 
connect you with our Sales team.

■ Your name, phone number, email address, and organization. 
For a first-time call, you may be asked for full customer 
information, including location.

■ The DataDirect product and the version that you are using.

■ The type and version of the operating system where you 
have installed your DataDirect product.
SequeLink Developer’s Reference

http://support.datadirect.com
http://www.datadirect.com/support/eval_help/index.ssp


28   Preface  
■ Any database, database version, third-party software, or 
other environment information required to understand the 
problem.

■ A brief description of the problem, including, but not limited 
to, any error messages you have received, what steps you 
followed prior to the initial occurrence of the problem, any 
trace logs capturing the issue, and so on. Depending on the 
complexity of the problem, you may be asked to submit an 
example or reproducible application so that the issue can be 
recreated.

■ A description of what you have attempted to resolve the 
issue. If you have researched your issue on Web search 
engines, our Knowledgebase, or have tested additional 
configurations, applications, or other vendor products, you 
will want to carefully note everything you have already 
attempted.

■ A simple assessment of how the severity of the issue is 
impacting your organization.

   
SequeLink Developer’s Reference



29
Part 1: Developing ODBC 
Applications

This part contains the following chapters:

■ Chapter 1 “Using the ODBC Client” on page 31 provides 
information about using ODBC applications with the 
SequeLink Client for ODBC.

■ Chapter 2 “Developing ODBC Applications” on page 83 
provides information about developing ODBC applications 
for SequeLink environments.
SequeLink Developer’s Reference



30   Part 1: Developing ODBC Applications  
SequeLink Developer’s Reference



31
1 Using the ODBC Client

This chapter provides information about using ODBC 
applications with the SequeLink Client for ODBC (the ODBC 
Client). 

About the ODBC Client
The ODBC Client supports ODBC applications through a 
component called the SequeLink for ODBC driver. On Linux, UNIX, 
and Windows platforms, the SequeLink for ODBC driver is 
compliant with the Microsoft Open Database Connectivity 
(ODBC) 3.5 specification. 

ODBC is an Application Program Interface (API) specification that 
allows applications to access multiple database systems using 
Structured Query Language (SQL). ODBC provides maximum 
interoperability—a single application can access many different 
database systems. This allows an ODBC developer to develop, 
compile, and ship an application, without targeting a specific 
type of data source. Users can then add the database drivers, 
which link the application to the database systems of their 
choice. The ODBC driver can connect all commercial 
ODBC-compliant applications with server databases.

For instructions on installing the ODBC Client, refer to the 
SequeLink Installation Guide.
SequeLink Developer’s Reference



32 Chapter 1  Using the ODBC Client  
Using the ODBC Administrator
The first step in setting up an ODBC connection is creating an 
ODBC data source. The ODBC Administrator is installed 
automatically when you install the ODBC Client on Windows. You 
use the ODBC Administrator to create and manage ODBC data 
sources. 

To start the ODBC Administrator, click Start, then Programs. From 
the Programs menu, select DataDirect SequeLink 6.0 Client for 
ODBC or DataDirect SequeLink 6.0 Client for ODBC 64-bit, and 
then select the ODBC Administrator application. The ODBC Data 
Source Administrator window appears listing resident data 
sources.

NOTE: An ODBC Administrator does not exist for UNIX; you must 
edit the odbc.ini file using a text editor. See “Configuring ODBC 
Client Data Sources on Linux and UNIX” on page 53 for 
instructions on creating ODBC client data sources for Linux and 
UNIX.
 

SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 33
Configuring ODBC Client Data Sources 
on Windows

To configure 32-bit and 64-bit client data sources for the ODBC 
Client on Windows platforms, you use the ODBC Administrator.

Configuring ODBC User and System 
Client Data Sources
1 Start the ODBC Administrator. To start the ODBC 

Administrator, select Start / Programs. From the Programs 
menu, select DataDirect SequeLink 6.0 Client for ODBC or 
DataDirect SequeLink 6.0 Client for ODBC 64-bit, and then 
select the ODBC Administrator application. 
SequeLink Developer’s Reference



34 Chapter 1  Using the ODBC Client  
2 Click the User DSN tab or the System DSN tab to list user or 
system data sources, respectively.

3 To configure a new data source, click the Add button. A list of 
installed drivers appears. Select DataDirect SequeLink 6.0; 
then, click Finish.

NOTE: To change an existing data source, select the data 
source you want to configure and click the Configure button.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 35
The DataDirect SequeLink for ODBC Setup window appears.

4 On the General tab, provide the following information; then, 
click Apply.

Data Source Name: Type a unique name that identifies this 
ODBC data source configuration. Examples are Accounting or 
SequeLink to Oracle Data. 

Description: Optionally, type a description of the data source, 
for example, My Accounting Database or Accounting Data in 
Oracle (SSL).
SequeLink Developer’s Reference



36 Chapter 1  Using the ODBC Client  
SequeLink Server Host: Type the TCP/IP host name of the 
SequeLink service to which the ODBC Client will connect.

SequeLink Server Port: Type the TCP/IP port the SequeLink 
service is listening on for connection requests. The port you 
specify must be the same port that was specified for the 
SequeLink service when the SequeLink Server was installed; 
the default is 19996.

Server Data Source: Type the name of a server data source 
configured for the SequeLink service to use for the 
connection, or click the ... button to select an existing server 
data source. This field is optional. If a server data source is not 
specified, the default server data source for that SequeLink 
service is used.

Use LDAP: To configure the ODBC Client to retrieve 
connection information from an LDAP directory, select the 
Use LDAP check box. The fields change on the lower half of 
the screen to accommodate the information required to 
query an LDAP server for connection information. Provide the 
following information:

LDAP Server Host: Type the TCP/IP host name of the LDAP 
server. 

LDAP Server Port: Type the TCP/IP port the LDAP server is 
listening on for connection requests. The default value is 389.

Distinguished Name (DN): Type an identifier that uniquely 
identifies the LDAP entry where the connection information is 
stored.

Encrypted (SSL): If the remote SequeLink service is configured 
for Secure Sockets Layer (SSL) encryption, select this check 
box. If connecting to a SequeLink service enabled for SSL, you 
must select this check box.

When the check box is cleared (the default), communication 
between the SequeLink Client and SequeLink Server is not 
encrypted.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 37
Configuration of encryption is performed on the SequeLink 
Server. For more information, refer to the SequeLink 
Administrator’s Guide. 

NOTES: 

■ An ODBC client data source can reference an LDAP 
directory to retrieve server connection information. For 
more information about retrieving connection 
information from LDAP directories, refer to the 
SequeLink Administrator’s Guide.

■ SSL encryption is not supported for LDAP Servers. The Use 
LDAP and the Encrypted (SSL) checkboxes are mutually 
exclusive.

Translate: Click Translate only if you want to configure an 
ODBC translator. 

NOTE: We strongly recommend that you do not configure an 
ODBC translator; instead, rely on the native SequeLink 
transliteration between server and client code pages.

The Select Translator dialog box appears, listing translators 
specified in the ODBC Translators section of the system 
information file. Select a translator. When satisfied with your 
choice, click OK to close this dialog box and perform the 
translation.
SequeLink Developer’s Reference



38 Chapter 1  Using the ODBC Client  
5 Optionally, click the Failover tab to specify Failover data 
source settings. 

Provide any of the following information; then, click Apply.

Load Balancing: Select this check box to allow the driver to 
use client load balancing in its attempts to connect to primary 
and alternate database servers. In this case, the driver 
attempts to connect to the database servers in random order. 

If this check box is not selected (the default), client load 
balancing is not used and the driver connects to each 
database server based on its sequential order (primary server 
first, then, alternate servers in the order they are specified).
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 39
NOTE: This option has no effect unless alternate servers are 
defined for the Alternate Servers connection option.

The Load Balancing option is an optional setting that you can 
use in conjunction with connection failover. For a discussion 
of connection failover and for information about other 
connection options that you can set for this feature, refer to 
the SequeLink Administrator’s Guide.

Alternate Servers: Type a list of alternate SequeLink servers 
to which the driver will try to connect if the primary 
SequeLink server is unavailable, using a string that defines 
the physical location of each alternate server. Specifying a 
value for this option enables connection failover for the 
driver.  

IMPORTANT: If you specified an LDAP server in the LDAP 
Server Host field, the alternate servers must be LDAP servers. 

The server name and port are required for each alternate 
server entry. All of the other required connection 
information for each alternate server is the same as what is 
defined for the primary server connection. Currently, the only 
optional property that can be set for the alternate server is 
Server Data Source. 

The string has the format:

(Host=servername1:Port=port1[:ServerDataSource=
serverdatasourcename1], Host=servername2:Port=
port2[:ServerDataSource=serverdatasourcename2],...)

For example, the following Alternate Servers value defines 
two alternate SequeLink servers for connection failover:

(Host=server2:Port=19996:ServerDataSource=SDSN2,Host=
server3:Port=19996:ServerDataSource=SDSN3)

If you are connecting to an LDAP server, the syntax includes 
the physical location of the server and the port number:

(Host=ld1.foo.com:Port=389,Host=ld2.foo.com:Port=
SequeLink Developer’s Reference



40 Chapter 1  Using the ODBC Client  
389,Host=ld3.foo.com:Port=389)

Connection Retry Count: Type a value to specify the number 
of times the driver tries to connect to the primary server and, 
if configured, to the alternate servers after the initial 
unsuccessful attempt.  

Valid values are integers from 0 to 65535. When set to 0 (the 
default), the driver does not try to connect after the initial 
unsuccessful attempt.

If a connection is not established during the retry attempts, 
the driver returns an error that is generated by the first server 
to which it tried to connect.

This option and the Connection Retry Delay connection 
option, which specifies the wait interval between attempts, 
can be used in conjunction with connection failover.

For a discussion of connection failover and for information 
about other connection options that you can set for this 
feature, refer to the SequeLink Administrator’s Guide.

Connection Retry Delay: Type a value to specify the number 
of seconds that the driver waits after the initial unsuccessful 
connection attempt before retrying a connection to the 
primary server and, if specified, to the alternate servers.

Valid values are integers from 0 to 65535. The default value is 
3 (seconds). When set to 0, there is no delay between retries.

NOTE: This option has no effect unless the Connection Retry 
Count connection option is set to an integer value greater 
than 0.

This option and the Connection Retry Count connection 
option, which specifies the number of times the driver tries to 
connect after the initial unsuccessful attempt, are used in 
conjunction with connection failover.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 41
For a discussion of connection failover and for information 
about other connection options that you can set for this 
feature, refer to the SequeLink Administrator’s Guide.

Force SQL_DRIVER_NOPROMPT: Select this check box when 
connection failover or load balancing is enabled. This check 
box must be also selected if the application cannot change 
the DriverCompletion argument to SQL_DRIVER_NOPROMPT.  

If this check box is not selected (the default), the behavior of 
the application is not changed.

6 At any point during the configuration process, you can click 
Test Connect to attempt to connect to the data source using 
the connection properties specified in the driver Setup dialog 
box. A logon dialog box appears; see “ODBC Connection 
Attributes” on page 60 for details.

Note that the information you enter in the logon dialog box 
during a test connect is not saved.

■ If the driver can connect, it releases the connection and 
displays a Connection Established message. Click OK.

■ If the driver cannot connect because of an improper 
environment or incorrect connection value, it displays an 
appropriate error message. Click OK.

NOTE: If you are configuring alternate servers for use with 
the connection failover feature, be aware that the Test 
Connect button tests only the primary server, not the 
alternate servers.

7 Click OK or Cancel. If you click OK, the values you have 
specified become the defaults when you connect to the data 
source. You can change these defaults by using this 
procedure to reconfigure your data source. You can override 
these defaults by connecting to the data source using a 
connection string with alternate values.

 

SequeLink Developer’s Reference



42 Chapter 1  Using the ODBC Client  
Configuring ODBC File Client Data 
Sources

File data sources are data source files that can be stored on a file 
server, making the files available to any user who can access 
them. The 32-bit and 64-bit file-based data sources are created 
and used in the same manner.

To configure ODBC file client data sources:

1 Start the ODBC Administrator by clicking Start, then 
Programs. From the Programs menu, select DataDirect 
SequeLink 6.0 Client for ODBC, and then select the ODBC 
Administrator application.

2 Click the File DSN tab. The File DSN tab lists any file data 
sources in the specified directory.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 43
3 To configure a new data source, click the Add button. A list 
of installed drivers appears. Select DataDirect SequeLink 6.0; 
then, perform one of the following actions:

■ To configure the file data source to connect directly to a 
SequeLink Server without retrieving connection 
information from an LDAP directory, click OK. Then, skip 
to Step 5. 

■ To configure the file data source to retrieve connection 
information from an LDAP directory, continue with the 
next step.

4 Click Advanced. The Advanced File DSN Creation Settings 
window appears.

Type UseLDAP=1 in the Type driver-specific keywords and 
values scrollable box; then, click OK. You are returned to the 
list of drivers. Click Next and continue with Step 5.
SequeLink Developer’s Reference



44 Chapter 1  Using the ODBC Client  
5 The Create New Data Source window appears.

Type the name of the file data source you want to create or 
click Browse to select an existing file data source; then, click 
Next. 
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 45
6 The Create New Data Source displays the settings you have 
configured for this data source.

7 Click Finish to create the file data source. 

A series of connection dialogs appear as described in“ODBC 
Connection Dialogs” on page 46. The file data source will be 
saved after you enter the correct information in the 
connection dialog boxes.
SequeLink Developer’s Reference



46 Chapter 1  Using the ODBC Client  
ODBC Connection Dialogs

A SequeLink data access connection involves the following 
stages:

1 A network connection is established.

2 An authentication mechanism is used to establish the identity 
of the SequeLink Client to the SequeLink Server.

3 Based on information provided by the SequeLink Client 
application (for example, a database user name and 
password), a database connection is established.

Stage 1: Establishing a Network Connection

The first stage of the connection process involves establishing a 
network connection. The dialog box that appears depends on 
whether the connection has been configured to connect directly 
to a SequeLink service or to retrieve connection information for 
the SequeLink service from a centralized LDAP directory.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 47
Connecting Directly to a SequeLink® Service

If the connection has been configured to connect directly to a 
SequeLink service, the Connect to the SequeLink Server dialog 
box appears.

Provide the following information; then, click OK.

SequeLink Server Host: Type the TCP/IP host name of the 
SequeLink service.

SequeLink Server Port: Type the TCP/IP port on which the 
SequeLink service is listening. A default installation of SequeLink 
Server uses the port 19996.

Server Data Source: Type the name of a server data source to use 
for the connection, or select one from the drop-down list. This 
step is optional. If a server data source is not specified, the 
default server data source for that service will be used for the 
connection.
SequeLink Developer’s Reference



48 Chapter 1  Using the ODBC Client  
Retrieving Connection Information from an LDAP 
Directory

If the connection has been configured to connect to an LDAP 
server to retrieve connection information from an LDAP 
directory, the Connect to the SequeLink Server dialog box 
appears.

For information about setting up an LDAP server for SequeLink, 
refer to the SequeLink Administrator’s Guide.

Provide the following information; then, click OK.

LDAP Server Host: Type the TCP/IP host name of the LDAP server.

LDAP Server Port: Type the TCP/IP port on which the LDAP server 
is listening.

Distinguished Name: Type the Distinguished Name (DN) of the 
LDAP entry.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 49
Stage 2: SequeLink® Server Authentication

The second stage of the connection process involves 
authentication of the SequeLink Client to the SequeLink Server. 
The dialog boxes that appear depend on how authentication is 
configured for the SequeLink service.

■ When ServiceAuthMethods=anonymous or 
ServiceAuthMethods=integrated_nt, no dialog boxes appear.

■ When ServiceAuthMethods=OSLogon(HUID,HPWD) or 
ServiceAuthMethods=OSLogon(UID,PWD), the Logon to 
SequeLink Service dialog box appears.

Provide the following information; then, click OK.

Host User Name: Type the host user name. 

NOTE: When connecting to a Windows server, you must 
prefix the host user name with a server name, if 
authenticating to a local server, or a domain name (for 
example, SALES\DJONES). If the server name or domain name 
is omitted, the SequeLink Server will attempt to authenticate 
the user ID and password with the database account defined 
for the machine on which the SequeLink Server is running. If 
this validation fails, the SequeLink Server will attempt to 
authenticate the user ID and password with the database 
account defined for the domain of the machine on which the 
SequeLink Server is running.

Host Password: Type the host password.
SequeLink Developer’s Reference



50 Chapter 1  Using the ODBC Client  
■ When ServiceAuthMethods=OSLogon(HUID,HPWD,NPWD) or 
ServiceAuthMethods=OSLogon(UID,PWD,NPWD) and the 
password is expired, the Password expired. Please specify new 
password dialog box appears.

NOTE: If the password is not expired, the Logon to SequeLink 
Service dialog box appears, prompting only for the host user 
name and host password.

Provide the following information; then, click OK.

Host User Name: Type the host user name. 

NOTE: When connecting to a Windows server, you must prefix 
the host user name with a server name, if authenticating to a 
local server, or a domain name (for example, SALES\DJONES). 
If the server name or domain name is omitted, the SequeLink 
Server will attempt to authenticate the user ID and password 
with the database account defined for the machine on which 
the SequeLink Server is running. If this validation fails, the 
SequeLink Server will attempt to authenticate the user ID and 
password with the database account defined for the domain 
of the machine on which the SequeLink Server is running.

Host Password: Type the host password.
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Windows 51
New Password: Type the new password to be used by the 
SequeLink password change mechanism.

Confirm Password: Type the new password again to 
confirm it.

For more information about configuring authentication, refer to 
the SequeLink Administrator’s Guide.

Stage 3: Data Store Logon

The last stage of the connection process involves logging on the 
data store. The dialog boxes that appear depend on the data 
store logon method configured for the SequeLink service:

■ When DataSourceLogonMethod=OSIntegrated, no dialog 
boxes appear.

■ When DataSourceLogonMethod=DBMSLogon(UID,PWD) or 
DataSourceLogonMethod=DBMSLogon(DBUID,DBPWD), a 
data store-specific user name and password are required and 
the Logon to SequeLink Service dialog box appears.

Provide the following information; then, click OK.

Database User Name: Type the database logon ID.

Database Password: Type the database password.
SequeLink Developer’s Reference



52 Chapter 1  Using the ODBC Client  
Database: Type the name of the database to which you want 
to connect. This field is disabled when the data store does not 
recognize the concept of databases.

For more information about configuring data store logon 
methods, refer to the SequeLink Administrator’s Guide.

Testing ODBC Connections on Windows
1 On the SequeLink Client, start the ODBC Administrator. To 

start the ODBC Administrator, select Start / Programs. From 
the Programs menu, select DataDirect SequeLink 6.0 Client 
for ODBC or DataDirect SequeLink 6.0 Client for ODBC 64-bit, 
and then select the ODBC Administrator application. The 
ODBC Data Source Administrator window appears listing 
resident data sources.

2 Create an ODBC data source as described in “Configuring 
ODBC User and System Client Data Sources” on page 33, 
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Linux and UNIX 53
specifying the TCP/IP address and TCP/IP port of the 
SequeLink service.

3 Click the Test Connect button to test the connection. If 
successful, a dialog appears telling you the connection was 
successful. You are now ready to start using your ODBC 
applications with SequeLink.

 

Configuring ODBC Client Data Sources 
on Linux and UNIX

For Linux and UNIX, an ODBC Administrator does not exist. This 
section describes how to configure the system information file 
and how to set some required environment variables to use the 
ODBC 32-bit Client and ODBC 64-bit Client on Linux and UNIX.

Configuring the System Information 
File

To configure an ODBC data source for Linux and UNIX, you must 
edit the odbc.ini file (32-bit Client) or odbc64.ini file (64-bit 
Client) using the attributes in Table 1-1, “ODBC Connection 
Attributes,” on page 61. In the following examples, notice that 
the description is the same for the 32-bit and 64-bit ODBC Client.
SequeLink Developer’s Reference



54 Chapter 1  Using the ODBC Client  
Example: odbc.ini for Solaris

The following code shows an example of an odbc.ini file for a 
32-bit ODBC Client installed on a Solaris machine:

[ODBC Data Sources]
SALESDB=DataDirect SequeLink 6.0

[SALESDB]
Driver=path_of_installdir/lib/ivslk22.so
Description=DataDirect SequeLink 6.0
Host=
Port=
UseLDAP=0
DistinguishedName=
Encrypted=0
LoadBalancing=0
AlternateServers=
ConnectionRetryCount=0
ConnectionRetryDelay=3

[ODBC]
Trace=0
IANAAppCodePage=4
TraceFile=odbctrace.out
TraceDll=path_of_installdir/lib/odbctrac.so
InstallDir=path_of_installdir

where path_of_installdir is the path to the ODBC Client 
installation directory.

Example: odbc64.ini for Solaris

The following code shows an example of the odbc64.ini file for a 
64-bit ODBC Client installed on a Solaris machine:

[ODBC Data Sources]
SALESDB=DataDirect SequeLink 6.0
SequeLink Developer’s Reference



Configuring ODBC Client Data Sources on Linux and UNIX 55
[AccountingDB]
Driver=path_of_installdir/lib64/ivslk22.so
Description=DataDirect SequeLink 6.0
Host=
Port=
UseLDAP=0
DistinguishedName=
Encrypted=0
LoadBalancing=0
AlternateServers=
ConnectionRetryCount=0
ConnectionRetryDelay=3

[ODBC]
Trace=0
IANAAppCodePage=4
TraceFile=odbctrace.out
TraceDll=path_of_installdir/lib64/odbctrac.so
InstallDir=path_of_installdir

where path_of_installdir is the path to the ODBC Client 
installation directory.
 

Setting Environment Variables

You must set several environment variables for the ODBC Client 
on Linux and UNIX by executing a shell script located in the 
installation directory. 

To execute the shell script:

■ If you are using the Bourne or Korn shell, type:

• . sqlnk.sh (32-bit client)
• . sqlnk64.sh (64-bit client)

■ If you are using the C shell, type:

• source sqlnk.csh  (32-bit client)
• source sqlnk64.csh  (64-bit client)
SequeLink Developer’s Reference



56 Chapter 1  Using the ODBC Client  
Executing this shell script sets the following environment 
variables:

Executing this shell script also sets the appropriate library search 
environment variable (LD_LIBRARY_PATH on Solaris and Linux, 
SHLIB_PATH on HP-UX, or LIBPATH on AIX).
 

Using a Centralized System Information 
File

Because Linux and UNIX are multi-user environments, you may 
want to use a single centralized odbc.ini file controlled by a 
system administrator. To do this, set the ODBCINI environment 
variable to point to the fully qualified pathname of the 
centralized file.

For example:

■ In the Bourne or Korn shell, type:

ODBCINI=/opt/odbc/system_odbc.ini;export ODBCINI

■ In the C shell, type:

setenv ODBCINI /opt/odbc/system_odbc.ini

The odbc.ini file also require an [ODBC] section that includes the 
InstallDir keyword. The value of the InstallDir keyword must be 
the path to the directory that contains the /lib and /messages 
directories. 

ODBCINI Specifies where the centralized odbc.ini 
or odbc64.ini file is located.

SQLNK_ODBC_HOME Specifies the full path of the directory 
containing the ODBC Client shared 
libraries.
SequeLink Developer’s Reference



Connecting Using a Connection String 57
For example, if you choose the default installation directory for 
the 32-bit ODBC Client, the following line must be in the [ODBC] 
section of the odbc.ini file:

InstallDir=/usr/slodbc60
 

Connecting Using a Connection String
If you want to use a connection string for connecting to a 
database, or if your application requires it, you must specify 
either a DSN (data source name) or a DSN-less connection in the 
string. The difference is whether you use the DSN= or the 
DRIVER= keyword in the connection string, as described in the 
ODBC specification. A DSN connection string tells the driver 
where to find the default connection information. Optionally, 
you may specify attribute=value pairs in the connection string to 
override the default values stored in the data source.

If your application requires a connection string to connect to a 
data source, you must specify the data source name that tells the 
driver which data source to use for the default connection 
information. Optionally, you may specify attribute=value pairs in 
the connection string to override the default values stored in the 
data source. 

The DSN connection string has the form::

DSN=data_source_name[;attribute=value[;attribute=value]...]

For example, a connection string for SequeLink may look like 
this:

DSN=Accounting;DB=EMP;UID=JOHN;PWD=XYZZY

or

DSN=Accounting;DB="X:IV;EMP";UID=JOHN;PWD=XYZZY
SequeLink Developer’s Reference



58 Chapter 1  Using the ODBC Client  
NOTE: If the database name (DB) contains a semicolon (;), you 
must place the name in quotes, as shown in the preceding 
example.

The DSN-less connection string specifies a driver instead of a data 
source. All connection information must be entered in the 
connection string because there is no data source storing the 
information.

The DSN-less connection string has the form:

DRIVER=[{]driver_name[}][;attribute=value[;attribute=value]
...]

NOTE: Empty string is the default value for attributes that use a 
string value unless otherwise noted.

A DSN-less connection string must provide all necessary 
connection information:

DRIVER=DataDirect SequeLink 6.0;DB=Emp;UID=JOHN;PWD=XYZZY

See “ODBC Connection Attributes” on page 60 for a list of ODBC 
connection attributes and their valid values.

See “DSN-less Connections in Linux and UNIX” on page 58 for 
more information about using DSN-less connections.

DSN-less Connections in Linux and 
UNIX

Connections to a data source can be made via a connection string 
without referring to a data source name (DSN-less connections). 
This is accomplished by specifying the "DRIVER=" instead of the 
"DSN=" keyword in a connection string, as outlined in the ODBC 
specification. For this to work on Linux and UNIX, a file called 
odbcinst.ini must exist when the driver encounters DRIVER= in a 
connection string.
SequeLink Developer’s Reference



Connecting Using a Connection String 59
By default, Setup installs a sample odbcinst.ini file in the same 
location as the sample odbc.ini file, which is in the product 
installation directory. See “Configuring the System Information 
File” on page 53 for an explanation of the odbc.ini file. The 
environment variable ODBCINST, recognized by the DataDirect 
SequeLink for ODBC driver, must be set to point to the fully 
qualified path name of the odbcinst.ini file.

For example, to point to the default location of the file in the C 
shell, you set this variable as follows:

setenv ODBCINST /opt/sl60/client/odbcinst.ini

In the Bourne or Korn shell, you would set it as:

ODBCINST=/opt/sl60/client/odbcinst.ini;export ODBCINST

If the ODBCINST variable is not set, the driver looks in the user’s 
home directory for a file named odbcinst.ini. If the driver does 
not find the file, it returns the message:

HY000 - "ODBCINST.INI is not available in the directory 
pointed to by the ODBCINST environment variable (or the 
current user's HOME directory) and therefore DSN-Less 
connections cannot be made."

The following is a sample odbcinst.ini. 

[ODBC Drivers]
DataDirect SequeLink 6.0 = Installed

[DataDirect SequeLink 6.0]
APILevel=1
ConnectFunctions=YYN
Driver=ivslk22.so
DriverODBCVer=3.52
FileUsage=0
SQLLevel=1
SequeLink Developer’s Reference



60 Chapter 1  Using the ODBC Client  
ODBC Connection Attributes
Table 1-1 lists ODBC connection attributes in alphabetical order. 
The list includes long and short names and provides a description 
of each attribute. Short names are shown enclosed within 
parentheses ( ).

The default values listed in the table are initial defaults that 
apply when no value is specified in the connection string or in the 
ODBC data source definition. If you specified a value for the 
attribute when configuring the ODBC data source, that value is 
your default.
SequeLink Developer’s Reference



ODBC Connection Attributes 61
Table 1-1.  ODBC Connection Attributes

Attribute Description

AlternateServers (ASRV) A list of alternate SequeLink servers to which the 
driver will try to connect if the primary database 
server is unavailable. Specifying a value for this 
attribute enables connection failover for the 
driver.

The value must be in the form of a string that 
defines the physical location of each alternate 
server. The Host and Port values are required for 
each alternate server entry. All of the other 
required connection information for each 
alternate server is the same as what is defined for 
the primary server connection. Currently, the only 
optional connection attribute that can be set for 
the alternate server is ServerDataSource. 

The string has the format:

(Host=servername1:Port=port1 
[:ServerDataSource=datasourcename],...)

For example, the following AlternateServers value 
defines three alternate SequeLink servers for 
connection failover:

AlternateServers=(Host=AccountingSLServer: 
Port=13999,Host=AccountingAltServer:Port=
13998:ServerDataSource=Backup,Host=
AccountingAlt2:Port=13997)

IMPORTANT: If you specify an LDAP server in the 
Host attribute, the alternate servers must be LDAP 
servers. For example, the following 
AlternateServers value defines three alternate 
LDAP servers for connection failover: 

AlternateServers=(Host=ld1.foo.com:Port=
389,Host=ld2.foo.com:Port=389,Host=
ld3.foo.com:Port=389)

See “Configuring Connection Failover” on page 76 
for a discussion of connection failover.
SequeLink Developer’s Reference



62 Chapter 1  Using the ODBC Client  
ApplicationID (APPID) Specifies the application ID that identifies the 
client application to the SequeLink service. This 
attribute is only required when the SequeLink 
service you are connecting to has been configured 
to limit access to specific applications.

See “Specifying Application IDs” on page 99 for 
more information about using application IDs to 
limit access to the SequeLink services.

ApplicationName (APPNAME) Identifies the application that is establishing the 
connections. 

The initial default is SequeLink for ODBC 
Application.

AutomaticApplicationID (AUTOAPPID) Specifies an application ID that is automatically 
generated by the ODBC Client to identify the 
client application to the SequeLink service. This 
attribute is only required when the SequeLink 
service you are connecting to has been configured 
to limit access to specific applications.

See “Specifying Application IDs” on page 99 for 
more information about using application IDs to 
limit access to SequeLink services.

BlockFetchForUpdate (BFFU) BlockFetchForUpdate={0 | 1}. Specifies a 
workaround connection attribute. When the 
isolation level is Read committed and a SELECT 
FOR UPDATE statement is issued against some data 
stores, the ODBC Client does not lock the expected 
row. 

When set to 0, the appropriate row is locked.

When set to 1 (the initial default), the appropriate 
row is not locked.

NOTE: Specifying 0 will degrade the performance 
for SELECT FOR UPDATE statements because rows 
will be fetched one at a time.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 63
ConnectionRetryCount (CRC) Specifies the number of times the driver tries to 
connect to the primary server, and if configured, 
to the alternate servers after the initial 
unsuccessful attempt. 

Valid values are integers from 0 to 65535. When 
set to 0 (the initial default), the driver does not try 
to connect after the initial unsuccessful attempt.

If a connection is not established during the retry 
attempts, the driver returns an error that is 
generated by the last server to which it tried to 
connect.

This attribute and the ConnectionRetryDelay 
connection string attribute, which specifies the 
wait interval between attempts, can be used in 
conjunction with connection failover.

See “Configuring Connection Failover” on page 76 
for a discussion of connection failover and for 
information about other connection string 
attributes that you can set for this feature.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



64 Chapter 1  Using the ODBC Client  
ConnectionRetryDelay (CRD) Specifies the number of seconds that the driver 
waits after the initial unsuccessful connection 
attempt before retrying a connection to the 
primary server and, if specified, to the alternate 
servers.

Valid values are integers from 0 to 65535. The 
initial default is 3 (seconds). When set to 0, there is 
no delay between retries.

NOTE: This attribute has no effect unless the 
ConnectionRetryCount connection string attribute 
is set to an integer value greater than 0.

This attribute and the ConnectionRetryCount 
connection string attribute, which specifies the 
number of times the driver tries to connect after 
the initial unsuccessful attempt, can be used in 
conjunction with connection failover.

See “Configuring Connection Failover” on page 76 
for a discussion of connection failover and for 
information about other connection string 
attributes that you can set for this feature.

Database (DB) Specifies the name of the database to which you 
want to connect.

DBLogonID (DBUID) Specifies the data store user name, which may be 
required depending on the server configuration.

DBPassword (DBPWD) Specifies the data store password, which may be 
required depending on the server configuration.

DistinguishedName (DN) Specifies the distinguished name identifying the 
LDAP entry from which connection information is 
retrieved. This attribute is required when 
UseLDAP=1.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 65
DriverCompletion (DCOMP) DriverCompletion={0 | 1}. Determines whether to 
overwrite the DriverCompletion argument setting 
defined by the application. This attribute must be 
enabled when connection failover or load 
balancing is set up. 

When set to 1, the driver overwrites the 
DriverCompletion parameter of the 
SQLDriverConnect call with the value 
SQL_DRIVER_NOPROMPT. 

When set to 0 (the default), the behavior of the 
application is not changed.

DSN (DSN) Specifies a string that identifies an ODBC data 
source configuration. Examples include Accounting 
or SequeLink to Oracle Data.

EnableDescribeParam (EDP) EnableDescribeParam={0 |1}. Specifies a 
workaround connection attribute for connections 
to Oracle data stores only. 

When set to 0 (the initial default), support is 
turned off for SQLDescribeParam. 

When set to 1, support is turned on for 
SQLDescribeParam and will describe all parameters 
as SQL_CHAR with a precision of 999. 

Encrypted (ENC) Encrypted={0 | 1}. Enables the use of SSL 
encryption IF the remote SequeLink Service the 
client is connecting to is configured for SSL.

When set to 0 (the default), the driver does not 
use SSL encryption for data exchanged with the 
SequeLink Server.

When set to 1, the driver uses SSL encryption. This 
attribute must be set to 1 when connecting to a 
SequeLink service enabled for SSL.

NOTE: The Encrypted connection attribute is 
mutually exclusive with the UseLDAP connection 
attribute.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



66 Chapter 1  Using the ODBC Client  
FetchNextOnly (FNO) FetchNextOnly={TRUE | FALSE}. Turns on a 
workaround for Visual Basic/Remote Data Objects 
(RDO) that circumvents a problem with 
FORWARD_ONLY cursors when the driver reports 
other values than FETCH_NEXT for 
SQLGetInfo(SQL_FETCH_DIRECTION).

For example, if the driver only reports 
FETCH_NEXT, RDO performs SQLExecDirect, 
SQLBindCol, and SQLExtendedFetch(NEXT). If the 
driver supports more than FETCH_NEXT, RDO 
performs SQLExecDirect, 
SQLExtendedFetch(NEXT), and SQLGetData. This is 
only valid when the rowsize is 1, but RDO uses a 
larger rowsize in this situation. 

When set to TRUE, the driver will incorrectly report 
that only SQL_FETCH_NEXT is supported, which 
satisfies RDO.

When set to FALSE (the initial default), the driver 
will correctly report other values than 
SQL_FETCH_NEXT.

FixCharTrim (FCT) FixCharTrim={0 | 1}. Turns on a workaround for 
applications that have a problem using SQL_CHAR 
data padded with spaces. The ODBC driver returns 
SQL_CHAR data padded with spaces as mandated 
by the ODBC specification.

When set to 0 (the initial default), the workaround 
is turned off.

When set to 1, SQL_CHAR data that is not padded 
with spaces is returned.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 67
GetOutputParams (GOP) Turns on a workaround that allows you to control 
when output parameters of stored procedures are 
returned to calling applications. This attribute uses 
a bitmask with the following options:

When set to 1, output parameters are returned 
after a SQLExecute.

When set to 2, output parameters are returned 
after a SQLFetch is complete.

When set to 4, output parameters are returned 
after SQLMoreResults returns no more rows.

When set to 7 (the initial default), output 
parameters are returned after all of the above.

The value for this connection attribute should be 
set to the cumulative value of all chosen options 
added together.

NOTE: Set GetOutputParams=3 when executing 
stored procedures with output parameters in RDO 
(Visual Basic 5 and 6).

HLogonID (HUID) Specifies the host user name, which may be 
required depending on the server configuration.

HPassword (HPWD) Specifies the host password, which may be 
required depending on the server configuration.

Host (HST) Specifies the TCP/IP address of the SequeLink 
Server, specified in dotted format or as a host 
name.

LDAP: If LDAP is enabled, this attribute identifies 
the TCP/IP address of the LDAP server. This 
attribute can also be a list of LDAP servers 
separated by a blank space (for example, 
ld1.foo.com ld2.foo.com ld3.foo.com). If the first 
LDAP server in the list does not respond, the ODBC 
Client will try to connect to the next LDAP server in 
the list.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



68 Chapter 1  Using the ODBC Client  
IANAAppCodePage (IACP) Valid values for this attribute are listed in “Values 
for IANAAppCodePage Connection String 
Attribute” on page 569. The code page that you 
specify must be the same as the code page used by 
your application.

The driver on UNIX determines the value of the 
application’s code page by checking for an 
IANAAppCodePage value in the following order:

■ In the connection string

■ In the DataSource section of the system file 
(odbc.ini)

■ In the ODBC section of the system file (odbc.ini)

■ If no IANAAppCodePage value is found, the 
driver uses the default value of 4 (ISO 8859-1 
Latin-1). 

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 69
LimitCursorColumnsize (LCCS) Specifies the Columnsize of a cursor variable. For 
example, when a default varchar column is created 
in FileMaker, the database defines it at 1000000 
chars. When the application requests a static 
cursor on a Unicode data source, the driver 
allocates 3000000 (UTF-8) bytes for this type of 
column. When multiple varchar columns exist, the 
application slows down because of disk access in 
the static cursor. In practice, no applications use 
1000000 chars; thus, limiting the column size 
makes the rowbuffer size smaller and reduces disk 
access. The ODBC application can specify a 
parameter in the connection string, for example, 
LimitCursorColumnsize=1000. 

When set to 0 (the default), the workaround is not 
enabled. 

NOTE: On the SequeLink Server, this workaround 
can be set using the attribute 
DataSourceLimitCursorColumnsize. See the 
SequeLink Administrator’s Guide for information 
about this service attribute.

LimitParameterBindSize (LPBS) Specifies the parameter bind size for SQL_CHAR, 
SQL_VARCHAR, SQL_BINARY, and SQL_VARBINARY 
values. When exporting a table from Microsoft 
Access that contains Null data in a memo column, 
Microsoft Access binds the parameter with a 
columnSize of 4294967295. The SequeLink Client 
attempts to allocate a buffer of this size, which 
typically fails due to lack of memory. 

To get around this application bug, the SequeLink 
Server can be configured to limit the parameter 
bind size for SQL_CHAR, SQL_VARCHAR, 
SQL_BINARY, and SQL_VARBINARY values to a 
reasonable value.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



70 Chapter 1  Using the ODBC Client  
LoadBalancing (LB) LoadBalancing={0 | 1}. Determines whether the 
driver uses client load balancing in its attempts to 
connect to primary and alternate database servers. 

When set to 1, the driver attempts to connect to 
the database servers in random order.

When set to 0 (the initial default), client load 
balancing is not used and the driver connects to 
each database server based on its sequential order 
(primary server first, then, alternate servers in the 
order they are specified).

NOTE: This attribute has no effect unless alternate 
servers are defined for the AlternateServers 
connection string attribute.

The LoadBalancing connection string attribute is 
an optional setting that you can use in conjunction 
with connection failover.

See “Using Client Load Balancing” on page 81 for 
more information and for information about 
other connection string attributes that you can set 
for this feature.

LogonID (UID) Specifies the host or data store user name, which 
may be required depending on the server 
configuration.

MSAccessWorkaroundCreateParams 
(MAWCP)

MSAccessWorkaroundCreateParams={0 | 1}. 
Specifies a workaround for a bug in Microsoft 
Access that generates erroneous queries for Table 
Export when the value of a CREATE_PARAMS 
column of SQLGetTypeInfo contains a precision for 
TIMESTAMP. 

When set to 1, the workaround is enabled.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 71
NewPassword (NPWD) Specifies the new host password to be used. If 
specified and applicable to the connection, the 
SequeLink password change mechanism is 
invoked. When the password has been changed 
successfully, the following warning is generated:

[DataDirect][ODBC SequeLink 
driver][SequeLink Server] The user 
password was changed successfully

If unspecified and the SequeLink Server detects 
that the host password has expired, you will be 
prompted for a new host password.

For more information about the SequeLink 
password change mechanism, refer to the 
SequeLink Administrator’s Guide.

Password (PWD) Specifies the host or data store password, which 
may be required depending on the server 
configuration.

Port (PRT) Specifies the TCP/IP port on which the SequeLink 
Server is listening. 

LDAP: If LDAP is enabled, this attribute identifies 
the TCP/IP port on which the LDAP server is 
listening. If you do not specify a port, the default 
port for LDAP (389) will be used.

ServerDataSource (SDSN) Optionally, specifies a string that identifies the 
server data source to be used for the connection. If 
not specified, the configuration of the default 
server data source will be used for the connection.

SessionConnectTimeout (SCTO) Imposes a time limit on:

■ The establishment of the TCP/IP connection 
with the server.

■ The establishment of the SequeLink session via 
an initial handshake with the server (this 
includes the time to initialize the necessary 
server processes and/or threads).

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



72 Chapter 1  Using the ODBC Client  
SLKStaticCursorLongColBuffLen (SSCLCBL) Turns on a workaround that allows you to specify 
the amount of data (in KB) that is buffered for 
SQL_LONGVARCHAR and SQL_LONGVARBINARY 
columns with a static cursor. 

Because the driver caches Unicode characters 
(UTF-16-LE on Windows, UTF-8 on UNIX), the 
number of characters that can be cached is smaller 
for the long-character, Unicode columns. 

The initial default is 4.

TransliterationWorkAroundServer (TWAS) Turns on a workaround for multiple transliteration 
workarounds. Refer to the SequeLink 
Administrator’s Guide for more information about 
how SequeLink handles transliteration.

When set to 1 or 2, this workaround resolves 
transliteration issues between 
Shift-JIS/Windows-31j and eucJP by mapping 
"look-alike" characters.

When set to 0 (the initial default), the workaround 
is not enabled.

UseLDAP (LDAP) UseLDAP={0 | 1}. Determines whether the 
parameters to establish a connection to the 
SequeLink Server should be retrieved from LDAP.

When set to 0 (the initial default), the SequeLink 
Client will connect directly to the specified 
SequeLink Server.

When set to 1, the SequeLink Client will retrieve 
the TCP/IP host, TCP/IP port, and SequeLink server 
data source (optional) from an LDAP entry 
identified by a Distinguished Name (DN). Once the 
connection information is retrieved, the SequeLink 
Client will connect directly to the specified 
SequeLink Server. The DistinguishedName (DN) 
attribute is required.

NOTE: The Encrypted connection attribute is 
mutually exclusive with the UseLDAP connection 
attribute.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 73
WorkArounds (WA) Turns on workarounds that allow you to take full 
advantage of the ODBC driver with ODBC 
applications requiring nonstandard or extended 
behavior.

IMPORTANT: Each of these options has potential 
side effects related to its use. An option should 
only be used to address the specific problem for 
which it was designed. 

When set to 1, the ODBC driver returns 1, allowing 
Microsoft Access to open tables as read-write. If an 
ODBC driver reports to Microsoft Access 2.0 that its 
SQL_CURSOR_COMMIT_BEHAVIOR or 
SQL_CURSOR_ROLLBACK_BEHAVIOR is 0, 
Microsoft Access opens tables as read-only.

When set to 2, the driver reports that qualifiers are 
not supported. This option is provided because 
some applications cannot handle database 
qualifiers.

When set to 4, the driver detects when Visual Basic 
requires multiple connections to a DBMS and has 
the multiple ODBC connections share a single 
physical connection to the DBMS. For DBMSs that 
support only a single connection, the second 
attempt fails.

When set to 8, the driver returns 1. However, if an 
ODBC driver cannot detect the number of rows 
that are affected by an Insert, Update, or Delete 
statement, it may return -1 in SQLRowCount. Some 
products cannot handle this.

When set to 16, the driver returns no 
INDEX_QUALIFIER, allowing Microsoft Access to 
open the table. If an ODBC driver in SQLStatistics 
reports to Microsoft Access 1.1 that an 
INDEX_QUALIFIER contains a period, Microsoft 
Access returns a tablename is not a valid name 
error.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



74 Chapter 1  Using the ODBC Client  
WorkArounds (cont.) When set to 32, users of flat-file drivers are 
allowed to abort a long-running query by pressing 
the ESC key.

When set to 64, the result is a column name of 
Cposition where position is the ordinal position in 
the result set. For example:

SELECT col1, col2+col3 FROM table1 

produces the column names col1 and C2. 
SQLColAttributes/SQL_COLUMN_NAME returns an 
empty string for result columns that are 
expressions. Use this option for applications that 
cannot handle empty strings in column names.

When set to 256, SQLGetInfo/
SQL_ACTIVE_CONNECTIONS is forced to return 
as 1.

When set to 512, the SQLSpecialColumns function 
returns a unique index as returned from 
SQLStatistics to prevent ROWID results.

When set to 2048, SQLDriverConnect returns 
Database= instead of DB= in the returned 
connection string.

When set to 65536, trailing zeros are stripped 
from decimal results, which prevents Microsoft 
Access from generating an error when decimal 
columns containing trailing zeros are included in 
the unique index.

When set to 131072, all occurrences of the double 
quote character ("") are turned into the accent 
grave character (`). Some applications always 
quote identifiers with double quotes. Double 
quoting causes problems for data sources that do 
not return SQLGetInfo/
SQL_IDENTIFIER_QUOTE_CHAR = ". 

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



ODBC Connection Attributes 75
WorkArounds (cont.) When set to 524288, the precision and scale 
settings for SQL_DECIMAL parameters are 
overridden to precision 40 and scale 20.

When set to 8388608, 
SQLGetInfo/SQL_DATABASE_NAME is returned as 
an empty string when SQLGetInfo/
SQL_MAX_QUALIFIER_NAME_LEN is 0. This option 
should be used with Inprise/Borland tools, such as 
Delphi.

When set to 536870912, SQLBindParameter is 
allowed to be called after SQLExecute to change 
the precision of previously bound parameters.

When set to 1073741824, Microsoft Access 
assumes that ORDER BY columns do not have to be 
in the SELECT list. This option provides a 
workaround for data stores that always use 
ORDER BY columns.

WorkArounds2 (WA2) Turns on workarounds that allow you to take full 
advantage of the ODBC driver with ODBC 
applications requiring nonstandard or extended 
behavior.

IMPORTANT: Each of these options has potential 
side effects related to its use. An option should 
only be used to address the specific problem for 
which it was designed. 

When set to 2, the driver ignores the 
ColumnSize/DecimalDigits specified by the 
application and uses the database defaults 
instead. Some applications incorrectly specify 
ColumnSize/DecimalDigits when binding 
timestamp parameters.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



76 Chapter 1  Using the ODBC Client  
Configuring Connection Failover
Connection failover allows an application to connect to an 
alternate, or backup, SequeLink server if the primary database 
server is unavailable, for example, because of a hardware failure 
or traffic overload. Connection failover ensures that the data on 
which your critical ODBC applications depend is always available. 

You can customize the ODBC Client for connection failover by 
configuring a list of alternate SequeLink servers that are tried if 
the primary server is not accepting connections. Connection 
attempts continue until a connection is successfully established or 
until all the alternate SequeLink servers have been tried the 
specified number of times.

For example, suppose you have the environment shown in Figure 
1-1 with multiple SequeLink servers: SequeLink Server A, B, and C. 
SequeLink Server A is designated as the primary database server, 
SequeLink Server B is the first alternate server, and SequeLink 
Server C is the second alternate server.

WorkArounds2 (WA2)  (cont.) When set to 4, Microsoft Access uses the most 
recent native type mapping, as returned by 
SQLGetTypeInfo, for a specific SQL type. This 
option reverses the order in which types are 
returned, so that Microsoft Access will use the 
most appropriate native type. This option is 
recommended if you are using Microsoft Access 
against an Oracle8.x data store.

When set to 32, Microsoft Access requires that the 
characters "DSN=" are returned by 
SQLDriverConnect in the connection string output 
parameter.

Table 1-1.  ODBC Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



Configuring Connection Failover 77
Figure 1-1.  Configuring Connection Failover with the ODBC 
Client

First, the application attempts to connect to the primary 
database server, SequeLink Server A (1). If connection failover is 
enabled and SequeLink Server A fails to accept the connection, 
the application attempts to connect to SequeLink Server B (2). If 
that connection attempt also fails, the application attempts to 
connect to SequeLink Server C (3).

In this scenario, it is probable that at least one connection 
attempt would succeed, but if no connection attempt succeeds, 
the driver can retry each alternate SequeLink Server (primary 
and alternate) for a specified number of attempts. You can 
specify the number of attempts that are made through the 
connection retry feature. You can also specify the number of 
seconds of delay, if any, between attempts through the 
connection delay feature. See “Using Connection Retry” on page 
82 for more information about connection retry.

The ODBC Client fails over to the next alternate SequeLink server 
only if a successful connection cannot be established with the 

SequeLink Server A 
(Primary)

ODBC Application 
Using the 
ODBC Client

SequeLink Server C 
(Second Alternate)

SequeLink Server B 
(First Alternate)

1

3

2

SequeLink Developer’s Reference



78 Chapter 1  Using the ODBC Client  
current alternate server. If the ODBC Client successfully 
establishes communication with a SequeLink Server and the 
connection request is rejected by the SequeLink Server because, 
for example, the login information is invalid, then the driver 
generates an error and does not try to connect to the next 
SequeLink Server in the list. 

Connection failover provides protection for new connections only 
and does not preserve states for transactions or queries. For 
details on configuring connection failover, refer to the SequeLink 
Administrator’s Guide.

To configure connection failover, you must specify a list of 
alternate SequeLink Servers that are tried at connection time if 
the primary server is not accepting connections. To do this, use 
the AlternateServers connection option. 

Optionally, you can specify the following additional connection 
failover features:

■ The number of times the ODBC Client attempts to connect to 
the primary and alternate SequeLink servers after the initial 
unsuccessful connection attempt. By default, the ODBC Client 
does not retry. To set this feature, use the Connection Retry 
Count (ConnectionRetryCount) connection option. See “Using 
Connection Retry” on page 82 for more information.

■ The wait interval, in seconds, between attempts to connect to 
the primary and alternate SequeLink servers. The default 
interval is 3 seconds. To set this feature, use the Connection 
Retry Delay (ConnectionRetryDelay) connection option.

■ Whether the ODBC Client uses client load balancing in its 
attempts to connect to primary and alternate SequeLink 
servers. If load balancing is enabled, the ODBC Client uses a 
random pattern instead of a sequential pattern in its attempts 
to connect. The default value is not to use load balancing. To 
set this feature, use the Load Balancing (LoadBalancing) 
connection option. See “Using Client Load Balancing” on 
page 81 for more information.
SequeLink Developer’s Reference



Configuring Connection Failover 79
On Windows, you can configure a data source to use connection 
failover on the Failover tab of the driver’s Setup dialog box. 
Refer to the SequeLink Administrator’s Guide for detailed 
information.

On UNIX and Linux, you can configure a data source to use 
connection failover by modifying your system information file 
(odbc.ini). Refer to the SequeLink Administrator’s Guide for 
detailed information.

On Linux, UNIX, and Windows, you can use a connection string 
to direct the driver to use connection failover. Refer to the 
SequeLink Administrator’s Guide for detailed information.

Connection Failover Properties

Table 1-2 summarizes the connection properties that control 
how connection failover works with the ODBC driver. See Table 
1-1, “ODBC Connection Attributes,” on page 61 for details about 
configuring each property.

Table 1-2.  Summary: Connection Failover Attributes for the ODBC Driver

Connection Attribute Characteristic

AlternateServers A list of alternate SequeLink servers to which the driver will 
attempt to connect if the primary SequeLink server is 
unavailable. A port number and an IP address or server name 
identifying each server are required. 

If the primary SequeLink server is an LDAP server, each 
alternate server must be an LDAP server.

ConnectionRetryCount Number of times the driver retries the primary SequeLink 
server, and if specified, alternate servers until a successful 
connection is established. The default is 5.

ConnectionRetryDelay Wait interval, in seconds, between connection retry attempts 
when the ConnectionRetryCount property is set to a positive 
integer. The default is 1.
SequeLink Developer’s Reference



80 Chapter 1  Using the ODBC Client  
Host The TCP/IP address or server name of primary SequeLink 
server. 

LDAP: If LDAP is enabled, this identifies the TCP/IP address of 
the LDAP server. This can also be a list of LDAP servers 
separated by a blank space (for example, “ld1.foo.com 
ld2.foo.com ld3.foo.com”). If the first LDAP server in the list 
does not respond, the ODBC Client will try to connect to the 
next LDAP server in the list.

LoadBalancing Sets whether the driver will use client load balancing in its 
attempts to connect to the list of SequeLink servers (primary 
and alternate). If client load balancing is enabled, the driver 
uses a random pattern instead of a sequential pattern in its 
attempts to connect. The default is false (client load 
balancing is disabled).

Port The TCP/IP port on which the primary SequeLink server is 
listening. 

If LDAP is enabled, this identifies the TCP/IP port on which the 
LDAP server is listening.

Table 1-2.  Summary: Connection Failover Attributes for the ODBC Driver (cont.)

Connection Attribute Characteristic
SequeLink Developer’s Reference



Using Client Load Balancing 81
Using Client Load Balancing
Client load balancing helps distribute new connections in your 
environment so that no one server is overwhelmed with 
connection requests. When client load balancing is enabled, the 
order in which primary and alternate database servers are tried 
is random. For example, let us suppose that client load balancing 
is enabled as shown in Figure 1-2:

Figure 1-2.  Client Load Balancing with the ODBC Client

First, SequeLink Server B is tried (1). Then, SequeLink Server C 
may be tried (2), followed by a connection attempt to SequeLink 
Server A (3). In contrast, if client load balancing were not 
enabled in this scenario, each SequeLink Server would be tried in 
sequential order, primary server first, then each alternate 
SequeLink Server based on its entry order in the alternate servers 
list.

For details on configuring client load balancing, refer to the 
SequeLink Administrator’s Guide.

SequeLink Server A 
(Primary)

ODBC Application 
Using the 
ODBC Client

SequeLink Server C 
(Second Alternate)

SequeLink Server B 
(First Alternate)

3

2

1

SequeLink Developer’s Reference



82 Chapter 1  Using the ODBC Client  
Using Connection Retry
Connection retry defines the number of times the SequeLink 
Client attempts to connect to the primary SequeLink Server and, 
if configured, alternate SequeLink Servers after the initial 
unsuccessful connection attempt. Connection retry can be an 
important strategy for system recovery. For example, suppose you 
have a power failure in which both the SequeLink Client and the 
SequeLink Server fail. When the power is restored and all 
computers are restarted, the SequeLink Client may be ready to 
attempt a connection before the SequeLink Server has completed 
its startup routines. If connection retry is enabled, the client 
application can continue to retry the connection until a 
connection is successfully accepted by the SequeLink Server.

Connection retry can be used in environments that have only one 
server or can be used as a complementary feature with 
connection failover in environments with multiple SequeLink 
Servers.

Using connection options, you can specify the number of times 
the driver attempts to connect and the time in seconds between 
connection attempts. For details on configuring connection retry, 
see “Configuring Connection Failover” on page 76.
SequeLink Developer’s Reference



83
2 Developing ODBC Applications

This chapter provides information about developing ODBC 
applications for SequeLink environments, including:

■ “Required ODBC Libraries and Header Files” on page 84
■ “Compiler Requirements” on page 84
■ “ODBC API Functions” on page 85
■ “SQL Escape Sequences” on page 90
■ “Data Types and Isolation Levels” on page 91
■ “Threading” on page 91
■ “Using Scrollable Cursors” on page 93
■ “Using Stored Procedures with Oracle” on page 95
■ “Specifying Application IDs” on page 99
■ “Persisting a Result Set as an XML Data File” on page 101
■ “Error Handling” on page 103
■ “Developing Performance-Optimized ODBC Applications” on 

page 105 
SequeLink Developer’s Reference



84 Chapter 2  Developing ODBC Applications  
Required ODBC Libraries and Header Files
To develop ODBC applications, you must install the appropriate 
ODBC libraries and header files for your target platform, as 
shown in Table 2-1.
 

Compiler Requirements
The ODBC Client has specific compiler requirements on Linux, 
UNIX, and Windows. Applications must be compiled with a 
compiler that is compatible with the guidelines shown in 
Table 2-2 and Table 2-3.

Table 2-1.  Sources for Required ODBC Development Tools

Platform Required Headers and Libraries

Windows Microsoft Open Database Connectivity 
Software Development Kit (SDK).

UNIX The required header files and libraries are 
shipped with the ODBC Client.

NOTE: We recommend that you obtain the Microsoft ODBC 3.x 
documentation.

Table 2-2.  Compiler Requirements for Windows

Windows Platform Compiler Requirements

32-bit Microsoft Visual C++ .NET 2003 07.01-18059

64-bit Microsoft Visual C++ .NET 2005
SequeLink Developer’s Reference



ODBC API Functions 85
ODBC API Functions
The 32-bit and 64-bit ODBC drivers are ODBC Level 1–compliant, 
supporting all ODBC Core and Level 1 functions. Most Level 2 
functions are also supported. Table 2-4 and Table 2-5 list 
supported functions for ODBC 2.x and ODBC 3.x applications, 
respectively.

■ On Linux and UNIX 64-bit platforms, the compiler flag, 
ODBC64, must be set.

■ On Linux and UNIX, the ODBC header files for the DataDirect 
Driver Manager are installed in the installdir/include 
directory.

■ On Windows, the ODBC header files are installed with the 
MDAC installation.

Table 2-3.  Compiler Requirements for Linux and UNIX

UNIX Platform Compiler Requirements

AIX reentrant ■ 32-bit compiler version: VisualAge C++ 
Professional 6.0 

■ 64-bit compiler version: VisualAge C++ 
Professional 6.0 

Solaris ■ 32-bit compiler version: SUN Studio 9

■ 64-bit compiler version: SUN Studio 9

Linux ■ 32-bit compiler version: gcc 3.2.3 

■ 64-bit compiler version: gcc 3.3

HP-UX 11 aCC 32-bit compiler version: HP ANSI C++ B3910B 
A.03.30
SequeLink Developer’s Reference



86 Chapter 2  Developing ODBC Applications  
Table 2-4.  Function Conformance for 2.x ODBC Application

Core Functions

SQLAllocConnect

SQLAllocEnv

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLCancel

SQLColAttributes

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDrivers

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetCursorName

SQLNumResultCols

SQLPrepare

SQLRowCount

SQLSetCursorName

SQLTransact

Level 1 Functions

SQLColumns

SQLGetConnectOption

SQLGetData

SQLDriverConnect

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption

SQLGetTypeInfo

SQLParamData

SQLPutData

SQLSetConnectOption

SQLSetStmtOption

SQLSpecialColumns 

SQLStatistics 

SQLTables

Level 2 Functions

SQLDataSources

SQLExtendedFetch

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLParamOptions

SQLSetScrollOptions
SequeLink Developer’s Reference



ODBC API Functions 87
Table 2-5.  Function Conformance for 3.x ODBC Applications

SQLAllocHandle

SQLBindCol

SQLBindParam

SQLBindParameter

SQLBulkOperations

SQLCancel

SQLCloseCursor

SQLColAttribute

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLConnect

SQLCopyDesc

SQLDataSources

SQLDescribeCol

SQLDescribeParam1

SQLDisconnect

SQLDriverConnect

SQLDrivers

SQLEndTran

SQLExecDirect

1. SQLDescribeParam is not supported on Oracle databases. Instead, use the 
DataSourceEnableDescribeParam service attribute, described in the SequeLink 
Administrator’s Guide.

SQLExecute

SQLExtendedFetch

SQLFetch

SQLFetchScroll

SQLForeignKeys

SQLFreeHandle

SQLFreeStmt

SQLGetConnectAttr

SQLGetCursorName

SQLGetData

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetEnvAttr

SQLGetFunctions

SQLGetInfo

SQLGetStmtAttr

SQLGetTypeInfo

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPrimaryKeys 

SQLProcedureColumns 

SQLProcedures

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetPos

SQLSetStmtAttr

SQLSpecialColumns

SQLStatistics 

SQLTablePrivileges 

SQLTables

SQLTransact
SequeLink Developer’s Reference



88 Chapter 2  Developing ODBC Applications  
Binding SQL Statements

An ODBC application can prepare a query that contains dynamic 
parameters. Each parameter in a SQL statement must be 
associated, or bound, to a variable in the application before the 
statement is executed. When the application binds a variable to a 
parameter, it describes that variable and that parameter to the 
driver. Therefore, the application must supply the following 
information: 

■ The data type of the variable that the application wishes to 
map to the dynamic parameter.

■ The SQL data type of the dynamic parameter (the data type 
that the database system assigned to the parameter marker). 

The two data types are identified separately using the 
SQLBindParameter API. 

The SequeLink ODBC driver relies on the binding of parameters 
to know how to send information to the database system in its 
native format. If an application furnishes incorrect parameter 
binding information to the ODBC driver, the results will be 
unpredictable. For example, the statement might not be 
executed correctly. 

To ensure interoperability, the SequeLink ODBC driver uses only 
the parameter binding information provided by the application. 
Some DBMSs cannot publish dynamic parameter information 
information back to an ODBC driver. For example, both the SQL 
Server and Oracle query processors can determine that a 
parameter is an integer. However, the Oracle query processor 
cannot publish this information back to the SequeLink ODBC 
driver.   
SequeLink Developer’s Reference



ODBC API Functions 89
NOTES:

■ The SQL data type is determined at prepare time by the 
database and does not change for the life of the statement. 
The SQL data type is not dependent on the data being used 
by the application. For example, it is not valid to bind the 
SQL type to SQL_NUMERIC with a precision of 15 and a scale 
of 5, and then bind it on a later execution to a SQL type of 
SQL_NUMERIC with a precision of 13 and a scale of 3. 

■ You can implement SQLDescribeParam only when a database 
system publishes parameter information after prepare time. 
The ODBC driver returns this information when the 
application requests it, but depending on the database, 
performance penalties can be incurred. You can tune this 
feature through the SequeLink data source service attribute 
DataSourceDescribeParam. Refer to the SequeLink 
Administrator’s Guide for information about service 
attributes.

Support for Unicode ODBC W (Wide) 
Function Calls

The ODBC driver fully supports the SQL-W functions. 

The ODBC driver automatically determines whether the 
database is a Unicode database. Table 2-6 summarizes the way 
that the ODBC driver maps the database data types to the 
Unicode data types.
SequeLink Developer’s Reference



90 Chapter 2  Developing ODBC Applications  
When used with SequeLink Server for ODBC Socket and 
SequeLink Server for JDBC Socket, the ODBC driver supports the 
data types of the backend driver used.

When used with SequeLink Server for Informix and SequeLink 
Server for JDBC Socket, the ODBC driver does not support 
Unicode data types.

SQL Escape Sequences
See Appendix A “SQL Escape Sequences” on page 431 for 
information about the SQL escape sequences supported by the 
ODBC driver.

Table 2-6.  Support for Unicode ODBC W (Wide) Function Calls

Unicode Data Type Database Data Type

DB2 Oracle SQL Server Sybase1 

SQL_WCHAR Graphic CHAR                                                                                          nchar CHAR, 
UNICHAR

SQL_WLONGVARCHAR Long, 
Vargraphic

CLOB, 

LONG 

ntext TEXT

SQL_WVARCHAR Vargraphic VARCHAR2 nvarchar, 
sysname

UNIVARCHAR, 
VARCHAR

1. The Unicode data types are supported if the UTF-8 character set is installed on the Sybase 
database.
SequeLink Developer’s Reference



Data Types and Isolation Levels 91
Data Types and Isolation Levels
The data types and isolation levels supported by the ODBC driver 
depend on the data store to which you are connecting. See 
Appendix B “Data Types and Isolation Levels” on page 451 for 
database-specific information about data types and isolation 
levels.

Threading
The ODBC specification requires that all ODBC drivers must be 
thread-safe; that is, they must not fail when database requests 
are made on separate threads.

Threading Architecture

An ODBC driver can be based on one of the following 
architectures:

■ Not thread-safe. The ODBC driver should not be used in a 
multi-threaded environment.

■ Thread-impaired. The ODBC driver serializes all ODBC calls. 
All requests are handled one by one, without concurrent 
processing.

■ Thread per connection. The ODBC driver processes requests 
concurrently with statement handles that do not share the 
same connection handle; however requests on the same 
connection are serialized.

■ Fully threaded. All requests fully use the threaded model. 
The ODBC driver processes all requests on multiple 
statements concurrently.
SequeLink Developer’s Reference



92 Chapter 2  Developing ODBC Applications  
The ODBC driver supports multithreaded applications on all 
platforms.

Cancelling Functions in Multithreaded 
Applications

In a multithreaded application, the application can cancel a 
function that is running synchronously on a statement. To cancel 
the function, the application calls SQLCancel with the same 
statement handle as that used by the target function, but on a 
different thread. Whether SQLCancel actually cancels the running 
function depends on the data store being accessed as shown in 
Table 2-7. 

■ OK means that SQLCancel can interrupt the running function.

■ Ignored means that SQLCancel will have no affect on the 
running function. 

In both cases, SQLCancel returns SQL_SUCCESS. If SQLCancel has 
been called from a different thread while there is a pending 
request, the original statement will return SQL_ERROR with the 
error message Operation cancelled.

Table 2-7.  Using SQLCancel in Multithreaded Applications

Data Store SQLCancel

DB2 UDB for z/OS Ignored

DB2 UDB on Windows OK

DB2 UDB on Linux and UNIX Ignored

Informix OK

Microsoft SQL Server OK

Oracle on Windows Ignored

Oracle on Linux and UNIX OK

Sybase OK
SequeLink Developer’s Reference



Using Scrollable Cursors 93
Using Scrollable Cursors
Scrollable cursors can move backward and forward in a result 
set, allowing the application user to scroll back and forth 
through requested data. SequeLink supports two types of 
scrollable cursors—static and keyset-driven.

Static and Keyset-Driven Cursors

A static cursor is one that does not detect any changes made to 
the record after the cursor is opened. For example, if a static 
cursor fetches a row and another application then updates that 
row, the values would be unchanged when that row is fetched 
again. A keyset-driven cursor detects value changes to the record 
using keys that are saved when the cursor is opened to retrieve 
the current data values for each row.

Support for the keyset-driven cursors depends on the data store 
to which you are connecting, as described in Table 2-8.

Table 2-8.  Support for Keyset-Driven Cursors (ODBC) 

Database Conditions for Support

DB2 UDB The DB2 tables must contain an auto-unique 
column. The name and other properties of the 
auto-unique column must be configured in the 
data source of the SequeLink Server.

Informix None (inherently supported).

Microsoft SQL Server The table must contain an identity column.

JDBC Socket The backend database must support an 
auto-unique column. The name and other 
properties of the auto-unique column must be 
configured in the data source of the SequeLink 
Server.
SequeLink Developer’s Reference



94 Chapter 2  Developing ODBC Applications  
Using Static Scrollable Cursors
■ The ODBC driver supports static cursors for all types of result 

set generating statements, including result sets generated by 
stored procedures.

■ The ODBC driver supports LOB data for static cursors; 
however, by default, only the first 4096 bytes of the LOB 
column is buffered. See the SLKStaticCursorLongColBuffLen 
connection attribute in Table 1-1“ODBC Connection 
Attributes” on page 61 for more information about 
specifying the amount of data that is buffered.

■ To persist a result set as an XML data file with embedded 
schema, you must use static cursors. See “Persisting a Result 
Set as an XML Data File” on page 101 for more information 
about persisting XML data files. 

ODBC Socket The backend database must support an 
auto-unique column. The name and other 
properties of the auto-unique column must be 
configured in the data source of the SequeLink 
Server.

Oracle None (inherently supported).

Sybase The table must contain an identity column.

Table 2-8.  Support for Keyset-Driven Cursors (ODBC)  (cont.)

Database Conditions for Support
SequeLink Developer’s Reference



Using Stored Procedures with Oracle 95
Using Keyset-Driven Scrollable Cursors
■ The ODBC driver does not support using keyset-driven 

cursors on stored procedures or explicit batches.

■ The ODBC driver cannot use keyset-driven cursors, when the 
Select statement contains any of the following SQL language 
constructions:

• JOIN
• Aggregate functions
• GROUP BY
• (Informix only). When a fragmented table is not explicitly 

created with the WITH ROWIDS clause, the ODBC driver 
returns SQL_SUCCESS_WITH_INFO, with the message that 
a static cursor was substituted.

Using Stored Procedures with Oracle
SequeLink supports stored procedures against Oracle, including 
stored procedures in packages. 

NOTE: Stored procedures in packages must be qualified with the 
package name, for example, EmployeePackage.EmployeeProc. 

Also, SQLProcedures and SQLProcedureColumns can return 
information on procedures within PL/SQL packages, allowing 
ODBC applications to execute these procedures. This section 
contains an example that shows you how to fetch rows using 
Oracle PL/SQL procedures.
SequeLink Developer’s Reference



96 Chapter 2  Developing ODBC Applications  
Example - Part 1

Create or replace package EmployeeInfo as
   Type EmployeeRec is record
   (
   Employee_Id     integer,
   Employee_Name   varchar2(25),
   Employee_Job    varchar2(25),
   Department_Name varchar2(30),
   Employee_Salary integer
   );
   Type EmployeeCursor is ref cursor return 
   EmployeeRec;
   End EmployeeInfo;
   
   Create or replace procedure EmployeeInfoProc
   (empname IN varchar2, empcursor IN OUT 
   EmployeeInfo.EmployeeCursor)
   As
   Begin
   Open empcursor For
   select empno, ename, job, dname, sal 
   from emp, dept
   where emp.deptno=dept.deptno and 
   ename like empname;
   End;

NOTE: In this Oracle PL/SQL package, a record type and a cursor 
(result set) type is defined. The procedure contains an input 
parameter that can have a value, such as Smi%, to request 
information about employees whose last name starts with the 
letters 'Smi' (for example, Smith or Smithwick). The procedure 
also has one input/output parameter of the cursor type defined 
in the package.
SequeLink Developer’s Reference



Using Stored Procedures with Oracle 97
Example - Part 2

This example shows an ODBC function call sequence executing 
the stored procedure.

SQLPrepare(...,'{call EmployeeInfoProc(?)}',...) 
                         <- ODBC SQL syntax to executed stored procedures
SQLBindParameter(...,'Smi%',...) 
                         <- Define the input variable for the input marker ?
                            in the SQL stmt and assign the value 'Smi% to it
SQLExecute()             <- Execute the stored procedure
SQLBindCol()             <- Assign storage for result column 1 in the 
                            result set (Employee_Id)
SQLBindCol()             <- Assign storage for result column 2 in the 
                            result set (Employee_Name)
SQLBindCol()             <- Assign storage for result column 3 in the 
                            result set (Employee_Job)
SQLBindCol()             <- Assign storage for result column 4 in the 
                            result set (Department_Name)
SQLBindCol()             <- Assign storage for result column 5 in the 
                            result set (Employee_Salary)
SQLFetch()               <- Fetch the first record from the result set 
                            generated by the stored procedure.

IMPORTANT: From the following procedure definition, you 
might think that, by having two parameters, the procedure must 
call SQLBindParameter twice:

Create or replace procedure EmployeeInfoProc
(empname IN varchar2, empcursor IN OUT 
EmployeeInfo.EmployeeCursor)

Actually, it does not. The only way to create a result set from an 
Oracle stored procedure is to declare this result set, empcursor, 
as an input/output parameter. This can be seen in the result of 
SQLProcedureColumns(...,'EmployeeInfoProc',...) which an 
application can use to query the server about a stored 
procedure. 
SequeLink Developer’s Reference



98 Chapter 2  Developing ODBC Applications  
The following is an excerpt of a session using the tool ODBCTest:

SQLAllocStmt:
   In: hdbc=0x004609F0, phstmt=VALID
   Return:    SQL_SUCCESS=0

   SQLPrepare:
   In: hstmt=#3 0x00305850, szSqlStr={call EmployeeInfoProc(?)}, cbSqlStr=26
   Return:    SQL_SUCCESS=0

   SQLBindParameter:
   In: hstmt=#3 0x00305850, ipar=1, fParamType=SQL_PARAM_INPUT=1, 
   fCType=SQL_C_CHAR=1,
   fSqlType=SQL_CHAR=1, cbColDef=10, ibScale=0, rgbValue=VALID, 
   cbValueMax=300, pcbValue=VALID, SQL_LEN_DATA_AT_EXEC=FALSE
   Return:    SQL_SUCCESS=0

   SQLExecute:
   In: hstmt=#3 0x00305850
   Return:    SQL_SUCCESS=0

   Get Data All:
   "EMPNO", "ENAME", "JOB", "DNAME", "SAL"
   7934, "MILLER", "CLERK", "ACCOUNTING", 1300.00 
   7654, "MARTIN", "SALESMAN", "SALES", 1250.00
   2 rows fetched from 5 columns.

   SQLProcedureColumns:
   In: hstmt=#4 0x00305BD8, ...Qualifier=NULL, ...Qualifier=0, 
   Owner=SCOTT, ...Owner=5, ...Name=EMPLOYEEINFOPROC,
   ...Name=16, ...Name=NULL, ...Name=0
   Return:    SQL_SUCCESS=0

   Get Data All:
   "PROCEDURE_CAT", "PROCEDURE_SCHEM", "PROCEDURE_NAME", "COLUMN_NAME",
   "COLUMN_TYPE", "DATA_TYPE", ..."TYPE_NAME", "COLUMN_SIZE",
   "BUFFER_LENGTH", "DECIMAL_DIGITS", "NUM_PREC_RADIX", "NULLABLE",
   "REMARKS", "COLUMN_DEF", "SQL_DATA_TYPE", "SQL_DATETIME_SUB",
   "CHAR_OCTET_LENGTH", "ORDINAL_POSITION", "IS_NULLABLE"
   "", "SCOTT", "EMPLOYEEINFOPROC", "EMPNAME", 1, 12, "VARCHAR2", 2000, 
   2000, <Null>, <Null>, 1, <Null>, <Null>, ...12, <Null>, 2000, 1, "YES"
SequeLink Developer’s Reference



Specifying Application IDs 99
Specifying Application IDs
Application IDs are alphanumeric strings passed by a SequeLink 
Client that identify the client application to a SequeLink service 
that has been configured to accept connections only from 
specific application IDs.

For more information about configuring SequeLink services to 
accept connections only from specific application IDs, refer to 
the SequeLink Administrator’s Guide.

Specifying Application IDs Explicitly

ODBC client applications can identify themselves explicitly to the 
SequeLink service in any of the following ways:

■ Specifying the application ID in the ODBC connection string 
that is passed to SQLDriverConnect. For example:

....;APPID=MyAppID;

or

....;ApplicationID=MyAppID;

where MyAppID is the application ID.

■ Specifying the application ID using SQLSetConnectAttr. 
Immediately after each call to SQLConnect or 
SQLDriverConnect connecting to the ODBC Client, call 
SQLSetConnectAttr as shown:

SQLSetConnectAttr(hdbc, 1053, "myAppId", SQL_NTS)

where myAppId is the application ID.

The SQLSetConnectAttr is defined in sql.h. If an incorrect 
application ID is specified, the SQLSetConnectAttr fails and 
all subsequent SQL statements fail.

 

SequeLink Developer’s Reference



100 Chapter 2  Developing ODBC Applications  
Generating Application IDs 
Automatically

ODBC client applications can turn on automatic application ID 
generation in any of the following ways:

■ Specifying the automatic application ID method in the ODBC 
connection string that is passed to SQLDriverConnect. For 
example:

....;AutomaticApplicationID=x;

where x is set to one of the following values:

• When set to 1, the full path of the application executable 
is used as input for the hash function.

• When set to 2, the executable binary file is used as input 
for the hash function.

• When set to 3, both the full path of the application 
executable and the executable binary file are used as 
input for the hash function.

• When set to 4, the full directory name of the application 
executable is used as input for the hash function.

■ Specifying SQLSetConnectAttr. Immediately after each call to 
SQLConnect or SQLDriverConnect connecting to the ODBC 
Client, call SQLSetConnectAttr as shown:

SQLSetConnectAttr(hdbc, 1054, x, SQL_IS_INTEGER)

where x is one of the following values:

• When set to 1, the full path of the application executable 
is used as input for the hash function.

• When set to 2, the executable binary file is used as input 
for the hash function.
SequeLink Developer’s Reference



Sending Arrays of Parameters 101
• When set to 3, both the full path of the application 
executable and the executable binary file are used as 
input for the hash function.

• When set to 4, the full directory name of the application 
executable is used as input for the hash function.

 

Sending Arrays of Parameters
The ODBC driver supports sending arrays of parameters for a 
parameterized statement. Because the data for a single 
statement is sent in a single packet, network traffic is reduced.

See “Using SQLPrepare/SQLExecute and SQLExecDirect” on 
page 115 for more information how sending arrays of 
parameters can improve performance.

Persisting a Result Set as an XML Data File
The ODBC driver allows you to persist a result set as an XML data 
file with embedded schema. To implement XML persistence, a 
client application must do the following:

1 Turn on STATIC cursors. For example:

SQLSetStmtAttr (hstmt, SQL_ATTR_CURSOR_TYPE, 
SQL_CURSOR_STATIC, SQL_IS_INTEGER)

NOTE: A result set can be persisted as an XML data file only if 
the result set is generated using STATIC cursors. Otherwise, 
the following error is returned:

Driver only supports XML persistence when using 
driver’s static cursors.
SequeLink Developer’s Reference



102 Chapter 2  Developing ODBC Applications  
2 Execute a SQL statement. For example:

SQLExecDirect (hstmt, "Select * from GTABLE", SQL_NTS)

3 Persist the result set as an XML data file. For example:

SQLSetStmtAttr (hstmt, SQL_PERSIST_AS_XML, 
"c:\temp\GTABLE.XML", SQL_NTS)

NOTE: A new statement attribute is available to support XML 
persistence, SQL_PERSIST_AS_XML. A client application must 
call SQLSetStmtAttr with this new attribute as an argument. 
See the following table for the definition of valid arguments 
for SQLSetStmtAttr:

A client application can choose to persist the data at any time 
that the statement is in an executed or cursor-positioned state. At 
any other time, the driver returns the following message:

Function Sequence Error
 

Argument Definition

StatementHandle The handle of the statement that 
contains the result set to persist as 
XML.

Attribute SQL_PERSIST_AS_XML. This new 
statement attribute can be found in 
the file QESQLEXT.H, which is installed 
with the driver.

ValuePtr Pointer to a URL that specifies the full 
path name of the XML data file to be 
generated. The directory specified in 
the path name must exist, and if the 
specified file name exists, the file will 
be overwritten.

StringLength The length of the string pointed to by 
ValuePtr or SQL_NTS if ValuePtr points 
to a null terminated string.
SequeLink Developer’s Reference



Error Handling 103
Error Handling
The following types of errors can occur when you are using the 
ODBC Client:

■ ODBC driver errors
■ SequeLink Client errors
■ SequeLink Server errors
■ Database errors

SequeLink® for ODBC Driver Errors

An error generated by the ODBC driver has the following 
format:

[DataDirect] [ODBC SequeLink driver] message

For example:

[DataDirect] [ODBC SequeLink driver] Invalid precision 
specified.

If you receive this type of error, check the last ODBC call your 
application made. Contact your ODBC application vendor, or 
refer to the ODBC documentation included in the ODBC SDK.

SequeLink® Client Errors

An error generated by the ODBC Client has the following 
format:

[DataDirect] [ODBC SequeLink driver] [SequeLink Client] 
message
SequeLink Developer’s Reference



104 Chapter 2  Developing ODBC Applications  
For example:

[DataDirect] [ODBC SequeLink driver] [SequeLink Client] The 
specified transliteration module is not found.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference.

SequeLink® Server Errors

An error generated by SequeLink Server has the following 
format:

[DataDirect] [ODBC SequeLink driver] [SequeLink Server] 
message

For example:

[DataDirect] [ODBC SequeLink driver] [SequeLink Server] 
Only Select statements are allowed in this read-only 
connection.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference.

Database Errors

An error generated by the database has the following format:

[DataDirect] [ODBC SequeLink driver] [...] message

For example:

[DataDirect] [ODBC SequeLink driver] [Oracle] 
ORA-00942:table or view does not exist.
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 105
Use the native error code to look up details about the possible 
cause of the error. For these details, refer to your database 
documentation.
 

Developing Performance-Optimized ODBC 
Applications

This section provides general guidelines for optimizing system 
performance that have been compiled by examining how 
numerous shipping ODBC applications have been implemented. 
These guidelines are divided into the following categories: 

■ “Catalog Functions” on page 105 
■ “Retrieving Data” on page 110 
■ “Selecting ODBC Function” on page 115 
■ “Managing Connections and Updates” on page 120 

Catalog Functions

Because catalog functions, such as those listed here, are slow 
compared to other ODBC functions, their frequent use can 
impair system performance: 

■ SQLColumns
■ SQLColumnPrivileges
■ SQLForeignKeys
■ SQLProcedures
■ SQLProcedureColumns

■ SQLSpecialColumns
■ SQLStatistics
■ SQLTables
■ SQLTablePrivileges
SequeLink Developer’s Reference



106 Chapter 2  Developing ODBC Applications  
Minimizing the Use of Catalog Functions

Compared to other ODBC functions, catalog functions are 
relatively slow. By caching information, applications can avoid 
multiple executions. Although it is almost impossible to write an 
ODBC application without catalog functions, their use should be 
minimized. 

To return all result column information mandated by the ODBC 
specification, a driver may have to perform multiple queries, 
joins, subqueries, and unions to return the required result set for 
a single call to a catalog function. These particular elements of 
the SQL language are performance expensive.

Applications should cache information from catalog functions so 
that multiple executions are unnecessary. For example, call 
SQLGetTypeInfo once in the application and cache the elements 
of the result set that your application depends on. It is unlikely 
that any application uses all elements of the result set generated 
by a catalog function, so the cached information should not be 
difficult to maintain.

Avoiding Search Patterns

Passing null arguments or search patterns to catalog functions 
generates time-consuming queries. In addition, network traffic 
potentially increases because of unwanted results. Always supply 
as many non-null arguments to catalog functions as possible. 
Because catalog functions are slow, applications should invoke 
them efficiently. Any information that the application can send 
the driver when calling catalog functions can result in improved 
performance and reliability.

For example, consider a call to SQLTables where the application 
requests information about the table “Customers.” Often, this 
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 107
call is coded as shown, using the fewest non-null arguments 
necessary for the function to return success:

rc = SQLTables (NULL, NULL, NULL, NULL, "Customers", SQL_NTS, NULL);

A driver may process this SQLTables call into SQL as shown:

SELECT ... FROM SysTables WHERE TableName = 'Customers' UNION ALL
SELECT ... FROM SysViews WHERE ViewName = 'Customers' UNION ALL
SELECT ... FROM SysSynonyms WHERE SynName = 'Customers'
   ORDER BY ...

In this example, the application provided little information 
about the object for which information was requested. Suppose 
three “Customers” tables were returned in the result set: 

■ The first table was owned by the user.
■ The second table was owned by the sales department.
■ The third table was a view created by management.

It may not be obvious to the user which table to choose. If the 
application had specified the OwnerName argument for the 
SQLTables call, only one table would be returned and 
performance would improve. Less network traffic would be 
required to return only one result row and unwanted rows 
would be filtered by the database. 

In addition, if the TableType argument can be supplied, the SQL 
sent to the server can be optimized from a three-query union to 
a single Select statement as shown:

SELECT ... FROM SysTables 
WHERE TableName = 'Customers' and Owner = 'Beth'
SequeLink Developer’s Reference



108 Chapter 2  Developing ODBC Applications  
Determining Table Characteristics with a 
Dummy Query

Avoid using SQLColumns to determine table characteristics. 
Instead, use a dummy query with SQLDescribeCol.

Consider an application that allows the user to choose the 
columns that will be selected. Should the application use 
SQLColumns to return information about the columns to the user 
or prepare a dummy query and call SQLDescribeCol?

Case 1: SQLColumns Method

rc = SQLColumns (... "UnknownTable" ...);
// This call to SQLColumns will generate a query to
// the system catalogs... possibly a join which must be
// prepared, executed, and produce a result set
rc = SQLBindCol (...);
rc = SQLExtendedFetch (...);
// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: SQLDescribeCol Method

// prepare dummy query 
rc = SQLPrepare (... "SELECT * from UnknownTable
    WHERE 1 = 0" ...);
// query is never executed on the server - only prepared
rc = SQLNumResultCols (...);
for (irow = 1; irow <= NumColumns; irow++) {
   rc = SQLDescribeCol (...)
   // + optional calls to SQLColAttributes
   }
// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be
// assumed from the SQLColumns example.
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 109
In both cases, a query is sent to the server. In Case 1, the query 
must be evaluated and form a result set that is returned to the 
client. Case 2 is the better performing model. 

To complicate this discussion, let us consider a database server 
that does not natively support preparing a SQL statement. The 
performance of Case 1 does not change, but the performance of 
Case 2 improves slightly, because the dummy query is evaluated 
before being prepared. Because the Where clause of the query 
always evaluates to FALSE, the query generates no result rows 
and is processed without accessing table data. Again, Case 2 
outperforms Case 1.

Managing the Retrieval of Database 
Meta-Information

Meta-information is information that describes the data stored 
in the database and can include information about the tables in 
the database, the columns in those tables, and the indexes that 
are defined for those tables. This data also is referred to as the 
database’s data dictionary or system catalog.

Typically, ODBC applications extract and use information from 
the database’s data dictionary using specific calls, such as the 
ODBC calls SQLTables, SQLColumns, and SQLPrimaryKeys. In large 
databases, the amount of meta-information that is retrieved can 
be considerable. Because some client applications cannot 
manage large amounts of information efficiently, system 
performance can be adversely affected.

Some ODBC calls have parameters that accept search patterns. 
You can use these parameters to limit the amount of 
meta-information that is retrieved; however, not every client 
application supports these parameters.

SequeLink allows you to use database data dictionary filters and 
database data dictionary views to limit the amount of 
meta-information that is retrieved.
SequeLink Developer’s Reference



110 Chapter 2  Developing ODBC Applications  
Using Database Data Dictionary Filters

Database Data Dictionary filters limit the amount of 
meta-information that can be retrieved from the database’s 
native data dictionary. Specifically, they limit the number of result 
rows that can be returned for SQLTables. The data dictionary 
filters override any call parameters that are passed by the 
application when it accesses the database’s native data 
dictionary.

SequeLink provides the following types of database data 
dictionary filters, which must be defined on the server:

■ Filter by catalog list
■ Filter by schema list
■ Filter by table type
■ Filter by database (DB2 for z/OS only)

For more information about setting the database data dictionary 
filters for a SequeLink service, refer to 
DataSourceSchemaFilterList in the SequeLink Administrator’s 
Guide.

Using Database Data Dictionary Views 

The DataSourceDB2CatalogOwner service attribute on the server 
allows you to limit the meta-information that is returned by 
using views on the database data dictionary. Database Data 
Dictionary views are supported for DB2 for z/OS only. For more 
information about setting the DataSourceDB2CatalogOwner 
service attribute, refer to the SequeLink Administrator’s Guide.

Retrieving Data

To retrieve data efficiently, return only the data that you need, 
and choose the most efficient method of doing so. The guidelines 
in this section will help you optimize system performance when 
retrieving data with ODBC applications.

z/OS
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 111
Retrieving Long Data

Unless it is necessary, applications should not request long data 
(SQL_LONGVARCHAR and SQL_LONGVARBINARY data), because 
retrieving long data across a network is slow and 
resource-intensive.

Most users do not want to see long data. If the user does need to 
see these result items, the application can query the database 
again, specifying only the long columns in the select list. This 
method allows the average user to retrieve result sets without 
having to pay a high performance penalty for network traffic.

Although the best method is to exclude long data from the 
select list, some applications do not formulate the select list 
before sending the query to the ODBC driver (for example, some 
applications SELECT * FROM table_name ...). If the select list 
contains long data, the driver must retrieve that data at fetch 
time, even if the application does not bind the long data in the 
result set. When possible, use a method that does not retrieve all 
columns of the table.

Reducing the Size of Retrieved Data

To reduce network traffic and improve performance, you can 
reduce the size of data being retrieved to some manageable 
limit by calling SQLSetStmtOption with the 
SQL_ATTR_MAX_LENGTH option. This reduces network traffic 
and improves performance.

Although eliminating SQL_LONGVARCHAR and 
SQL_LONGVARBINARY data from the result set is ideal for 
performance optimization, sometimes, long data must be 
retrieved. When this is the case, remember that most users do 
not want to see 100 KB, or more, of text on the screen. What 
techniques, if any, are available to limit the amount of data 
retrieved?
SequeLink Developer’s Reference



112 Chapter 2  Developing ODBC Applications  
Many application developers mistakenly assume that if they call 
SQLGetData with a container of size x, the ODBC driver only 
retrieves x bytes of information from the server. Because 
SQLGetData can be called multiple times for any one column, 
most drivers optimize their network use by retrieving long data 
in large chunks and then returning it to the user when requested. 

For example:

char CaseContainer[1000];
...
rc = SQLExecDirect (hstmt, "SELECT CaseHistory FROM Cases 
   WHERE CaseNo = 71164", SQL_NTS);
...
rc = SQLFetch (hstmt);
rc = SQLGetData (hstmt, 1, CaseContainer,(SWORD)
   sizeof(CaseContainer), ...);

At this point, it is more likely that an ODBC driver will retrieve 
64 KB of information from the server, instead of 1000 bytes. In 
terms of network access, one 64-KB retrieval is less expensive 
than 64 retrievals of 1000 bytes. Unfortunately, the application 
might not call SQLGetData again; therefore, the first and only 
retrieval of CaseHistory would be slowed by the fact that 64 KB of 
data must be sent across the network.

Many ODBC drivers allow you to limit the amount of data 
retrieved across the network by supporting the 
SQL_MAX_LENGTH attribute. This attribute allows the driver to 
communicate to the database server that only x bytes of data are 
relevant to the client. The server responds by sending only the 
first x bytes of data for all result columns. This optimization 
substantially reduces network traffic and improves performance. 
The previous example returned only one row, but, consider the 
case where 100 rows are returned in the result set—the 
performance improvement would be substantial.
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 113
Using Bound Columns

Retrieving data using bound columns (SQLBindCol), instead of 
SQLGetData, reduces the ODBC call load and improves 
performance.

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT <20 columns> 
   FROM Employees WHERE HireDate >= ?", SQL_NTS);
do {
rc = SQLFetch (hstmt);
// call SQLGetData 20 times
} while ((rc == SQL_SUCCESS) || (rc==
SQL_SUCCESS_WITH_INFO));

Suppose the query returns 90 result rows. In this case, more than 
1890 ODBC calls are made (20 calls to SQLGetData x 90 result 
rows + 91 calls to SQLFetch). 

Consider the same scenario that uses SQLBindCol, instead of 
SQLGetData:

rc = SQLExecDirect (hstmt, "SELECT <20 columns> 
   FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 20 times
do {
rc = SQLFetch (hstmt);
} while ((rc == SQL_SUCCESS) || (rc==
SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made is reduced from more than 1890 
to about 110 (20 calls to SQLBindCol + 91 calls to SQLFetch). In 
addition to reducing the call load, many drivers optimize how 
SQLBindCol is used by binding result information directly from 
the database server to the user’s buffer. That is, instead of the 
driver retrieving information into a container and copying that 
information to the user’s buffer, the driver simply requests the 
information from the server be placed directly into the user’s 
buffer.
SequeLink Developer’s Reference



114 Chapter 2  Developing ODBC Applications  
Using SQLExtendedFetch Instead of SQLFetch

Use SQLExtendedFetch instead of SQLFetch to retrieve data. The 
ODBC call load decreases (resulting in better performance) and 
the code is less complex, resulting in more maintainable code.

Most ODBC drivers now support SQLExtendedFetch for forward 
only cursors; yet, most ODBC applications use SQLFetch to 
retrieve data. Again, consider the previous example using 
SQLExtendedFetch, instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);
// use arrays of 100 elements
rc = SQLExecDirect (hstmt, "SELECT <20 columns> 
   FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 1 time specifying row-wise binding
do {
rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0,
   &RowsFetched, RowStatus);
} while ((rc == SQL_SUCCESS) || (rc==
SQL_SUCCESS_WITH_INFO));

Notice the improvement from the previous examples. The initial 
call load was more than 1890 ODBC calls. By choosing ODBC calls 
carefully, the number of ODBC calls made by the application has 
now been reduced to 4 (1 SQLSetStmtOption + 1 SQLExecDirect + 
1 SQLBindCol + 1 SQLExtendedFetch). In addition to reducing the 
call load, many ODBC drivers retrieve data from the server in 
arrays, further improving performance by reducing network 
traffic.

For ODBC drivers that do not support SQLExtendedFetch, the 
application can enable forward-only cursors using the ODBC 
cursor library (call SQLSetConnectOption using 
SQL_ODBC_CURSORS/ SQL_CUR_USE_IF_NEEDED). Although 
using the cursor library does not improve performance, it should 
not be detrimental to application response time when using 
forward-only cursors (no logging is required). Furthermore, using 
the cursor library when SQLExtendedFetch is not supported 
natively by the ODBC driver simplifies the code because the 
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 115
application can depend on SQLExtendedFetch being available. 
The application does not require two algorithms (one using 
SQLExtendedFetch and another using SQLFetch).

Choosing the Right Data Type

Advances in processor technology brought significant 
improvements to the way that operations such as floating-point 
math are handled; however, retrieving and sending certain data 
types are still expensive when the active portion of your 
application will not fit into on-chip cache. When you are 
working with data on a large scale, it is still important to select 
the data type that can be processed most efficiently. For 
example, integer data is processed faster than floating-point 
data. Floating-point data is defined according to internal 
database-specific formats, usually in a compressed format. The 
data must be decompressed and converted into a different 
format so that it can be processed by the wire protocol.

Processing time is shortest for character strings, followed by 
integers, which usually require some conversion or byte 
ordering. Processing floating-point data and timestamps is at 
least twice as slow as processing integers.

Selecting ODBC Function

The guidelines in this section help you to selecting which ODBC 
functions will give you the best performance.

Using SQLPrepare/SQLExecute and 
SQLExecDirect

Using SQLPrepare/SQLExecute is not always as efficient as using 
SQLExecDirect. Use SQLExecDirect for queries that will be 
SequeLink Developer’s Reference



116 Chapter 2  Developing ODBC Applications  
executed once and SQLPrepare/SQLExecute for queries that will 
be executed multiple times.

ODBC drivers are optimized based on the perceived use of the 
functions that are being executed. SQLPrepare/SQLExecute is 
optimized for multiple executions of statements that use 
parameter markers. SQLExecDirect is optimized for a single 
execution of a SQL statement. Unfortunately, more than 75% of 
all ODBC applications use SQLPrepare/SQLExecute exclusively.

Consider an ODBC driver that implements SQLPrepare by creating 
a stored procedure on the server which contains the prepared 
statement. Creating stored procedures involves substantial 
overhead, but the statement can be executed multiple times. 
Although creating stored procedures is performance-expensive, 
processing is minimal because the query is parsed and 
optimization paths are stored at create procedure time. 

Using SQLPrepare/SQLExecute for a statement that is executed 
only once results in unnecessary overhead. Furthermore, 
applications that use SQLPrepare/SQLExecute for large single 
execution query batches exhibit poor performance. Similarly, 
applications that always use SQLExecDirect do not perform as 
well as those that use a logical combination of 
SQLPrepare/SQLExecute and SQLExecDirect sequences.

Using Arrays of Parameters

Passing arrays of parameter values for bulk insert operations, for 
example, with SQLPrepare/SQLExecute and SQLExecDirect can 
reduce the ODBC call load and network traffic. To use arrays of 
parameters, the application calls SQLSetStmtAttr with the 
following attribute arguments:

■ SQL_ATTR_PARAMSET_SIZE sets the array size of the 
parameter.
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 117
■ SQL_ATTR_PARAMS_PROCESSED_PTR assigns a variable filled 
by SQLExecute, which contains the number of rows that are 
actually inserted.

■ SQL_ATTR_PARAM_STATUS_PTR points to an array in which 
status information for each row of parameter values is 
returned.

NOTE: With ODBC 3.x, calls to SQLSetStmtAttr with the 
SQL_ATTR_PARAMSET_SIZE, 
SQL_ATTR_PARAMS_PROCESSED_ARRAY, and 
SQL_ATTR_PARAM_STATUS_PTR arguments replace the ODBC 2.x 
call to SQLParamOptions.

Before executing the statement, the application sets the value of 
each data element in the bound array. When the statement is 
executed, the driver tries to process the entire array contents 
using one network round trip. For example, let us compare the 
following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times

rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)
VALUES (?,?,...)", SQL_NTS);
// bind parameters
...
do {
// read ledger values into bound parameter buffers
...
rc = SQLExecute (hstmt);
// insert row
} while ! (eof);

Case 2: Using Arrays of Parameters

SQLPrepare (hstmt, " INSERT INTO DailyLedger (...) VALUES
(?,?,...)", SQL_NTS);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMSET_SIZE, (UDWORD)100,
SQL_IS_UINTEGER);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR,
&rows_processed, SQL_IS_POINTER);
SequeLink Developer’s Reference



118 Chapter 2  Developing ODBC Applications  
// Specify an array in which to return the status of
// each set of parameters.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_STATUS_PTR,
ParamStatusArray, SQL_IS_POINTER);
// pass 100 parameters per execute
// bind parameters
...
do {
// read up to 100 ledger values into
// bound parameter buffers
...
rc = SQLExecute (hstmt);
// insert a group of 100 rows
} while ! (eof);

In Case 1, if there are 100 rows to insert, 101 network round-trips 
are required to the server, one to prepare the statement with 
SQLPrepare and 100 additional round-trips for each time 
SQLExecute is called.

In Case 2, the call load has been reduced from 100 SQLExecute 
calls to only 1 SQLExecute call. Furthermore, network traffic is 
reduced considerably.

Using SQLPrepare and Multiple SQLExecute 
Calls

Applications that use SQLPrepare and multiple SQLExecute calls 
should use SQLParamOptions. Passing arrays of parameter values 
reduces the ODBC call load and network traffic.

Consider the following example that inserts data:

rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...)
   VALUES (?,?,...)", SQL_NTS);
// bind parameters
...
do {
// read ledger values into bound parameter buffers
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 119
...
rc = SQLExecute (hstmt);      // insert row
} while ! (eof);

If there are 100 rows to insert, SQLExecute is called 100 times, 
resulting in 100 network requests to the server. 

Alternatively, consider an algorithm that uses parameter arrays 
by calling SQLParamOptions:

rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...) 
   VALUES (?,?,...)", SQL_NTS);
rc = SQLParamOptions (hstmt, (UDWORD) 50, &CurrentRow);
// pass 50 parameters per execute
// bind parameters
...
do {
// read up to 50 ledger values into bound parameter buffers
...
rc = SQLExecute (hstmt);      // insert row

The call load is reduced from 100 to just 2 SQLExecute calls. 
Furthermore, network traffic is reduced considerably. To achieve 
the best performance, applications should contain algorithms 
for using SQLParamOptions. SQLParamOptions is ideal for 
copying data into new tables or bulk loading tables. Note, 
however, that some ODBC drivers do not support 
SQLParamOptions. 

Using the Cursor Library

If the driver provides scrollable cursors, do not use the cursor 
library automatically. The cursor library creates local temporary 
log files, which are performance-expensive to generate and 
provide worse performance than native scrollable cursors.

The cursor library adds support for static cursors, which simplifies 
the coding of applications that use scrollable cursors. However, 
the cursor library creates temporary log files on the user’s local 
disk drive as it performs the task. Typically, disk input/output is a 
SequeLink Developer’s Reference



120 Chapter 2  Developing ODBC Applications  
slow operation. Although the cursor library is beneficial, 
applications should not choose automatically to use the cursor 
library when an ODBC driver supports scrollable cursors natively.

Typically, ODBC drivers that support scrollable cursors achieve 
better performance by requesting that the database server 
produce a scrollable result set, instead of emulating the 
capability by creating log files. Many applications use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS,
   SQL_CUR_USE_ODBC);

but should use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS,
   SQL_CUR_USE_IF_NEEDED);

Managing Connections and Updates

The guidelines in this section will help you to manage 
connections and updates to improve system performance for 
your ODBC applications.

Managing Connections

Connection management affects application performance. 
Optimize your applications by connecting once and using 
multiple statement handles, instead of performing multiple 
connections. Avoid connecting to a data source after establishing 
an initial connection. 

Although gathering driver information at connection is a good 
practice, it often is more efficient to gather it in one step rather 
than two steps. Some ODBC applications are designed to call 
informational gathering routines that have no record of already 
attached connection handles. For example, some applications 
establish a connection and then call a routine in a separate DLL or 
shared library that reattaches and gathers information about the 
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 121
driver. Applications that are designed as separate entities should 
pass the already connected HDBC pointer to the data collection 
routine instead of establishing a second connection.

Another bad practice is to connect and disconnect several times 
throughout your application to perform SQL statements. 
Connection handles can have multiple statement handles 
associated with them. Statement handles can provide memory 
storage for information about SQL statements. Therefore, 
applications do not need to allocate new connection handles to 
process SQL statements. Instead, applications should use 
statement handles to manage multiple SQL statements.

On Windows, you can significantly improve performance with 
connection pooling, especially for applications that connect over 
a network or through the World Wide Web. With connection 
pooling, closing connections does not close the physical 
connection to the database. When an application requests a 
connection, an active connection from the connection pool is 
reused, avoiding the network input/output needed to create a 
new connection.

Connection and statement handling should be addressed before 
implementation. Spending time and thoughtfully handling 
connection management improves application performance and 
maintainability.

Managing Commits in Transactions

Committing data is extremely disk input/output intensive and 
slow. If the ODBC driver can support transactions, always turn 
Autocommit off. 

What does a commit actually involve? The database server must 
flush back to disk every data page containing updated or new 
data. This is not a sequential write, but a searched write to 
replace existing data in the table. By default, Autocommit is on 
when connecting to a data source, and Autocommit mode 
SequeLink Developer’s Reference



122 Chapter 2  Developing ODBC Applications  
usually impairs performance because of the significant amount of 
disk input/output required to commit every operation. 

Some database servers do not provide an Autocommit mode. For 
this type of server, the ODBC driver must explicitly issue a 
COMMIT statement and a BEGIN TRANSACTION for every 
operation sent to the server. In addition to the large amount of 
disk input/output required to support Autocommit mode, a 
performance penalty is paid for up to three network requests for 
every statement issued by an application.

Choosing the Right Transaction Model

Many systems support distributed transactions; that is, 
transactions that span multiple connections. Distributed 
transactions are at least four times slower than normal 
transactions due to the logging and network input/output 
necessary to communicate between all the components involved 
in the distributed transaction. Unless distributed transactions are 
required, avoid using them. Instead, use local transactions when 
possible.

Using Positional Updates and Deletes

Use positional updates and deletes or SQLSetPos to update data. 
Although positional updates do not apply to all types of 
applications, developers should use positional updates and 
deletes when it makes sense. Positional updates (using “update 
where current of cursor” or using SQLSetPos) allow the developer 
to signal the ODBC driver to “change the data here” by 
positioning the database cursor to the appropriate row to be 
changed. The designer is not forced to build a complex SQL 
statement and simply supplies the data that will be changed.

In addition to making the application more easily maintainable, 
positional updates usually result in improved performance. 
Because the database server is already positioned on the row for 
SequeLink Developer’s Reference



Developing Performance-Optimized ODBC Applications 123
the Select statement in process, performance-expensive 
operations to locate the row to be changed are not needed. If 
the row must be located, the server usually has an internal 
pointer to the row available (for example, ROWID). 

Using SQLSpecialColumns

Use SQLSpecialColumns to determine the optimal set of columns 
to use in the Where clause for updating data. Often, 
pseudo-columns provide the fastest access to the data, and these 
columns can only be determined by using SQLSpecialColumns.

Some applications cannot be designed to take advantage of 
positional updates and deletes. These applications typically 
update data by forming a Where clause consisting of some 
subset of the column values returned in the result set. Some 
applications may formulate the Where clause by using all 
searchable result columns or by calling SQLStatistics to find 
columns that may be part of a unique index. These methods 
usually work, but may result in fairly complex queries.

Consider the following:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name,
   ssn, address, city, state, zip FROM emp", SQL_NTS);
// fetchdata
...
rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ?
   WHERE first_name = ? and last_name = ? and ssn = ?
   and address = ? and city = ? and state = ? and zip = ?",
   SQL_NTS);
// fairly complex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to 
retrieve the optimal set of columns (possibly a pseudo-column) 
that identifies a specific record. Many databases support special 
columns that are not explicitly defined by the user in the table 
definition but are “hidden” columns of every table (for example, 
ROWID and TID). These pseudo-columns provide the fastest 
SequeLink Developer’s Reference



124 Chapter 2  Developing ODBC Applications  
access to data because they typically point to the exact location 
of the record. Because pseudo-columns are not part of the 
explicit table definition, they are not returned from SQLColumns. 
To determine if pseudo-columns exist, call SQLSpecialColumns.

Consider the previous example again:

...
rc = SQLSpecialColumns (hstmt, ..... 'emp', ...);
...
rc = SQLExecDirect (hstmt, "SELECT first_name, last_name,
   ssn, address, city, state, zip, ROWID FROM emp",
   SQL_NTS);
// fetch data and probably "hide" ROWID from the user
...
rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ?
   WHERE ROWID = ?", SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudo-columns, the 
result set of SQLSpecialColumns consists of the columns of the 
optimal unique index on the specified table (if a unique index 
exists); therefore, your application does not need to call 
SQLStatistics to find the smallest unique index.
SequeLink Developer’s Reference



125
Part 2: Developing ADO 
Applications

This part contains the following chapters:

■ Chapter 3 “Using the ADO Client” on page 127 provides 
information about using ADO applications with the 
SequeLink Client for ADO.

■ Chapter 4 “Developing ADO Applications” on page 171 
provides information about developing ADO applications for 
SequeLink environments.
SequeLink Developer’s Reference 



126   Part 2: Developing ADO Applications  
SequeLink Developer’s Reference 



127
3 Using the ADO Client

This chapter provides information about using ADO/OLE DB 
applications with the SequeLink Client for ADO (the ADO Client). 

About the ADO Client
The ADO Client supports ADO/OLE DB applications through a 
component called the SequeLink for ADO data provider. The 
ADO Client is an ADO middleware data access component. It 
uses ADO technology to connect business applications to 
relational data stores (like Oracle). In most cases, minimal user 
interaction with the ADO Client middleware is needed because it 
works in the background, providing connectivity transparently.

Some businesses write and support their own applications for 
data access. For example, application developers may need to 
write ADO or OLE DB-based data consumers that use the ADO 
provider. This book provides programming information for 
developers who want to control data source connections from 
within their applications.

After you install the ADO Client, your OLE DB- or ADO-based 
business applications (data consumers) can automatically detect 
it on your system. Depending on the data consumer’s design, the 
data consumer can connect directly to a data source that uses 
the ADO provider, or it can provide a way to select the data 
provider to make a connection.
SequeLink Developer’s Reference



128 Chapter 3  Using the ADO Client  
You use the DataDirect Configuration Manager to define ADO 
data sources for the ADO provider. After you have defined data 
sources that use the provider, you can select the provider from 
your data consumer to make a connection. See “Configuring 
ADO Client Data Sources” on page 133 for instructions on 
creating and configuring data sources.

After you have defined ADO data sources, you can access them 
from your data consumer and connect to them. See “Testing ADO 
Connections” on page 147 for more information.

Using the DataDirect Configuration Manager
To create and configure data sources for the ADO Client, you use 
the DataDirect Technologies Configuration Manager. 

To start the Configuration Manager, select Start / Programs, and 
select DataDirect SequeLink 6.0 Client for ADO. Then, select the 
DataDirect Configuration Manager application. 
SequeLink Developer’s Reference



Using the DataDirect Configuration Manager 129
The Configuration Manager window is divided into two panes. 
As Figure 3-1 shows, the left pane displays a folder containing 
defined ADO data sources. When you select a data source, the 
right pane displays the properties for the selected data source.

Figure 3-1.  DataDirect Technologies Configuration Manager 

Double-click the Data Sources folder to display any existing ADO 
data sources. The Configuration Manager displays the ADO data 
sources contained in the current directory, which is shown in the 
status bar at the bottom of the Configuration Manager. The first 
time you start the Configuration Manager, the current directory 
defaults to the \Program Files\DataDirect\slado60 directory.
SequeLink Developer’s Reference



130 Chapter 3  Using the ADO Client  
Working with the DataDirect 
Configuration Manager

Table 3-1 summarizes the parts and functions of the 
Configuration Manager that you use with ADO data sources.

NOTE: Options that are not supported by the ADO provider are 
disabled in the toolbar and are omitted from this description.

Table 3-1.  DataDirect Technologies Configuration Manager: 
Parts and Functions for ADO Data Sources

Use this element... To do this...

Toolbar
Create new data sources

Change the current directory

View online help

Menu Bar File ■ Create a new data source

■ Exit from the DataDirect 
Configuration Manager

Edit ■ Delete a data source

■ Rename a data source

■ Modify a data source

View ■ View or hide the toolbar and status 
bar

■ Refresh the Configuration Manager

Shortcut Tip: Right-clicking an item in the left pane displays a pop-up 
menu that allows you to perform the same actions that are available 
from the toolbar and menu bar.
SequeLink Developer’s Reference



Using the DataDirect Configuration Manager 131
Displaying Data Source Properties
1 Start the Configuration Manager. To start the Configuration 

Manager, select Start / Programs, and select DataDirect 
SequeLink 6.0 Client for ADO. Then, select the DataDirect 
Configuration Manager application.

2 Double-click the Data Sources folder to display any existing 
ADO data sources.

3 Highlight a data source in the list. The properties of the data 
source display in the right pane. For example, the following 

Tools ■ Change the directory in which to look 
for data sources

■ Define a Template data source 
directory

■ Define a Master data source directory

Help View online help.

Vertical splitter 
bar

Adjust the size of the left and right 
panes.

Status bar ■ Show the current keyboard state, 
including when NUM LOCK, 
SCROLL LOCK, and CAPS LOCK are 
turned on

■ Show the current directory

Table 3-1.  DataDirect Technologies Configuration Manager: 
Parts and Functions for ADO Data Sources (cont.)

Use this element... To do this...

Shortcut Tip: Right-clicking an item in the left pane displays a pop-up 
menu that allows you to perform the same actions that are available 
from the toolbar and menu bar.
SequeLink Developer’s Reference



132 Chapter 3  Using the ADO Client  
figure shows the properties of an ADO data source named 
SL Accounting displayed in the right pane.

Figure 3-2.  DataDirect Technologies Configuration Manager: Displaying Data Source 
Properties

You can right-click a data source in the left pane to display a 
pop-up menu. The pop-up menu offers the same actions for the 
item that are available from the Edit menu.

To display a setup window for an existing data source, 
double-click an ADO data source in the Data Sources folder. 

To create a new data source, highlight the Data Sources folder; 
then, select File / New / Data Source from the menu bar.
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 133
Configuring ADO Client Data Sources
The following sections provide instructions for configuring ADO 
client data sources:

■ “Creating an ADO Client Data Source” on page 133
■ “Modifying an ADO Client Data Source” on page 140
■ “Renaming an ADO Client Data Source” on page 141
■ “Deleting an ADO Client Data Source” on page 141
■ “Copying an ADO Client Data Source” on page 142
■ “Changing Data Source Directories” on page 143
■ “Defining Default Setup Options” on page 143

Creating an ADO Client Data Source
1 Start the DataDirect Configuration Manager. To start the 

Configuration Manager, select Start / Programs, and select 
DataDirect SequeLink 6.0 for ADO Client. Then, select the 
DataDirect Configuration Manager application. 

2 Select File / New / Data Source from the menu bar. The New 
Data Source window appears.

3 Type a name for the data source. All data sources located in 
the same directory must have unique names. If the name has 
SequeLink Developer’s Reference



134 Chapter 3  Using the ADO Client  
already been used for another data source, you are prompted 
to enter a different name.

4 In the DataDirect OLE DB Providers drop-down list, select 
DataDirect SequeLink 6.0 ADO Provider. Then, click Set Up 
Data Source. 

5 The DataDirect SequeLink ADO Provider Setup window 
appears.

NOTE: The General tab displays only fields that are required 
for creating a data source. The fields on all other tabs are 
optional, unless noted otherwise.

6 Provide the following information.

Data Source Name: This is a read-only field that uniquely 
identifies this ADO data source configuration. Examples 
include Accounting or SequeLink to Oracle Data. 
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 135
Description: Optionally, type a description of the data source. 
For example, My Accounting Database or Accounting Data in 
Oracle. 

SequeLink Server Host: Type the TCP/IP host name of the 
SequeLink service to which you want the ADO Client to 
connect. This field is available only if the Use LDAP check box 
is not selected.

SequeLink Server Port: Type the TCP/IP port the SequeLink 
service is listening on for incoming connection requests. The 
port you specify must be the same as the one that was 
specified for the SequeLink service when the SequeLink 
Server was installed; the default is 19996. This field is 
available only if the Use LDAP check box is not selected.

Server Data Source: Type the name of a server data source 
configured for the SequeLink service to use for the 
connection or select one from the drop-down list. This field is 
optional. If a server data source is not specified, the default 
server data source for that SequeLink service will be used for 
the connection. This field is available only if the Use LDAP 
check box is not selected.

Use LDAP: To configure the ADO Client to retrieve 
connection information from an LDAP directory, select the 
Use LDAP check box. The fields change on the lower half of 
the screen to accommodate the information that is required 
to query an LDAP server for connection information. Provide 
the following information:

LDAP Server Host: Type the TCP/IP host name of the LDAP 
server.

LDAP Server Port: Type the TCP/IP port on which the LDAP 
server is listening for incoming connection requests. The 
default value is 389.

Distinguished Name (DN): Type an identifier that uniquely 
identifies the LDAP entry where connection information is 
stored. 
SequeLink Developer’s Reference



136 Chapter 3  Using the ADO Client  
For more information about retrieving connection 
information from LDAP directories, refer to the SequeLink 
Administrator’s Guide.

Encrypted (SSL): If the remote SequeLink service is configured 
for SSL encryption, select this check box. You must select this 
check box if connecting to a SequeLink service enabled for 
SSL.

When the check box is cleared (the default), communication 
between the SequeLink Client and SequeLink Server is not 
encrypted with SSL.

For more information about encrypting data, refer to the 
SequeLink Administrator’s Guide.

NOTES: 

■ Data encryption with SSL is not supported for LDAP 
Servers. The Use LDAP and the Encrypted (SSL) check boxes 
are mutually exclusive.

■ SSL encryption is not supported for SequeLink Server for 
DB2 on z/OS. To support SSL in a DB2 for z/OS 
environment, use the SequeLink Proxy Server. For 
information about using the SequeLink Proxy Server, refer 
to the SequeLink Administrator’s Guide.
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 137
7 Optionally, click the Trace tab to enable tracing options. 
Specify values on the Trace tab, then, click Apply.

NOTE: Settings on this tab apply to all data sources for the 
ADO data provider. You cannot set the trace options 
programatically.

Enable: Select this check box to enable tracing support. By 
default, the check box is not selected.
SequeLink Developer’s Reference



138 Chapter 3  Using the ADO Client  
Trace IUnknown Methods: Select this check box to enable 
tracing support of IUnknown methods. By default, the check 
box is not selected.

Append to Existing Output File: Select this check box to 
append tracing results to an output file. By default, the check 
box is selected.

Output File: Type the name of the file to which tracing results 
will be appended. This file contains the tracing results of all 
data sources for the ADO data provider.
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 139
8 Optionally, click the Options tab to add connection attributes 
(see “Connecting with a Provider String” on page 155 for the 
values that can be entered on this tab). Values in the Provider 
Options field are separated by semicolons. 

For example, the following string sets values for the 
Alternate Servers, Connection Retry Count, and Connection 
Retry Delay connection failover options:

Alternate Servers=(Host=server2:Port=19996,Host=
server3:Port=19996,Host=server4:Port=19996);Connection 
Retry Count=2;Connection Retry Delay=3

9 At any point during the configuration process, you can click 
Test Connect to attempt to connect to the data source using 
the connection properties specified in the provider Setup 
dialog box. A logon dialog box appears; see “ADO 
Connection Dialogs” on page 148 for details.
SequeLink Developer’s Reference



140 Chapter 3  Using the ADO Client  
Note that the information you enter in the logon dialog box 
during a test connect is not saved.

■ If the data provider can connect, it releases the connection 
and displays a Connection Established message. Click OK.

■ If the data provider cannot connect because of an 
improper environment or incorrect connection value, it 
displays an appropriate error message. Click OK.

NOTE: If you are configuring alternate servers for use with the 
connection failover feature, be aware that the Test Connect 
button tests only the primary server, not the alternate servers.

NOTE: All data sources are saved to the current directory 
displayed in the Configuration Manager. See “Changing Data 
Source Directories” on page 143 for instructions on changing the 
current directory.

Modifying an ADO Client Data Source

To modify the properties of a data source, double-click the data 
source in the Data Sources folder of the Configuration Manager 
to display the SequeLink for ADO Provider Setup window. See 
“Creating an ADO Client Data Source” on page 133 for a 
description of the fields you can change.
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 141
Renaming an ADO Client Data Source

You can rename data sources. You cannot rename or delete the 
Data Sources folder.

To rename an ADO provider data source: 

1 Start the Configuration Manager. To start the Configuration 
Manager, select Start / Programs, and select DataDirect 
SequeLink 6.0 Client for ADO. Then, select the DataDirect 
Configuration Manager application. 

2 Select the data source you want to rename. 

3 Select Edit / Rename. The data source name becomes an 
editable field. 

4 Type the new name of the data source and press ENTER.

Deleting an ADO Client Data Source
1 Start the Configuration Manager. To start the Configuration 

Manager, select Start / Programs, and select DataDirect 
SequeLink 6.0 Client for ADO. Then, select the DataDirect 
Configuration Manager application. 

2 Select the data source you want to delete. 

3 Select Edit / Delete. 

4 A window appears prompting you to confirm the deletion. 
Click Yes to delete the selected data source.

After you change the current directory, the left pane of the 
Configuration Manager is automatically refreshed to display the 
data sources in the new directory.

The current directory remains active until you change it again. 
Any data sources you create are saved to the current directory.
SequeLink Developer’s Reference



142 Chapter 3  Using the ADO Client  
Copying an ADO Client Data Source

Copying a data source can make it easier for you to configure 
new data sources that use the same properties as existing data 
sources. When you copy a data source, the copied data source 
retains all the properties of the original data source. After 
copying, you can modify the properties of the data source as 
needed.

To copy a data source:

1 In Windows Explorer, navigate to the directory that contains 
the data source you want to copy. All ADO provider data 
sources use .IDS as their file extension. For example, if the 
data source name appears as TEST in the Configuration 
Manager, the name of the data source file is TEST.IDS.

NOTE: The directory location of a data source displayed in the 
Configuration Manager appears in the status bar at the 
bottom of the Configuration Manager. 

2 Copy the data source to the Windows Explorer clipboard; 
then, perform one of the following actions:

■ To copy to a different directory, navigate to the directory 
you want to copy to and paste the data source in that new 
directory. You can use the same data source name.

■ To copy to the same directory, paste the data source; then, 
rename the data source to a unique name. 

3 To display the new data source in the Configuration Manager, 
perform one of the following actions: 

■ If you copied the data source to a different directory, 
make that directory the current directory in the 
Configuration Manager by selecting Tools / Options / Main 
Data Source Directory. The new data source appears in the 
Data Sources folder.
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 143
■ If you copied the data source to the same directory and 
renamed the data source, select View / Refresh in the 
Configuration Manager. The new data source appears in 
the Data Sources folder.

 

Changing Data Source Directories

The Configuration Manager displays the ADO data sources 
contained in the current directory, which is displayed in the 
status bar at the bottom of the Configuration Manager. The first 
time you start the Configuration Manager, the current directory 
defaults to the ADO Client installation directory. 

To change the current directory: 

1 Click the Change main Data Source directory button on the 
tool bar. 

2 Type the name of the new directory in the Current Directory 
field, or, click the Browse button to select a different 
directory.

3 Click OK. 

After you change the current directory, the left pane of the 
Configuration Manager is automatically refreshed to display the 
data sources in the new directory. The current directory remains 
active until you change it again. Any data sources you create are 
saved to the current directory.
 

Defining Default Setup Options

The Configuration Manager supports configurable default setup 
options and override options through the use of a template data 
source file and a master data source file, respectively. 
SequeLink Developer’s Reference



144 Chapter 3  Using the ADO Client  
A template data source file is used by the Configuration Manager 
to populate values in the fields of the Setup dialog box when a 
user creates a new data source. By creating a template data 
source file, you can define the default setup options (default 
values for newly created data sources). The user can change these 
default values when setting up a new data source.

A master data source file is used to provide global connection 
options. The options set in the master data source file override 
connection options set any other way (for example, by the data 
source specified by an application or a connection string) when 
an application is connecting to the database. 

Creating a Template Data Source File

You can define template data source files to simplify the creation 
of data source files. A template data source file allows you to 
define the default setup options for SequeLink data providers. 
The Configuration Manager supplies these values in the Setup 
dialog box when a user creates a new data source. The user can 
change these default values when setting up a new data source.

To create a template data source file:

1 Create a directory in which to store the template data source 
file.

IMPORTANT: The template data source directory cannot be 
the same as the directory for other data sources.
SequeLink Developer’s Reference



Configuring ADO Client Data Sources 145
2 In the Configuration Manager window, select 
Tools / Options / Template Data Source Directory. Specify the 
directory that you created in Step 1; then, click OK. 

3 Select Tools / Options / Main Data Source Directory. Specify 
the template directory; then, click OK. This sets the template 
directory as the location in which to create the template data 
source file. 

4 Create a data source, defining the values that will be most 
commonly used. This will be your template data source file 
for the specified data provider. 

5 Select Tools / Options / Main Data Source Directory. Specify 
the directory that contains your data sources; then, click OK.

Creating a Master Data Source File

You can define a master data source file that overrides 
connection options set any other way. This allows you to control 
the way that users connect to the database. 

During connection, the Main data source directory is checked for 
a data source, and connection values are retrieved. If a Master 
data source directory exists, it is then checked for the same data 
SequeLink Developer’s Reference



146 Chapter 3  Using the ADO Client  
source. The connection settings for user data sources will be 
overridden by the master data source file.

To create a master data source file:

1 Create a directory in which to store the master data source 
file.

IMPORTANT: The master data source directory cannot be the 
same as the directory for template data sources or any other 
data provider data sources.

2 In the Configuration Manager window, select 
Tools / Options / Master Data Source Directory and specify the 
directory that you created in Step 1. The master data source 
file will be used at connection time. 

3 Select Tools / Options / Main Data Source Directory. Specify 
the master data source directory; then, click OK. This sets the 
master data source directory as the location in which to create 
the master data source file. 

4 Create one or more data sources. The data sources in this 
directory will be your master data source files for the 
specified data providers.

5 Select Tools / Options / Main Data Source Directory. Specify 
the directory that contains your data sources; then, click OK.
SequeLink Developer’s Reference



Connecting to an ADO Client 147
Connecting to an ADO Client
You can connect to a data source using a Connection window, or 
using a provider string. See “Connecting with a Provider String” 
on page 155 for information about connecting using an ADO 
provider string.

Testing ADO Connections

The ADO provider opens a Connection window when you 
perform either of the following actions:

■ You request a connection to an ADO provider from within 
your data consumer, and your data consumer requests the 
ADO provider to prompt for missing connection parameters.

■ You click Test Connect in an ADO provider setup window to 
test the connection to a data source you have set up.

See “ADO Connection Dialogs” on page 148 for more 
information about ADO connection dialogs that may appear.
 

SequeLink Developer’s Reference



148 Chapter 3  Using the ADO Client  
ADO Connection Dialogs

When your data consumer requests the ADO provider to prompt 
for missing connection parameters and an ADO data source has 
not been specified, the DataDirect SequeLink for ADO Provider 
Connection dialog box appears.

Select the data source that you want to use from the drop-down 
list. If you do not want to specify a data source name, select None 
from the drop-down list. In some cases, the data source name 
may be supplied automatically. Then, click OK. 

The other connection dialogs that may appear involve prompting 
for information required to make a SequeLink data access 
connection. 
SequeLink Developer’s Reference



Connecting to an ADO Client 149
A SequeLink data access connection involves the following 
stages:

1 A network connection is established. 

2 An authentication mechanism is used to establish the 
identity of the SequeLink Client to the SequeLink Server.

3 Based on information provided by the SequeLink Client 
application (for example, a database user name and 
password), a database connection is established.

Stage 1: Establishing a Network Connection

The first stage of the connection process involves establishing a 
network connection. The dialog that appears depends on 
whether the connection has been configured to connect directly 
to a SequeLink service or to retrieve connection information for 
the SequeLink service from a centralized LDAP directory.
SequeLink Developer’s Reference



150 Chapter 3  Using the ADO Client  
Connecting Directly to a SequeLink® Service

If the connection has been configured to connect directly to a 
SequeLink service, the Connect to the SequeLink Server dialog 
box appears.

Provide the following information; then, click OK.

SequeLink Server Host: Type the TCP/IP host name of the 
SequeLink service.

SequeLink Server Port: Type the TCP/IP port on which the 
SequeLink service is listening. A default installation of SequeLink 
Server uses the port 19996.

Server Data Source: Type the name of a server data source to use 
for the connection or click the ... button to select an existing data 
source. This step is optional. If a server data source is not 
specified, the default server data source for that service will be 
used for the connection.
SequeLink Developer’s Reference



Connecting to an ADO Client 151
Retrieving Connection Information from an LDAP 
Directory

If the connection has been configured to connect to an LDAP 
server to retrieve connection information from an LDAP 
directory, the Connect to the SequeLink Server dialog box 
appears.

Provide the following information; then, click OK.

LDAP Server Host: Type the TCP/IP host name of the LDAP server.

LDAP Server Port: Type the TCP/IP port on which the LDAP server 
is listening.

Distinguished Name: Type the Distinguished Name (DN) of the 
LDAP entry.

For information about setting up an LDAP server for SequeLink, 
refer to the SequeLink Administrator’s Guide.

Stage 2: SequeLink® Server Authentication

The second stage of the connection process involves 
authentication of the SequeLink Client to the SequeLink Server. 
The dialog boxes that appear depend on how authentication is 
configured for the SequeLink service.

■ When ServiceAuthMethods=anonymous or 
ServiceAuthMethods=integrated_nt, no dialogs appear.
SequeLink Developer’s Reference



152 Chapter 3  Using the ADO Client  
■ When ServiceAuthMethods=OSLogon(HUID,HPWD) or 
ServiceAuthMethods=OSLogon(UID,PWD), the Logon to 
SequeLink Service dialog box appears.

Provide the following information; then, click OK.

Host User Name: Type the host user name.

NOTE: When connecting to a Windows server, you must prefix 
the host user name with a server name, if authenticating to a 
local server, or a domain name (for example, SALES\DJONES). 
If the server name or domain name is omitted, the SequeLink 
Server will attempt to authenticate the user ID and password 
with the database account defined for the machine on which 
the SequeLink Server is running. If this validation fails, the 
SequeLink Server will attempt to authenticate the user ID and 
password with the database account defined for the domain 
of the machine on which the SequeLink Server is running.

Host Password: Type the host password.
SequeLink Developer’s Reference



Connecting to an ADO Client 153
■ When ServiceAuthMethods=OSLogon(HUID,HPWD,NPWD) or 
ServiceAuthMethods=OSLogon(UID,PWD,NPWD) and the 
password is expired, the Password expired. Please specify 
new password dialog box appears.

NOTE: If the password is not expired, the previous dialog 
appears. You are only prompted for the Host User Name and 
Host Password.

Provide the following information; then, click OK.

Host User Name: Type the host user name.

NOTE: When connecting to a Windows server, you must 
prefix the host user name with a server name, if 
authenticating to a local server, or a domain name (for 
example, SALES\DJONES). If the server name or domain name 
is omitted, the SequeLink Server will attempt to authenticate 
the user ID and password with the database account defined 
for the machine on which the SequeLink Server is running. If 
this validation fails, the SequeLink Server will attempt to 
authenticate the user ID and password with the database 
account defined for the domain of the machine on which the 
SequeLink Server is running.

Host Password: Type the host password.

New Password: Type the new password to be used by the 
SequeLink password change mechanism.
SequeLink Developer’s Reference



154 Chapter 3  Using the ADO Client  
Confirm Password: Type again the new password to 
confirm it.

For more information about configuring authentication, refer to 
the SequeLink Administrator’s Guide.

Stage 3: Data Store Logon

The last stage of the connection process involves logging on the 
data store. The dialogs that appear depend on the data store 
logon method configured for the SequeLink service:

■ When DataSourceLogonMethod=OSIntegrated, no dialogs 
appear.

■ When DataSourceLogonMethod=DBMSLogon(UID,PWD) or 
DataSourceLogonMethod=DBMSLogon(DBUID,DBPWD), a 
data store-specific user name and password are required and 
the Logon to SequeLink Service dialog box appears.

Provide the following information; then, click OK.

Database User Name: Type the database logon ID.

Database Password: Type the database password.

Database: Type the name of the database to which you want 
to connect. This field is disabled when the data store does not 
recognize the concept of databases.

For more information about configuring data store logon 
methods, refer to the SequeLink Administrator’s Guide.
SequeLink Developer’s Reference



Connecting to an ADO Client 155
Connecting with a Provider String

Once a data source is defined through the DataDirect 
Configuration Manager and the SequeLink for ADO Provider 
Setup Assistant, your application can connect directly to that 
data source. You can override the current settings for the data 
source when you connect using a provider string.

A provider string contains attribute=value pairs that control 
various aspects of the data provider’s connection and interaction 
with the database. When an application names a specific data 
source to connect to, the application can also pass the data 
provider a provider string of attribute=value pairs. The data 
provider uses the values in the provider string instead of the 
default values defined for the data source in the system 
information.

Using provider strings allows application developers to configure 
connections for users programmatically and ensures that users 
have the optimum settings for working with the provider and 
database. Any values a user has set for a data source through the 
DataDirect Configuration Manager are overridden by 
corresponding values in the provider string for the current 
session only.

The provider string sets the DBPROP_INIT_PROVIDERSTRING 
initialization property and has the form:

"attribute=value;attribute=value;"

You can specify the attribute=value pairs on the Options tab of 
the DataDirect SequeLink for ADO 6.0 Provider Setup window. 

See “ADO Connection Attributes” for information about the 
ADO connection attributes. 
SequeLink Developer’s Reference



156 Chapter 3  Using the ADO Client  
ADO Connection Attributes

Table 3-2 provides a list of ADO connection attributes supported 
by the ADO provider. It lists a description for each attribute. The 
defaults listed in the table are initial defaults that apply when no 
value is specified in the provider string or in the data source 
definition in the system information. If you specified a value for 
the attribute when configuring the data source in the Setup 
window, that value is your default.
SequeLink Developer’s Reference



Connecting to an ADO Client 157
Table 3-2.  ADO Connection Attributes

Attribute Description

Alternate Servers Specifies a list of alternate SequeLink servers that the data 
provider will try to connect to if the primary SequeLink 
server is unavailable. Specifying a value for this attribute 
enables connection failover for the data provider.

The value must be in the form of a string that defines 
connection information for each alternate SequeLink 
server. The Host and Port values are required for each 
alternate server entry. Connection options (property=
value) are optional for each alternate server entry. The 
string has the format:

(Host=servername1:Port=port1[:property=
value[:...]],Host=servername2:Port=
port2[:property=value[:...]],...)

For example, the following Alternate Servers value defines 
two alternate SequeLink servers for connection failover:

Alternate Servers=(Host=AccountingSLServer:Port=
13999:APPName=SequeLink for ADO App,Host=
AccountingAltServer:Port=13998:APPName=SequeLink 
for ADO App)

IMPORTANT: If you specify an LDAP server in the Host 
connection attribute, the alternate servers must be LDAP 
servers. For example, the following Alternate Servers value 
defines three alternate LDAP servers for connection 
failover: 

Alternate Servers=(Host=ld1.foo.com:Port=389,Host=
ld2.foo.com:Port=389,Host=ld3.foo.com:Port=389)

See “Configuring Connection Failover” on page 164 for a 
discussion of connection failover. 
SequeLink Developer’s Reference



158 Chapter 3  Using the ADO Client  
Application ID Specifies the application ID that identifies the client 
application to the SequeLink service. This attribute is only 
required when the SequeLink service you are connecting 
to is configured to limit access to specific applications.

See “Specifying Application IDs” on page 208 for more 
information about using application IDs to limit access to 
SequeLink services.

ApplicationName Identifies the application that is establishing the 
connections (for example, 
ApplicationName=Account01) and can be used to identify 
where problems that are associated with a particular 
application occur.

The initial default value is SequeLink for ADO Application.

Automatic Application ID Specifies an application ID that is automatically generated 
by the ADO Client to identify the client application to the 
SequeLink service. This attribute is only required when the 
SequeLink service you are connecting to has been 
configured to limit access to specific applications.

See “Specifying Application IDs” on page 208 for more 
information about using application IDs to limit access to 
SequeLink services.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



Connecting to an ADO Client 159
Connection Retry Count Specifies the number of times the data provider retries 
connection attempts to the primary SequeLink server, and 
if specified, alternate SequeLink servers after the first 
unsuccessful attempt. Valid values are 0 and any positive 
integer. 

When set to 0 (the initial default), the data provider does 
not try to reconnect after the initial unsuccessful attempt.

For example, consider the following example:

Alternate Servers=(Host=server2:Port=19996,Host=
server3:Port=19996,Host=server4:Port=
19999);Connection Retry Count=1;

If a connection is not successfully established on the data 
provider’s first pass through the list of database servers, 
the data provider retries all the servers in the list one time. 

See “Configuring Connection Failover” on page 164 for a 
discussion of connection failover.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



160 Chapter 3  Using the ADO Client  
Connection Retry Delay Specifies the seconds the data provider waits after the 
initial unsuccessful connection attempt before retrying a 
connection to the primary SequeLink server and, if 
specified, to the alternate SequeLink servers.

Valid values are integers from 0 to 65535. 

The default value is 3 (seconds). When set to 0, there is no 
delay between retries.

NOTE: This option has no effect unless the Connection 
Retry Count connection option is set to an integer value 
greater than 0.

For example, in the following example:

Alternate Servers=(Host=server2:Port=19996,Host=
server3:Port=19996,Host=server4:Port=
19996);Connection Retry Count=2;Connection Retry 
Delay=3

If a connection is not successfully established on the data 
provider’s first pass through the list of SequeLink servers, 
the data provider retries the list of servers twice. It waits 3 
seconds between the first and second connection retry 
attempts.

See “Configuring Connection Failover” on page 164 for a 
discussion of connection failover.

Database Specifies the name of the database to which you want to 
connect.

Database User Name Specifies the data store user name, which may be required 
depending on the server configuration.

Database Password Specifies the data store password, which may be required 
depending on the server configuration.

Data Source Specifies a string that identifies an ADO/OLE DB data 
source configuration. Examples include Accounting or 
SequeLink to Oracle Data.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



Connecting to an ADO Client 161
Default Length for Long Data Turns on a workaround that allows you to specify the 
amount of data (in KB) that is buffered for 
SQL_LONGVARCHAR and SQL_LONGVARBINARY columns 
with a static cursor. 

The initial default value is 4.

Distinguished Name Specifies the distinguished name identifying the LDAP 
entry from which connection information is retrieved. This 
attribute is required when UseLDAP=1.

Encrypted Encrypted={0 | 1}. Enables the use of SSL encryption if the 
remote SequeLink service the client is connecting to is 
configured for SSL.

When set to 0 (the default), the data provider does not use 
SSL encryption for data exchanged with the SequeLink 
Server.

When set to 1, the data provider uses SSL encryption. This 
attribute must be set to 1 when connecting to a SequeLink 
service enabled for SSL.

For more information about encrypting data, refer to the 
SequeLink Administrator’s Guide.

NOTE: Encrypted (SSL) is not supported for LDAP Servers. 
The Use LDAP and the Encrypted (SSL) attributes are 
mutually exclusive.

Host Specifies the TCP/IP address of the SequeLink Server, 
specified in dotted format or as a host name.

LDAP: If LDAP is enabled, this identifies the TCP/IP address 
of the LDAP server. This can also be a list of LDAP servers 
separated by a blank space (for example, “ld1.foo.com 
ld2.foo.com ld3.foo.com”). If the first LDAP server in the 
list does not respond, the data provider will try to connect 
to the next LDAP server in the list.

NOTE: If you want to use connection failover features such 
as connection retry and load balancing, specify the 
alternate LDAP servers in the Alternate Servers connection 
attribute. See “Configuring Connection Failover” on 
page 164 for more information about connection failover.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



162 Chapter 3  Using the ADO Client  
Host Password Specifies the host password, which may be required 
depending on the server configuration.

Host User Name Specifies the host user name, which may be required 
depending on the server configuration.

Load Balancing Load Balancing={0 | 1}. Determines whether the data 
provider uses client load balancing in its attempts to 
connect to a list of SequeLink servers (primary and 
alternate). The list of alternate servers is specified by the 
Alternate Servers attribute. 

When set to 1, client load balancing is used and the data 
provider attempts to connect to the list of SequeLink 
servers (primary and alternate servers) in random order. 

If set to 0 (the default), client load balancing is not used 
and the driver connects to each server based on their 
sequential order (primary server first, then, alternate 
servers in the order they are specified).

In the following example:

Host=server1;Port=19996;User ID=test;Password=
secret;Alternate Servers=(Host=server2:Port=
19996,Host=server3:Port=19996, Host=server4:Port=
19996);Load Balancing=1; 

The data provider randomly selects a SequeLink server 
from the list of primary and alternate servers and attempts 
to connect. If that connection attempt fails, the data 
provider again randomly selects a SequeLink server from 
this list until all of the servers have been tried or a 
connection is successfully established.

See “Configuring Connection Failover” on page 164 for 
more information about connection failover.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



Connecting to an ADO Client 163
New Password Specifies the new host password to be used. If specified 
and applicable to the connection, the SequeLink password 
change mechanism is invoked. When the password has 
been changed successfully, the following warning is 
generated:

[DataDirect][SequeLink ADO Provider]
[SequeLink Server] The user password was changed 
successfully

If unspecified and the SequeLink Server detects that the 
host password has expired, you will be prompted for a new 
host password.

For more information about the SequeLink password 
change mechanism, refer to the SequeLink Administrator’s 
Guide.

Password Specifies the host or data store password, which may be 
required depending on the server configuration.

Port Specifies the TCP/IP port on which the SequeLink Server is 
listening. 

LDAP: If LDAP is enabled, this identifies the TCP/IP port on 
which the LDAP server is listening. If you do not specify a 
port, the default port for LDAP (389) will be used.

Server Data Source Optionally, identifies the server data source to be used for 
the connection. If not specified, the configuration of the 
default server data source will be used for the connection.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



164 Chapter 3  Using the ADO Client  
Configuring Connection Failover
Connection failover allows an application to connect to an 
alternate, or backup, database server if the primary SequeLink 
server is unavailable, for example, because of a hardware failure 
or traffic overload. Connection failover ensures that the data on 
which your critical ADO and OLE DB applications depend is 
always available. 

You can customize the ADO Client for connection failover by 
configuring a list of alternate SequeLink servers that are tried if 
the primary server is not accepting connections. Connection 
attempts continue until a connection is successfully established or 

Use LDAP Use LDAP={0 | 1}. Determines whether the parameters to 
establish a connection to the SequeLink Server should be 
retrieved from LDAP.

When set to 0, the SequeLink Client will connect directly to 
the specified SequeLink Server. 

When set to 1, the SequeLink Client will retrieve the TCP/IP 
host, TCP/IP port, and SequeLink data source (optional) 
from an LDAP entry identified by a Distinguished Name 
(DN). Once the connection information is retrieved, the 
SequeLink Client will connect directly to the specified 
SequeLink Server. The DistinguishedName (DN) attribute is 
required. 

The initial default value is 0.

NOTE: Encryption (SSL) is not supported for LDAP Servers. 
The Use LDAP and the Encrypted (SSL) attributes are 
mutually exclusive.

User ID Specifies the host or data store user name, which may be 
required depending on the server configuration.

Table 3-2.  ADO Connection Attributes (cont.)

Attribute Description
SequeLink Developer’s Reference



Configuring Connection Failover 165
until all the alternate SequeLink servers have been tried the 
specified number of times.

For example, suppose you have the environment shown in the 
following illustration with multiple SequeLink servers: SequeLink 
Server A, B, and C. SequeLink Server A is designated as the 
primary SequeLink server, SequeLink Server B is the first 
alternate server, and SequeLink Server C is the second alternate 
server.

First, the application attempts to connect to the primary 
SequeLink server, SequeLink Server A (1). If connection failover is 
enabled and SequeLink Server A fails to accept the connection, 
the application attempts to connect to SequeLink Server B (2). If 
that connection attempt also fails, the application attempts to 
connect to SequeLink Server C (3).

In this scenario, it is probable that at least one connection 
attempt would succeed, but if no connection attempt succeeds, 
the driver can retry each alternate SequeLink Server (primary 
and alternate) for a specified number of attempts. 

To configure connection failover, you must specify a list of 
alternate SequeLink Servers that are tried at connection time if 
SequeLink Developer’s Reference



166 Chapter 3  Using the ADO Client  
the primary server is not accepting connections. To do this, use 
the Alternate Servers connection property. Connection attempts 
continue until a connection is successfully established or until all 
the database servers in the list have been tried once (the default). 

Optionally, you can specify the following additional connection 
failover features:

■ The number of times the ADO Client attempts to connect to 
the primary and alternate SequeLink servers after the initial 
unsuccessful connection attempt. By default, the driver does 
not retry. To set this feature, use the Connection Retry Count 
connection option. See “Using Connection Retry” on 
page 169 for more information.

■ The wait interval, in seconds, between attempts to connect to 
the primary and alternate SequeLink servers. The default 
interval is 3 seconds. To set this feature, use the Connection 
Retry Delay connection option.

■ Whether the ADO data Client uses client load balancing in its 
attempts to connect to primary and alternate SequeLink 
servers. If load balancing is enabled, the driver uses a random 
pattern instead of a sequential pattern in its attempts to 
connect. The default value is not to use load balancing. To set 
this feature, use the Load Balancing connection option. See 
“Using Client Load Balancing” on page 168 for more 
information.
SequeLink Developer’s Reference



Configuring Connection Failover 167
Connection Failover Properties

Table 3-3 summarizes the connection properties that control 
how connection failover works with the ADO Client. See 
Table 3-1 for details about configuring each property.

Table 3-3.  Summary: Connection Failover Properties for the ADO Data Provider

Property Characteristic

Alternate Servers A list of alternate SequeLink servers to which the data 
provider will attempt to connect if the primary SequeLink 
server is unavailable. A port number and an IP address or 
server name identifying each server are required. 

If the primary SequeLink server is an LDAP server, each 
alternate server must be an LDAP server.

Connection Retry Count Number of times the data provider retries the primary 
database server, and if specified, alternate servers until a 
successful connection is established. The default is 5.

Connection Retry Delay Wait interval, in seconds, between connection retry attempts 
when the ConnectionRetryCount property is set to a positive 
integer. The default is 1.

Host The TCP/IP address or server name of primary SequeLink 
server. 

LDAP: If LDAP is enabled, this identifies the TCP/IP address of 
the LDAP server. This can also be a list of LDAP servers 
separated by a blank space (for example, “ld1.foo.com 
ld2.foo.com ld3.foo.com”). If the first LDAP server in the list 
does not respond, the ADO Client will try to connect to the 
next LDAP server in the list. 

Load Balancing Sets whether the ADO Client uses client load balancing in its 
attempts to connect to the list of database servers (primary 
and alternate). If client load balancing is enabled, the ADO 
Client uses a random pattern instead of a sequential pattern 
in its attempts to connect. The default is 0 (client load 
balancing is disabled).
SequeLink Developer’s Reference



168 Chapter 3  Using the ADO Client  
See “Configuring Connection Failover” on page 164 and “Using 
Client Load Balancing” on page 168 for overviews of connection 
failover and client load balancing.

Using Client Load Balancing
Client load balancing helps distribute new connections in your 
environment so that no one server is overwhelmed with 
connection requests. When client load balancing is enabled, the 
order in which primary and alternate database servers are tried is 

Port Port listening for connections on the primary SequeLink 
server. 

If LDAP is enabled, this identifies the TCP/IP port on which the 
LDAP server is listening. If you do not specify a port, the 
default port for LDAP (389) will be used.

Table 3-3.  Summary: Connection Failover Properties for the ADO Data Provider 

(cont.)

Property Characteristic
SequeLink Developer’s Reference



Using Connection Retry 169
random. For example, let us suppose that client load balancing is 
enabled as shown in the following illustration:

First, SequeLink Server B is tried (1). Then, SequeLink Server C 
may be tried (2), followed by a connection attempt to SequeLink 
Server A (3). In contrast, if client load balancing were not 
enabled in this scenario, each SequeLink Server would be tried in 
sequential order, primary server first, then each alternate 
SequeLink server based on its entry order in the alternate servers 
list.

For details on configuring client load balancing, refer to the 
SequeLink Administrator’s Guide.

Using Connection Retry
Connection retry defines the number of times the SequeLink 
Client attempts to connect to the primary SequeLink Server and, 
if configured, alternate SequeLink Servers after the initial 
unsuccessful connection attempt. Connection retry can be an 
important strategy for system recovery. For example, suppose 
SequeLink Developer’s Reference



170 Chapter 3  Using the ADO Client  
you have a power failure in which both the SequeLink Client and 
the SequeLink Server fail. When the power is restored and all 
computers are restarted, the SequeLink Client may be ready to 
attempt a connection before the SequeLink Server has completed 
its startup routines. If connection retry is enabled, the client 
application can continue to retry the connection until a 
connection is successfully accepted by the SequeLink Server.

Connection retry can be used in environments that have only one 
server or can be used as a complementary feature with 
connection failover in environments with multiple SequeLink 
Servers.

Using connection options, you can specify the number of times 
the driver attempts to connect and the time in seconds between 
connection attempts. For details on configuring connection retry, 
see “Configuring Connection Failover” on page 164.
SequeLink Developer’s Reference



171
4 Developing ADO Applications

This chapter provides information about developing ADO 
applications for SequeLink environments including:

■ “OLE DB Objects and Interfaces” on page 172
■ “Supported Schema Rowsets” on page 174
■ “Supported OLE DB Property Groups” on page 175
■ “OLE DB Interfaces Supported in ADO” on page 188
■ “Mapping ADO Methods and Properties” on page 190
■ “Data Shaping” on page 206
■ “Persisting Information” on page 207
■ “Using Rowsets” on page 207
■ “Mapping Data Types” on page 208
■ “Specifying Application IDs” on page 208
■ “Error Handling” on page 209
SequeLink Developer’s Reference



172 Chapter 4  Developing ADO Applications  
OLE DB Objects and Interfaces
The ADO data provider supports Insert, Update, and Delete 
operations through the OLE DB Rowset interfaces and through 
the command interfaces (using SQL DML).

Table 4-1 lists the OLE DB objects that the ADO data provider 
supports, and the interfaces implemented for each object.

Table 4-1.  Objects and Interfaces Supported by the ADO Data Provider

OLE DB Object Interface

ErrorLookup IErrorLookup

Command IAccessor

IColumnsInfo

ICommand

ICommandProperties

ICommandText

IConvertType

IColumnsRowset

ICommandPrepare

ICommandWithParameters

ISupportErrorInfo

Data Source IDBCreateSession

IDBInfo

IDBInitialize

IDBProperties

IPersist

IPersistFile

ISupportErrorInfo

Eumerator IDBInitialize

IDBProperties

IParseDisplayName

ISourcesRowset

ISupportErrorInfo

MultipleResults IMultipleResults

ISupportErrorInfo
SequeLink Developer’s Reference



OLE DB Objects and Interfaces 173
Rowset IAccessor

IColumnsInfo

IConvertType

IColumnsRowset

IRowset

IRowsetChange

IRowsetIdentity

IRowsetInfo

IRowsetLocate

IRowsetScroll

IRowsetUpdate

ISupportErrorInfo

Session IDBCreateCommand

IDBSchemaRowset

IGetDataSource

IOpenRowset

ISessionProperties

ISupportErrorInfo

ITransaction

ITransactionJoin

ITransactionLocal

Transaction ITransaction

ISupportErrorInfo

Transaction Options ITransactionOptions

ISupportErrorInfo

Table 4-1.  Objects and Interfaces Supported by the ADO Data Provider (cont.)

OLE DB Object Interface
SequeLink Developer’s Reference



174 Chapter 4  Developing ADO Applications  
Supported Schema Rowsets
Table 4-2 lists the OLE DB schema rowsets supported by the ADO 
data provider.

Table 4-2.  OLE DB Schema Rowsets Supported by the ADO Data Provider

Schema Call
DB2 
UDB Informix Oracle

Microsoft 
SQL Server Sybase

DBSCHEMA_CATALOGS X X

DBSCHEMA_COLUMN_PRIVILEGES X X X X

DBSCHEMA_COLUMNS X X X X X

DBSCHEMA_FOREIGN_KEYS X X X X X

DBSCHEMA_INDEXES X X X X X

DBSCHEMA_PRIMARY_KEYS X X X X X

DBSCHEMA_PROCEDURE_COLUMNS X X X X

DBSCHEMA_PROCEDURE_PARAMETERS X X X X X

DBSCHEMA_PROCEDURES X X X X X

DBSCHEMA_PROVIDER_TYPES X X X X X

DBSCHEMA_REFERENTIAL_
CONSTRAINTS

X

DBSCHEMA_SCHEMATA X X X X

DBSCHEMA_STATISTICS X X X X X

DBSCHEMA_ TABLE_CONSTRAINTS X

DBSCHEMA_TABLE_PRIVILEGES X X X X

DBSCHEMA_TABLES X X X X X

DBSCHEMA_VIEWS X X X
SequeLink Developer’s Reference



Supported OLE DB Property Groups 175
Supported OLE DB Property Groups
The data provider defines the properties that apply to data 
sources, and properties that provide a read-only set of 
information about the data provider and the data source.

To obtain a data provider’s property values, a data consumer 
calls one of the methods listed in Table 4-3.

Table 4-3.  OLE DB Property Groups Supported by the ADO 
Provider

Property Group Method Used to Obtain Values

Data Source IDBProperties::GetProperties

Data Source Information IDBProperties::GetProperties

Initialization IDBProperties::GetProperties

Rowset ICommandProperties::GetProperties

IRowsetInfo::GetProperties

Session ISessionProperties::GetProperties
SequeLink Developer’s Reference



176 Chapter 4  Developing ADO Applications  
Data Source Property Group

The ADO data provider supports the following property in the 
DBPROP_DATASOURCE property set. For more information, refer 
to your Microsoft OLE DB programming documentation.

Data Source Information Property 
Group

Table 4-5 lists the properties in the 
DBPROPSET_DATASOURCEINFO property set supported by the 
ADO data provider. These properties are in the Data Source 
Information property group, are read-only properties, and 
constitute a set of static information about the data provider and 
data source. For more information about these properties, refer 
to your Microsoft OLE DB programming documentation.

NOTE: Some values are database-specific and depend on the 
SequeLink service you are using. These database-specific values 
are not listed in the table.

Table 4-4.  OLE DB Data Source Property Supported by the ADO 
Data Provider

Property Name Description

DBPROP_CURRENTCATALOG The name of the current catalog. 
The data consumer can use the 
CATALOGS rowset to enumerate 
catalogs. If unspecified, the data 
provider uses the default catalog.
SequeLink Developer’s Reference



Supported OLE DB Property Groups 177
Table 4-5.  OLE DB Data Source Information Properties Supported by the ADO Data 
Provider

Property ID Default Value and Description

DBPROP_ACTIVESESSIONS VALUE=0. There is no limit to the number of 
sessions that can exist at one time. 

DBPROP_ASYNCTXNABORT VALUE=VARIANT_FALSE. The data provider 
cannot abort transactions asynchronously. 

DBPROP_ASYNCTXNCOMMIT VALUE=VARIANT_FALSE. The data provider 
cannot commit transactions asynchronously. 

DBPROP_BYREFACCESSORS VALUE=VARIANT_FALSE. The data provider 
does not support the DBACCESSOR_PASSBYREF 
flag.

DBPROP_CATALOGLOCATION The value depends on the SequeLink service 
you are using.

DBPROP_CATALOGTERM Specifies the name the data source uses for a 
catalog.

VALUE="Database"

DBPROP_CATALOGUSAGE A combination of zero or one or more of the 
following:

VALUE=DBPROPVAL_CU_DML_STATEMENTS. 
Catalog names are supported in all Data 
Manipulation Language (DML) statements.

VALUE=DBPROPVAL_CU_TABLE_DEFINITION. 
Catalog names are supported in all table 
definition statements.

VALUE=DBPROPVAL_CU_INDEX_DEFINITION. 
Catalog names are supported in all index 
definition statements.

VALUE=
DBPROPVAL_CU_PRIVILEGE_DEFINITION. 
Catalog names are supported in all privilege 
definition statements.

DBPROP_COLUMNDEFINITION VALUE=DBPROPVAL_CD_NOTNULL. Columns 
can be created non-nullable. 
SequeLink Developer’s Reference



178 Chapter 4  Developing ADO Applications  
DBPROP_CONCATNULLBEHAVIOR The value depends on the SequeLink service 
you are using. 

DBPROP_CONNECTIONSTATUS VALUE=DBPROPVAL_CS_INITIALIZED. The data 
source is in an initialized state and able to 
communicate with the data store.

DBPROP_DATASOURCENAME Specifies the name of the data source used 
during connection. The data source is defined 
using the DataDirect Configuration Manager. 
See Chapter 3 “Using the ADO Client” on 
page 127 for more information about 
configuring ADO data sources.

DBPROP_DATASOURCEREADONLY VALUE=VARIANT_FALSE. The data source can 
be updated.

DBPROP_DBMSNAME Specifies the name of the data store accessed 
by the ADO provider. The value depends on the 
SequeLink service you are using.

DBPROP_DBMSVER Specifies the version of the DBMS that data 
provider is currently accessing. This value 
depends on the SequeLink service you are 
using. 

DBPROP_DSOTHREADMODEL VALUE=DBPROP_RT_FREETHREAD. The ADO 
provider supports the free-threading model.

DPROP_GROUPBY This value depends on the SequeLink service 
you are using. 

DBPROP_HETEROGENEOUSTABLES VALUE=0. Heterogeneous joins are not 
supported.

DBPROP_IDENTIFIERCASE This value depends on the SequeLink service 
you are using.

DBPROP_MAXINDEXSIZE This value depends on the SequeLink service 
you are using. 

DBPROP_MAXROWSIZE VALUE=0. There is no limit on the maximum 
length of a single row in a table.

Table 4-5.  OLE DB Data Source Information Properties Supported by the ADO Data 
Provider (cont.)

Property ID Default Value and Description
SequeLink Developer’s Reference



Supported OLE DB Property Groups 179
DBPROP_MAXROWSIZEINCLUDESBLOB VALUE=VARIANT_FALSE. The maximum row 
size does not include the length of all BLOB 
data.

DBPROP_MAXTABLEINSELECT VALUE=0. There is no limit on the number of 
tables allowed in the FROM clause of a Select 
statement.

DBPROP_MULTIPLEPARAMSETS VALUE=VARIANT_TRUE. The data provider 
supports multiple parameter sets at the same 
time. 

DBPROP_MULTIPLERESULTS VALUE=DBPROPVAL_MR_SUPPORTED. The data 
provider supports multiple results objects.

DBPROP_MULTIPLESTORAGEOBJECTS VALUE=VARIANT_TRUE. The data provider 
supports more than one open storage object at 
a time.

DBPROP_MULTITABLEUPDATE VALUE=VARIANT_FALSE. The data provider 
cannot update rowsets derived from multiple 
tables.

DBPROP_NULLCOLLATION The value depends on the SequeLink service 
you are using. 

DBPROP_OLEOBJECTS VALUE=DBPROPVAL_OO_BLOB. The data 
provider supports access to BLOBs as structured 
storage objects. 

DBPROP_OPENROWSETSUPPORT VALUE=DBPROPVAL_ORS_TABLE. The data 
provider supports opening tables through 
IOpenRowset.

DBPROP_ORDERBYCOLUMNSINSELECT This value depends on the SequeLink service 
you are using.

DBPROP_OUTPUTPARAMETERAVAILABILITY VALUE=DBPROPVAL_OA_ATROWRELEASE. If a 
command returns a single result that is a 
rowset, output parameter data is available at 
the time the rowset is completely released. 

DBPROP_PERSISTENTIDTYPE VALUE=DBPROPVAL_PT_NAME. The data 
provider uses this type of DBID when storing 
(persisting) DBIDs for tables and columns.

Table 4-5.  OLE DB Data Source Information Properties Supported by the ADO Data 
Provider (cont.)

Property ID Default Value and Description
SequeLink Developer’s Reference



180 Chapter 4  Developing ADO Applications  
DBPROP_PREPAREABORTBEHAVIOR The value depends on the SequeLink service 
you are using. 

DBPROP_PREPARECOMMITBEHAVIOR The value depends on the SequeLink service 
you are using. 

DBPROP_PROCEDURETERM This value depends on the SequeLink service 
you are using.

DBPROP_PROVIDERFRIENDLYNAME Specifies the name of data provider, for 
example, SequeLink for ADO Provider.

DBPROP_PROVIDERNAME VALUE=slslknn.DLL is the default, where nn is 
the release level of data provider.

DBPROP_PROVIDEROLEDBVER Refer to the README file for the supported 
version of OLE DB supported by the data 
provider.

DBPROP_PROVIDERVER Refer to the README file for the supported 
version. 

DBPROP_QUOTEDIDENTIFIERCASE This value depends on the SequeLink service 
you are using.

DBPROP_ 
ROWSETCONVERSIONSONCOMMAND

VALUE=VARIANT_TRUE. Callers can inquire on 
a command about conversions supported on 
rowsets generated by the command.

DBPROP_SCHEMATERM This value depends on the SequeLink service 
you are using.

DBPROP_SCHEMAUSAGE The value depends on the SequeLink service 
you are using. 

DBPROP_SERVERNAME Specifies the name of the server. 

DBPROP_SQLSUPPORT This value depends on the SequeLink service 
you are using. 

DBPROP_STRUCTUREDSTORAGE VALUE=DBPROPVAL_SS_ISEQUENTIALSTREAM.

Table 4-5.  OLE DB Data Source Information Properties Supported by the ADO Data 
Provider (cont.)

Property ID Default Value and Description
SequeLink Developer’s Reference



Supported OLE DB Property Groups 181
DBPROP_ SUBQUERIES A combination of zero, one, or more of the 
following:

VALUE=DBPROPVAL_SQ_COMPARISON

VALUE=
DBPROPVAL_SQ_CORRELATEDSUBQUERIES. 
This indicates that all predicates that support 
subqueries support correlated subqueries.

VALUE=DBPROPVAL_SQ_EXISTS

VALUE=DBPROPVAL_SQ_IN

VALUE=DBPROPVAL_SQ_QUANTIFIED

DBPROP_ SUPPORTEDTXNDDL This value depends on the SequeLink service 
you are using. 

DBPROP_ SUPPORTEDTXNISOLEVELS This value depends on the SequeLink service 
you are using. 

DBPROP_ SUPPORTEDTXNISORETAIN VALUE=0. The data provider supports no 
transaction isolation retention levels.

DBPROP_TABLETERM Specifies the name the data source uses for a 
table. 

VALUE=”Table” 

DBPROP_USERNAME Specifies a character string with the name used 
in a particular database. This can be different 
from the login name.

Table 4-5.  OLE DB Data Source Information Properties Supported by the ADO Data 
Provider (cont.)

Property ID Default Value and Description
SequeLink Developer’s Reference



182 Chapter 4  Developing ADO Applications  
Initialization Property Group

Table 4-6 provides the supported initialization properties for the 
ADO provider. The properties are read/write. For more 
information, refer to the Microsoft OLE DB programming 
documentation.

Table 4-6.  Initialization Properties Supported by the ADO Data Provider 

Property Name Default Value and Description

DBPROP_AUTH_ PASSWORD Specifies the password to be used for 
connecting to the data source or 
enumerator.

This corresponds to the Password 
connection attribute. See “Connecting 
with a Provider String” on page 155 for 
more information about connection 
attributes.

DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO VALUE=VARIANT_FALSE. The data source 
object cannot store the password or other 
sensitive authentication information.

DBPROP_AUTH_ USERID Specifies the User ID to be used for 
connecting to the data source.

This corresponds to the User ID connection 
attribute. See “Connecting with a Provider 
String” on page 155 for more information 
about connection attributes,.

DBPROP_INIT_CATALOG Specifies the name of the initial or default 
catalog to use when connecting to the 
data source.

DBPROP_INIT_ DATASOURCE Specifies the name of the data source or 
enumerator to which to connect.

DBPROP_INIT_ HWND Specifies the window handle to use if the 
data source object or enumerator needs to 
prompt for additional information. 

DBPROP_INIT_LCID Specifies the preferred locale ID for the 
consumer. 
SequeLink Developer’s Reference



Supported OLE DB Property Groups 183
Rowset Property Group

OLE DB data consumers can request certain properties to be 
satisfied by the rowsets that result from an OpenRowset or 
ICommand::Execute call. Common properties include the set of 
interfaces to be supported by the resulting rowset.

The ADO data provider supports the IRowsetIdentity interface. 
This allows the data consumer to determine when two row 
handles represent the same underlying data.

DBPROP_INIT_ MODE VALUE=DB_MODE_READ. The default is 
read-only.

DBPROP_INIT_OLEDBSERVICES VALUE=0. The data provider does not 
enable the OLE DB services. 

DBPROP_INIT_PROMPT VALUE=DBPROMPT_COMPLETE. Display a 
connection dialog only if missing 
information is needed.

DBPROP_INIT_ PROVIDERSTRING Specifies a provider-specific string that 
contains extra initialization information. 
See “Connecting with a Provider String” 
on page 155 for information about using 
the provider string.

Consumers should use this property only 
for provider-specific connection 
information as described in Table 3-2 on 
page 157.

Table 4-6.  Initialization Properties Supported by the ADO Data Provider  (cont.)

Property Name Default Value and Description
SequeLink Developer’s Reference



184 Chapter 4  Developing ADO Applications  
Table 4-7 provides the properties that are included in the ADO 
provider properties group. The table shows the initial default 
values. Some of these properties can be changed at the 
Command level (through ICommandProperties->SetProperties) or 
Session level (through IOpenRowset). The resulting rowset will 
contain different values for these properties.

  

Table 4-7.  Rowset Properties Supported by the ADO Data Provider

Property Name Default Value and Description

DBPROP_ABORTPRESERVE The value depends on the SequeLink service you are 
using.

DBPROP_ACCESSORDER VALUE=
DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS

Columns bound as storage objects can only be 
accessed in sequential order as determined by the 
column ordinal.

DBPROP_BLOCKINGSTORAGEOBJECTS VALUE=VARIANT_FALSE. Instantiated storage 
objects do not prevent the use of other methods.

DBPROP_BOOKMARKINFO VALUE=DBPROPVAL_BI_CROSSROWSET (if 
bookmarks are supported) 

VALUE=0 (if bookmarks are not supported) 

DBPROP_BOOKMARKS VALUE=FALSE. The rowset does not support 
bookmarks. 

DBPROP_BOOKMARKSKIPPED VALUE=VARIANT_FALSE. GetRowsAt, 
GetApproximatePosition, or FindNextRow returns 
DB_E_BADBOOKMARK.

DBPROP_BOOKMARKTYPE VALUE=DBPROPVAL_BMK_NUMERIC. The bookmark 
type is numeric. 

DBPROP_CANFETCHBACKWARDS VALUE=VARIANT_FALSE. cRows must be 
non-negative.

DBPROP_CANHOLDROWS VALUE=VARIANT_FALSE. The rowset might require 
pending changes to be transmitted to the data store 
before fetching additional rows.

DBPROP_CANSCROLLBACKWARDS VALUE=VARIANT_FALSE. IRowsOffset must be 
non-negative.
SequeLink Developer’s Reference



Supported OLE DB Property Groups 185
DBPROP_CHANGEINSERTEDROWS VALUE=VARIANT_FALSE. DeleteRows returns a 
status of DBROWSTATUS_E_NEWLYINSERTED for 
newly inserted rows, and SetData returns 
DB_E_NEWLYINSERTED.

DBPROP_COLUMNRESTRICT Specifies whether access rights are restricted on a 
column-by-column basis.

VALUE=VARIANT_TRUE. Access rights are restricted 
on a column-by-column basis. 

VALUE=VARIANT_FALSE. Access rights are not 
restricted on a column-by-column basis. 

DBPROP_COMMITPRESERVE The value is specific to the SequeLink Server you are 
using.

DBPROP_DELAYSTORAGEOBJECTS VALUE=VARIANT_FALSE. Storage objects are used in 
immediate update mode. 

DBPROP_IAccessor VALUE=VARIANT_TRUE 

DBPROP_IColumnsInfo VALUE=VARIANT_TRUE 

DBPROP_IColumnsRowset VALUE=VARIANT_TRUE 

DBPROP_IConvertType VALUE=VARIANT_TRUE 

DBPROP_IMultipleResults VALUE=VARIANT_FALSE 

DBPROP_IRowset VALUE=VARIANT_TRUE 

DBPROP_IRowsetChange VALUE=VARIANT_TRUE 

DBPROP_IRowsetIdentity VALUE=VARIANT_FALSE 

DBPROP_IRowsetInfo VALUE=VARIANT_TRUE 

DBPROP_IRowsetLocate VALUE=VARIANT_TRUE 

DBPROP_IRowsetRefresh VALUE=VARIANT_FALSE 

DBPROP_IRowsetScroll VALUE=VARIANT_FALSE 

DBPROP_IRowsetUpdate VALUE=VARIANT_FALSE 

DBPROP_ISequentialStream VALUE=VARIANT_FALSE 

DBPROP_ISupportErrorInfo VALUE=VARIANT_TRUE

DBPROP_IMMOBILEROWS VALUE=VARIANT_TRUE. The rowset will not reorder 
inserted or updated rows.

Table 4-7.  Rowset Properties Supported by the ADO Data Provider (cont.)

Property Name Default Value and Description
SequeLink Developer’s Reference



186 Chapter 4  Developing ADO Applications  
DBPROP_LITERALBOOKMARKS VALUE=VARIANT_FALSE. Bookmarks can only be 
compared with IRowsetLocate::Compare.

DBPROP_LITERALIDENTITY VALUE=VARIANT_FALSE. The consumer must call 
IRowsetIdentity::IsSameRow to determine whether 
two row handles point to the same row.

DBPROP_LOCKMODE VALUE=DBPROPVAL_LM_NONE. The data provider is 
not required to lock rows to ensure successful 
updates.

DBPROP_MAXOPENROWS Specifies the maximum number of rows that can be 
active at the same time. 

VALUE=4096 

DBPROP_MAXPENDINGROWS VALUE=0. There is no limit on the number of rows 
that can have pending changes at the same time.

DBPROP_MAXROWS VALUE=0. There is no limit on the number of rows 
that can be returned in a rowset.

DBPROP_MEMORYUSAGE VALUE=0. There is no limit on the amount of 
memory that the rowset can use. 

DBPROP_OTHERINSERT VALUE=VARIANT_FALSE. The rowset cannot see 
updates and deletes made by others.

DBPROP_OTHERUPDATEDELETE VALUE=VARIANT_FALSE. The rowset cannot see 
updates and deletes made by others.

DBPROP_OWNINSERT VALUE=VARIANT_FALSE. The rowset cannot see 
rows inserted by consumers of the rowset unless the 
command is executed again.

DBPROP_OWNUPDATEDELETE VALUE=VARIANT_FALSE. The rowset cannot see 
updates and deletes made by consumers of the 
rowset unless the command is executed again.

DBPROP_QUICKRESTART VALUE=VARIANT_TRUE. IRowset::RestartPosition is 
not expensive to execute and does not execute the 
command that created the rowset again.

DBPROP_REENTRANTEVENTS VALUE=VARIANT_TRUE. The data provider supports 
reentrancy during callbacks to the IRowsetNotify 
interface. 

Table 4-7.  Rowset Properties Supported by the ADO Data Provider (cont.)

Property Name Default Value and Description
SequeLink Developer’s Reference



Supported OLE DB Property Groups 187
DBPROP_REMOVEDELETED VALUE=VARIANT_FALSE. Static cursors do not 
remove deleted rows.

DBPROP_REPORTMULTIPLECHANGES VALUE=VARIANT_FALSE. An update or delete 
always affects a single row or data provider cannot 
detect whether it affects multiple rows.

DBPROP_RETURNPENDINGINSERTS VALUE=VARIANT_FALSE. The methods that fetch 
rows cannot return pending insert rows.

DBPROP_ROWRESTRICT VALUE=VARIANT_FALSE. Access rights are not 
restricted on a row-by-row basis.

DBPROP_ROWTHREADMODEL VALUE=DBPROPVAL_RT_FREETHREAD. The data 
provider uses the free-threaded model.

DBPROP_SERVERCURSOR VALUE=VARIANT_FALSE. The data provider 
determines where to locate the cursor. 

DBPROP_STRONGIDENTITY VALUE=VARIANT_FALSE. There is no guarantee that 
the handles of newly inserted rows can be compared 
successfully.

DBPROP_TRANSACTEDOBJECT VALUE=VARIANT_FALSE. Any object created on the 
specified column is not transacted. 

DBPROP_UNIQUEROWS VALUE=VARIANT_FALSE. Rows in the rowset may or 
may not be uniquely identified by their column 
values.

DBPROP_UPDATABILITY A combination of zero or one or more of the 
following:

Value=DBPROPVAL_UP_CHANGE. SetData is 
supported.

Value=DBPROPVAL_UP_DELETE. DeleteRows is 
supported.

Value=DBPROPVAL_UP_INSERT. InsertRow is 
supported.

Table 4-7.  Rowset Properties Supported by the ADO Data Provider (cont.)

Property Name Default Value and Description
SequeLink Developer’s Reference



188 Chapter 4  Developing ADO Applications  
Session Property Group

Table 4-8 lists the properties the ADO data provider supports in 
the DBPROPSET_SESSION property set. For more information, 
refer to your Microsoft OLE DB programming information.

OLE DB Interfaces Supported in ADO
Table 4-9 lists the OLE DB interfaces that ADO supports and 
describes whether the interface is required by ADO. The ADO 
data provider supports additional OLE DB interfaces that are not 
used by ADO.

See “OLE DB Objects and Interfaces” on page 172 for a 
description of the OLE DB objects and interfaces supported by 
the ADO data provider.

Table 4-8.  Session Properties Supported by the ADO Data 
Provider

Property Name Default Value and Description

DBPROP_SESS_ 
AUTOCOMMITISOLEVELS

Specifies the transaction isolation 
level while in auto-commit mode. 

VALUE=NULL 

Table 4-9.  Supported OLE DB Interfaces Used by ADO

OLE DB Interface Use by ADO

IAccessor Required

IColumnsInfo Required

IColumnsRowset If available

ICommand If available
SequeLink Developer’s Reference



OLE DB Interfaces Supported in ADO 189
ICommandPrepare If available

ICommandProperties If available

ICommandText If available

ICommandWithParameters If available

IConvertType Required

IDBCreateCommand If available

IDBCreateSession Required

IDBInitialize Required

IDBProperties Required

IOpenRowset Required

IRowset Required

IRowsetChange If available

IRowsetIndex If available

IRowsetInfo Required

IRowsetLocate If available

IRowsetScroll If available

IRowsetUpdate If available

ISourcesRowset If available

ITransaction If available

ITransactionLocal If available

ITransactionOptions If available

Table 4-9.  Supported OLE DB Interfaces Used by ADO (cont.)

OLE DB Interface Use by ADO
SequeLink Developer’s Reference



190 Chapter 4  Developing ADO Applications  
Mapping ADO Methods and Properties
This section maps the methods, properties, and collections of 
ADO objects to the OLE DB methods supported by the ADO data 
provider. 

Some ADO methods do not have a comparable OLE DB method. 
When more than one OLE DB method can be used, ADO uses the 
method that requires the least amount of system resources. For 
example, if an ADO method can use either ICommand or 
IOpenRowset, it uses the less performance-intensive 
IOpenRowset.

ADO Command Object

The Command object can be used to specify a database query in 
the language native to the database server. For a relational data 
provider, this is usually a SQL statement.

The Execute method for the ADO Command object maps to the 
OLE DB method, ICommand::Execute. 

Table 4-10 lists the dynamic properties that are supported by the 
ADO data provider for the Command object. 

 

Table 4-10.  Dynamic Properties Used for the ADO Command Object

ADO Property Default Value and Description

Access Order VALUE=2. Columns can be accessed in any order.

Blocking Storage Objects VALUE=False. Instantiated storage objects do not 
prevent the use of other methods. 

Change Inserted Rows VALUE=False. The value can only be set to True if the 
rowset is using a keyset-driven cursor.
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 191
Column Privileges Specifies whether access rights are restricted on a 
column-by-column basis.

VALUE=True. Access rights are restricted on a 
column-by-column basis. 

VALUE=False. Access rights are not restricted on a 
column-by-column basis. If the rowset exposes 
IRowsetChange, SetData can be called for any column 
in the rowset.

Fetch Backwards VALUE=False. cRows must be non-negative.

Hold Rows VALUE=True. Access rights are restricted on a 
column-by-column basis. 

IAccessor VALUE=True 

IColumnsInfo VALUE=True 

IColumnsRowset VALUE=True 

IConvertType VALUE=True 

IRowset VALUE=True 

IRowsetChange VALUE=False

IRowsetInfo VALUE=True

Literal Row Identity VALUE=False. The consumer must call 
IRowsetIdentity::IsSameRow to determine whether 
two row handles point to the same row. 

Lock Mode VALUE=1. The data provider is not required to lock 
rows at any time to ensure successful updates.

Maximum Open Rows Specifies the maximum number of rows that can be 
active at the same time. 

VALUE=4096 

Maximum Pending Rows VALUE=0. There is no limit on the number of rows 
that can have pending changes at the same time.

Maximum Rows VALUE=0. There is no limit on the number of rows 
that can be returned in a rowset.

Memory Usage VALUE=0. There is no limit on the amount of memory 
that can be used by the rowset.

Table 4-10.  Dynamic Properties Used for the ADO Command Object (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



192 Chapter 4  Developing ADO Applications  
Objects Transacted VALUE=True. Any object created on the specified 
column is transacted. 

Others' Changes Visible VALUE=False. The rowset cannot see updates and 
deletes made by others. 

Others' Inserts Visible VALUE=False. The rowset cannot see inserts made by 
others.

Own Changes Visible VALUE=False. The rowset cannot see updates and 
deletes made by consumers of the rowset unless the 
command is executed again.

Own Inserts Visible VALUE=False. The rowset can see the rows inserted by 
consumers only after the command is run again.

Preserve on Abort The value depends on the SequeLink service that you 
are using.

Preserve on Commit The value depends on the SequeLink service that you 
are using.

Quick Restart VALUE=True. IRowset::RestartPosition is relatively 
quick to execute. It does not again execute the 
command that created the rowset.

Remove Deleted Rows VALUE=False. Static cursors do not remove deleted 
rows. 

Report Multiple Changes VALUE=False. An update or delete always affects a 
single row or the data provider cannot detect whether 
it affects multiple rows.

Return Pending Inserts VALUE=False. The methods that fetch rows cannot 
return pending insert rows. 

Row Privileges VALUE=False. The data provider does not set access 
restrictions for rows.

Row Threading Model VALUE=1. The ADO data provider uses the 
free-threaded model.

Scroll Backward VALUE=False. IRowsOffset must be non-negative.

Server Cursor VALUE=False. The data provider determines where to 
locate the cursor. 

Strong Row Identity VALUE=False. There is no guarantee that the handles 
of newly inserted rows can be compared successfully. 

Table 4-10.  Dynamic Properties Used for the ADO Command Object (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 193
Connection Object

The ADO Connection object represents a single session with an 
OLE DB data source. It defines a physical connection to the data 
source for a data provider. 

Table 4-11 lists the supported ADO methods for the Connection 
object and maps them to the corresponding OLE DB methods.

Unique Rows VALUE=False. Rows in the rowset may or may not be 
uniquely identified by their column values.

Updatability Specifies the supported methods on IRowsetChange. 

VALUE=0

Use Bookmarks VALUE=False. The rowset does not support 
bookmarks. 

Table 4-10.  Dynamic Properties Used for the ADO Command Object (cont.)

ADO Property Default Value and Description

Table 4-11.  Mapping Methods Supported by the ADO 
Connection Object

ADO Method OLE DB Method

BeginTrans ITransactionLocal::StartTransaction

CommitTrans ITransactionLocal::Commit

Execute ICommand::Execute or

IOpenRowset::OpenRowset

Open IDBInitialize::Initialize

IDBCreateSession::Create Session

RollBackTrans ITransactionLocal::Abort

OpenSchema IDBSchemaRowset::GetRowset
SequeLink Developer’s Reference



194 Chapter 4  Developing ADO Applications  
Table 4-12 lists the dynamic properties supported for the ADO 
Connection object.

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object 

ADO Property Default Value and Description

Active Sessions VALUE=0. There is no limit to the maximum number 
of sessions that can exist at one time. 

Asynchable Abort VALUE=False. The data provider cannot abort 
transactions asynchronously.

Asynchable Commit VALUE=False. The data provider cannot commit 
transactions asynchronously. 

Autocommit Isolation Levels Specifies the transaction isolation level while in 
auto-commit mode. A combination of zero or one or 
more of the following:

VALUE=DBPROPVAL_TI_BROWSE

VALUE=DBPROPVAL_TI_CURSORSTABILITY

VALUE=DBPROPVAL_TI_ISOLATED

VALUE=DBPROPVAL_TI_READCOMMITTED

VALUE=DBPROPVAL_TI_READUNCOMMITTED

VALUE=DBPROPVAL_TI_REPEATABLEREAD

VALUE=DBPROPVAL_TI_SERIALIZABLE

Catalog Location The value depends on the SequeLink service you are 
using. Possible values are:

VALUE=1. The catalog name is at the start of the fully 
qualified name. 

VALUE=2. The catalog name is at the end of the fully 
qualified name.

Catalog Term Specifies the name the data source uses for a catalog.

VALUE=Database 
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 195
Catalog Usage Specifies how catalog names can be used in text 
commands. A combination of zero or one or more of 
the following:

VALUE=1. Catalog names are supported in all Data 
Manipulation Language statements.

VALUE=2. Catalog names are supported in all table 
definition statements.

VALUE=4. Catalog names are supported in all index 
definition statements.

VALUE=8. Catalog names are supported in all 
privilege definition statements.

Column Definition VALUE=1. Columns can be created non-nullable.

COM Object Support VALUE=1. The data providers support access to BLOBs 
as structured storage objects. A data consumer 
determines which interfaces are supported through 
the Structured Storage property.

Connection Status VALUE=1. The data source is in an initialized state and 
able to communicate with the data store.

Current Catalog Specifies the name of the current catalog. The data 
consumer can use the CATALOGS rowset to 
enumerate catalogs. If not set, the data provider uses 
the default catalog.

Data Source Specifies the name of the data source or enumerator 
to which to connect.

Data Source Name Specifies the name of the data source (server) used 
during the connection process. 

Data Source Object Threading 
Model

VALUE=1. The data provider uses the free-threading 
model.

DBMS Name Specifies the name of the product accessed by the 
ADO data provider. 

DBMS Version Specifies the version of the product that the data 
provider is currently accessing.

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



196 Chapter 4  Developing ADO Applications  
Extended Properties A provider-specific string that contains extra 
initialization information. Consumers should use this 
property only for provider-specific connection 
information.

See “Connecting with a Provider String” on page 155 
for information on using the provider string with the 
ADO data provider.

GROUP BY Support This value depends on the SequeLink service you are 
using. 

VALUE=1. The GROUP BY clause is not supported.

VALUE=2. The GROUP BY clause must contain all 
nonaggregated columns in the select list. It cannot 
contain any other columns.

VALUE=4. The GROUP BY clause must contain all 
nonaggregated columns in the select list. It can 
contain columns that are not in the select list. 

VALUE=8. The columns in the GROUP BY clause and 
the select list are not related. The meaning of 
nongrouped, nonaggregated columns in the select 
list is data source-dependent.

Heterogeneous Table Support VALUE=0. The data provider cannot join tables from 
different catalogs or providers.

Identifier Case Sensitivity This value depends on the SequeLink service you are 
using. 

VALUE=1. Identifiers in SQL are case-sensitive and are 
stored in upper case in the system catalog. 

VALUE=2. Identifiers in SQL are case-insensitive and 
are stored in lower case in the system catalog. 

VALUE=4. Identifiers in SQL are case-sensitive and are 
stored in mixed case in the system catalog.

VALUE=8. Identifiers in SQL are case-insensitive and 
are stored in mixed case in the system catalog. 

Initial Catalog Specifies the name of the initial, or default, catalog to 
use when connecting to the data source. 

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 197
Isolation Levels This value depends on the SequeLink service you are 
using. Zero, or a combination of one or more of the 
following:

VALUE=DBPROPVAL_TI_BROWSE

VALUE=DBPROPVAL_TI_CHAOS

VALUE=DBPROPVAL_TI_CURSORSTABILITY

VALUE=DBPROPVAL_TI_ISOLATED

VALUE=DBPROPVAL_TI_READCOMMITTED

VALUE=DBPROPVAL_TI_READUNCOMMITTED

VALUE=DBPROPVAL_TI_REPEATABLEREAD

VALUE=DBPROPVAL_TI_SERIALIZABLE

Isolation Retention VALUE=0. The data provider supports no transaction 
isolation retention levels.

Locale Identifier Specifies the preferred locale ID for the consumer. 

Maximum Index Size VALUE=0. There is no limit on the index size. 

Maximum Open Chapters VALUE=0. There is no limit on the maximum number 
of chapters that can be open at any time.

Maximum Row Size VALUE=0. There is no limit on the maximum length of 
a single row in a table. 

Maximum Row Size Includes BLOB VALUE=False. The maximum row size does not include 
the length of all BLOB data.

Maximum Tables in SELECT VALUE=0. There is no limit on the number of tables in 
a Select statement.

Mode VALUE=3. The default access is read-write.

Multi-Table Update VALUE=False. The data provider cannot update 
rowsets derived from multiple tables. 

Multiple Connections VALUE=True. The data provider must spawn multiple 
connections to support concurrent command, session, 
and rowset objects.

Multiple Parameter Sets VALUE=True. The data provider supports multiple 
parameter sets at the same time. 

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



198 Chapter 4  Developing ADO Applications  
Multiple Results VALUE=1. The data provider supports multiple results 
objects.

Multiple Storage Objects VALUE=True. The data provider supports more than 
one open storage object at a time.

NULL Collation Order The value depends on the SequeLink service you are 
using. 

NULL Concatenation Behavior The value depends on the SequeLink service you are 
using. 

OLE DB Services VALUE=0. The data provider does not enable the 
OLE DB services. 

OLE DB Version Specifies the version of OLE DB supported by the data 
provider. Refer to the README for the supported 
version.

Open Rowset Support VALUE=0. All data providers support opening tables 
through IOpenRowset.

ORDER BY Columns In Select List This value depends on the SequeLink service you are 
using.

Output Parameter Availability VALUE=4. If a command returns a single result that is 
a rowset, output parameter data is available at the 
time the rowset is completely released. 

Pass By Ref Accessors VALUE=False. The data provider does not support the 
DBACCESSOR_PASSBYREF flag.

Password Specifies the password to be used for connecting to 
the data source or enumerator. 

Prepare Abort Behavior The value depends on the SequeLink service you are 
using. 

Prepare Commit Behavior The value depends on the SequeLink service you are 
using. 

Procedure Term Specifies a character string that contains the data 
source vendor’s name for a procedure.

Prompt Specifies whether to prompt the user for additional 
information during initialization. 

Provider Friendly Name Specifies the name of the data provider, DataDirect 
SequeLink for ADO Provider.

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 199
Provider Name VALUE=slslknn.DLL, where nn is the release level of 
the data provider. 

Provider Version Specifies the version of the DataDirect data provider. 
Refer to the README for the version number.

Quoted Identifier Sensitivity This value depends on the SequeLink service you are 
using. 

VALUE=1. Quoted identifiers in SQL are case-sensitive 
and are stored in upper case in the system catalog. 

VALUE=2. Quoted identifiers in SQL are 
case-insensitive and are stored in lower case in the 
system catalog. 

VALUE=4. Quoted identifiers in SQL are case-sensitive 
and are stored in mixed case in the system catalog.

VALUE=8. Quoted identifiers in SQL are 
case-insensitive and are stored in mixed case.

Read Only Data Source VALUE=0. The data source can be updated.

Rowset Conversions on Command VALUE=True. Callers can inquire on a command about 
conversions supported on rowsets generated by the 
command.

Schema Term Specifies the name the data source uses for a schema.

Schema Usage This value depends on the SequeLink service you are 
using. A combination of the following:

VALUE=DBPROPVAL_SU_DML_STATEMENTS. Schema 
names are supported in all Data Manipulation 
Language statements.

VALUE=DBPROPVAL_SU_TABLE_DEFINITION. Schema 
names are supported in all table definition 
statements.

VALUE=DBPROPVAL_SU_INDEX_DEFINITION. Schema 
names are supported in all index definition 
statements.

VALUE=DBPROPVAL_SU_PRIVILEGE_DEFINITION. 
Schema names are supported in all privilege 
definition statements.

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



200 Chapter 4  Developing ADO Applications  
Server Name Specifies the name of the server. This can be the same 
as the Data Source property if the server name is used 
to define the user’s data source. Alternatively, if the 
data provider connects through the data provider’s 
"friendly" data source names, this can be the actual 
name of the server. 

SQL Support Specifies the level of SQL grammar that the data 
provider supports. The effects are cumulative. A 
combination of zero or one or more of the following:

VALUE=DBPROPVAL_SQL_NONE

VALUE=DBPROPVAL_SQL_ODBC_CORE

VALUE=DBPROPVAL_SQL_ODBC_MINIMUM 

VALUE=DBPROPVAL_SQL_ODBC_EXTENDED

VALUE=DBPROPVAL_SQL_ESCAPECLAUSES

VALUE=DBPROPVAL_SQL_ANSI92_ENTRY

VALUE=DBPROPVAL_SQL_ANSI92_ENTRY

VALUE=DBPROPVAL_SQL_FIPS_TRANSITIONAL

VALUE=DBPROPVAL_SQL_ANSI92_INTERMEDIATE

VALUE=DBPROPVAL_SQL_ANSI92_FULL

VALUE=DBPROPVAL_SQL_ANSI89_IEF

VALUE=DBPROPVAL_SQL_SUBMINIMUM

Structured Storage VALUE=1. The data provider supports 
DBPROPVAL_SS_ISEQUENTIALSTREAM.

Subquery Support Specifies the predicates in text commands that 
support subqueries. The value can be zero, or one or 
more of the following:

VALUE=DBPROPVAL_SQ_CORRELATEDSUBQUERIES

VALUE=DBPROPVAL_SQ_COMPARISON

VALUE=DBPROPVAL_SQ_EXISTS

VALUE=DBPROPVAL_SQ_IN

VALUE=DBPROPVAL_SQ_QUANTIFIED

Table Term Specifies the name the data source uses for a table. 

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 201
Recordset Object

The Recordset object is the set of records resulting from a query 
against a database and a cursor, which is the interface to the 
records. If you create a Connection object before you open a 
Recordset object, multiple Recordset objects can be opened on 
the same connection.

Table 4-13 maps the methods of the Recordset object to the 
OLE DB methods supported by the ADO data provider.

Transaction DDL This value depends on the SequeLink service you are 
using. 

User Name Specifies a character string with the name used in a 
particular database. This can be different from the 
login name.

Window Handle Specifies the window handle to use if the data source 
object or enumerator needs to prompt for additional 
information. 

Table 4-12.  Dynamic Properties Supported for the ADO Connection Object  (cont.)

ADO Property Default Value and Description

Table 4-13.  Mapping Methods Supported by the Recordset 
Object 

ADO Method OLE DB Method

AddNew IRowsetChange::InsertRow

CancelBatch IRowsetUpdate::Undo

Clone IRowsetLocate

Close IAccessor::ReleaseAccessor

IRowset::ReleaseRows

Delete IRowsetChange::DeleteRows
SequeLink Developer’s Reference



202 Chapter 4  Developing ADO Applications  
GetRows IAccessor::CreateAccessor

IRowsetLocate::GetRowsAt

IRowset::GetNextRows 

IRowset::GetData

Move IRowsetLocate::GetRowsAt

IRowset::GetNextRows

MoveFirst IRowsetLocate::GetRowsAt

IRowset::RestartPosition

MoveLast IRowsetLocate::GetRowsAt

MoveNext IRowsetLocate::GetRowsAt

IRowset::GetNextRows

MovePrevious IRowsetLocate::GetRowsAt

IRowset::GetNextRows

NextRecordSet IMultipleResults::GetResult

Open IOpenRowset::OpenRowset

ICommand::Execute

Requery IOpenRowset::OpenRowset

ICommand::Execute

Supports IRowsetInfo::GetProperties

Update IRowsetChange::SetData

IRowsetUpdate::Update

UpdateBatch IRowsetUpdate::Update

Table 4-13.  Mapping Methods Supported by the Recordset 
Object  (cont.)

ADO Method OLE DB Method
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 203
Table 4-14 lists the dynamic properties supported by the ADO 
data provider for the Recordset object.

Table 4-14.  Dynamic Properties Used for the Recordset Object

ADO Property Default Value and Description
Access Order VALUE=2. Columns can be accessed in any order. 

Blocking Storage Objects VALUE=False. Instantiated storage objects do not 
prevent the use of other methods.

Bookmark Information Specifies additional information about bookmarks 
over the rowset. 

Bookmark Type VALUE=1. The bookmark type is numeric. 

Change Inserted Rows VALUE=False. DeleteRows returns a status of 
DBROWSTATUS_E_NEWLYINSERTED for the newly 
inserted row and SetData returns 
DB_E_NEWLYINSERTED.

Column Privileges Specifies whether access rights are restricted on a 
column-by-column basis.

VALUE=True. Access rights are restricted on a 
column-by-column basis. 

VALUE=False. Access rights are not restricted on a 
column-by-column basis. If the rowset exposes 
IRowsetChange, SetData can be called for any column 
in the rowset.

Delay Storage Object Updates VALUE=False. Storage objects are used in immediate 
update mode.

Fetch Backwards VALUE=False. cRows must be non-negative. 

Hold Rows VALUE=False. The rowset might require pending 
changes to be transmitted to the data store before 
fetching additional rows.

IAccessor VALUE=True. 

IColumnsInfo VALUE=True. 

IColumnsRowset VALUE=True. 

IConvertType VALUE=True. 

IRowset VALUE=True. 

IRowsetChange VALUE=False. 
SequeLink Developer’s Reference



204 Chapter 4  Developing ADO Applications  
IRowsetInfo VALUE=True. 

IRowsetLocate VALUE=False.

Immobile Rows VALUE=True. The rowset will not reorder inserted or 
updated rows. 

Literal Bookmarks VALUE=False. Bookmarks can only be compared with 
IRowsetLocate::Compare.

Literal Row Identity VALUE=False. The consumer must call 
IRowsetIdentity::IsSameRow to determine whether 
two row handles point to the same row.

Lock Mode VALUE=1. The data provider is not required to lock 
rows to ensure successful updates.

Maximum Open Rows Specifies the maximum number of rows that can be 
active at the same time. 

VALUE=4096 

Maximum Pending Rows VALUE=0. There is no limit to the maximum number 
of rows that can have pending changes at the same 
time.

Maximum Rows VALUE=0. There is no limit to the number of rows 
that can be returned in a rowset.

Memory Usage VALUE=0. There is no limit to the amount of memory 
that the rowset can use.

Objects Transacted VALUE=True. Any object created on the specified 
column is transacted.

Others' Changes Visible VALUE=False. The rowset cannot see updates and 
deletes made by others.

Others' Inserts Visible VALUE=False. The rowset cannot see the rows 
inserted by others.

Own Changes Visible VALUE=False. The rowset cannot see updates and 
deletes made by consumers of the rowset unless the 
command is executed again.

Own Inserts Visible VALUE=False. The rowset can see the rows inserted by 
consumers only after the command is run again.

Table 4-14.  Dynamic Properties Used for the Recordset Object (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



Mapping ADO Methods and Properties 205
Preserve on Abort The value is specific to the SequeLink Server you are 
using.

Preserve on Commit The value is specific to the SequeLink Server you are 
using.

Quick Restart VALUE=True. IRowset::RestartPosition is not expensive 
to execute and does not execute the command that 
created the rowset again.

Remove Deleted Rows VALUE=False. Static cursors do not remove deleted 
rows.

Report Multiple Changes VALUE=False. An update or delete always affects a 
single row or the data provider cannot detect 
whether it affects multiple rows.

Return Pending Inserts VALUE=False. The methods that fetch rows cannot 
return pending insert rows. 

Row Privileges VALUE=False. Access rights are not restricted on a 
row-by-row basis.

Row Threading Model VALUE=1. The data provider supports the 
free-threaded model.

Scroll Backward VALUE=False. IRowsOffset must be non-negative.

Server Cursor VALUE=False. The data provider determines where to 
locate the cursor. 

Skip Deleted Bookmarks VALUE=False. GetRowsAt, GetApproximatePosition, 
or FindNextRow returns DB_E_BADBOOKMARK.

Strong Row Identity VALUE=False. There is no guarantee that the handles 
of newly inserted rows can be compared successfully. 

Unique Rows VALUE=False. Rows in the rowset may or may not be 
uniquely identified by their column values.

Updatability Specifies the supported methods on IRowsetChange. 

VALUE=0

Use Bookmarks VALUE=False. The rowset does not support 
bookmarks. 

Table 4-14.  Dynamic Properties Used for the Recordset Object (cont.)

ADO Property Default Value and Description
SequeLink Developer’s Reference



206 Chapter 4  Developing ADO Applications  
Data Shaping
Data shaping allows you to create hierarchical recordsets with 
data exposed by an ADO/OLE DB data provider. This is done 
through the MSDataShape OLE DB provider, which is part of the 
MDAC. MSDataShape acts as a service component to the ADO 
provider to expose data shaping functionality. 

To perform queries, MSDataShape uses a Shape language, which 
is functionally similar to SQL. For more information about the 
Shape language, refer to your MDAC documentation. 

You specify the data provider in the Connection object connect 
string by typing Data Provider=DataDirect SequeLink for ADO 
Provider. The data provider supplying data shaping support is 
specified in the Connection object Provider property as 
MSDataShape. 

For example, the following code fragment can be used to create 
hierarchical recordsets with data exposed by the ADO provider 
using the ADO data source named HR:

Dim cnn As New ADODB.Connection
cnn.Provider = "MSDataShape"
cnn.Open 
"Shape Provider = DataDirect SequeLink for ADO Provider;
DataSourceName = HR;
User ID = Mary Smith;
Password = human"
SequeLink Developer’s Reference



Persisting Information 207
Persisting Information
A data source object can be persisted (saved). The ADO provider 
uses the IPersist and the IPersistFile interfaces to persist the class 
ID and the values of data source properties set by the data 
consumer. With the IPersistFile interface, the data consumer 
saves the information to a file. 

When the data consumer loads the persisted data source, the 
data provider retrieves the saved information. All of the 
initialization properties return to the state that was current 
when the data source was persisted. The stored values overwrite 
the values of any properties the data consumer might have set. 

Using Rowsets
ADO/OLE DB data providers use rowsets to expose data in 
tabular form. The ADO data provider supports the IOpenRowset 
interface, which retrieves all data from a table for a consumer. In 
addition, the data provider supports the ICommand interface, 
which allows a consumer to get a rowset that meets a specific 
criteria.

See the “Supported Schema Rowsets” on page 174 for 
information on the schema rowsets supported.

For more information about rowsets, refer to your Microsoft 
OLE DB programming documentation.
SequeLink Developer’s Reference



208 Chapter 4  Developing ADO Applications  
Mapping Data Types 
See Appendix B “Data Types and Isolation Levels” on page 451 
for information on the way the underlying data provider’s data 
types map to the standard OLE DB data types. 
IColumns::GetColumnInfo and 
ICommandWithParameters::GetParameterInfo are used to report 
OLE DB data types.

NOTE: Always use four-digit years for conversions from variant 
types to date/time types. Using two-digit years is not supported 
and will result in undefined behavior.

Specifying Application IDs
Application IDs are alphanumeric strings passed by a SequeLink 
Client that identify the client application to a SequeLink service 
that has been configured to accept connections only from specific 
application IDs.

For more information about configuring SequeLink services to 
accept connections only from specific application IDs, refer to the 
SequeLink Administrator’s Guide.

Specifying Application IDs Explicitly

Using the ADO Client, the client application specifies the 
following key-value pair in the DBPROP_INIT_PROVIDERSTRING 
property of the DBPROPSET_DBINITALL property set:

ApplicationID=MyAppID; 

where myAppID is the application ID.
SequeLink Developer’s Reference



Error Handling 209
Generating Application IDs 
Automatically

Using the ADO Client, the client application specifies the 
following key-value pairs in the DBPROP_INIT_PROVIDERSTRING 
property of the DBPROPSET_DBINITALL property set:

Automatic Application ID=x

where:

■ When Automatic Application ID is set to 1, the full path of 
the application executable is used as input for the hash 
function.

■ When Automatic Application ID is set to 2, the executable 
binary file is used as input for the hash function.

■ When Automatic Application ID is set to 3, both the full path 
of the application executable and the executable binary file 
are used as input for the hash function.

■ When Automatic Application ID is set to 4, the full directory 
name of the application executable is used as input for the 
hash function.

   

Error Handling
The following types of errors can occur when you are using the 
SequeLink for ADO Client:

■ SequeLink for ADO data provider errors
■ SequeLink Client errors
■ SequeLink Server errors
■ Database errors
SequeLink Developer’s Reference



210 Chapter 4  Developing ADO Applications  
SequeLink® for ADO Provider Errors

An error generated by the SequeLink for ADO data provider has 
the following format:

[DataDirect] [SequeLink ADO provider] message

For example:

[DataDirect] [SequeLink ADO provider] Invalid precision 
specified.

The native error code is always zero (0).

If you receive this type of error, check the last ADO call your 
application made. Contact your ADO or OLE DB application 
vendor, or refer to the ADO and OLE DB documentation available 
from Microsoft.

SequeLink® Client Errors

An error generated by the SequeLink for ADO Client has the 
following format:

[DataDirect] [SequeLink ADO provider] [SequeLink Client] 
message

For example:

[DataDirect] [SequeLink ADO provider] [SequeLink Client] 
Memory allocation error occurred.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference.
SequeLink Developer’s Reference



Error Handling 211
SequeLink® Server Errors

An error generated by SequeLink Server has the following 
format:

[DataDirect] [SequeLink ADO provider] [SequeLink Server] 
message

For example:

[DataDirect] [SequeLink ADO provider] [SequeLink Server] 
Only Select statements are allowed in this read-only 
connection.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference.

Database Errors

An error generated by the database has the following format:

[DataDirect] [SequeLink ADO provider] [...] message

For example:

[DataDirect] [SequeLink ADO provider] [Oracle] 
ORA-00942:table or view does not exist.

Use the native error code to look up details about the possible 
cause of the error. For these details, refer to your database 
documentation.
SequeLink Developer’s Reference



212 Chapter 4  Developing ADO Applications  
SequeLink Developer’s Reference



213
Part 3: Developing JDBC 
Applications

This part contains the following chapters:

■ Chapter 5 “Using the JDBC Client” on page 215 provides 
information about using JDBC applications with the 
SequeLink Client for JDBC.

■ Chapter 6 “Using DataDirect Test™” on page 263 introduces 
DataDirect Test, a tool that allows you to test and learn the 
JDBC API, and contains a tutorial that takes you through a 
working example of its use.

■ Chapter 7 “Tracking JDBC Calls” on page 315 introduces Spy, 
a tool that allows you to track JDBC calls, and describes how 
to use it.

■ Chapter 8 “Developing JDBC Applications” on page 327 
provides information about developing JDBC applications for 
SequeLink environments.
SequeLink Developer’s Reference



214   Part 3: Developing JDBC Applications  
SequeLink Developer’s Reference



215
5 Using the JDBC Client

This chapter provides information about using JDBC applications 
with the SequeLink Client for JDBC (the JDBC Client).

About the JDBC Client
The JDBC Client provides JDBC access through any Java-enabled 
applet, application, or application server. It delivers 
high-performance point-to-point and n-tier access to 
industry-leading data stores across the Internet and intranets. 
The JDBC Client is optimized for the Java environment, allowing 
you to incorporate Java technology and extend the functionality 
and performance of your existing system. The following 
components are shipped with the JDBC Client:

■ SequeLink for JDBC Driver
■ SequeLink Proxy Server
■ DataDirect Spy™ for JDBC

■ DataDirect Test™ for JDBC

■ DataDirect Connection Pool Manager
■ J2EE Connector Architecture resource adapters

The JDBC Client runs on 32-bit and 64-bit platforms. No changes 
are required to existing applications to enable them to run on 
64-bit platforms.
SequeLink Developer’s Reference



216 Chapter 5  Using the JDBC Client  
JDBC Driver

The JDBC driver is compliant with the JDBC 3.0 specification, 
including the following features:

■ Java Naming Directory Interface (JNDI) for naming databases
■ Connection pooling
■ Distributed transactions 

SequeLink® Proxy Server

Installing the SequeLink Proxy Server on the Web server from 
which your JDBC applets are downloaded allows untrusted 
applets to connect to SequeLink Servers on hosts other than the 
Web server, as shown in Figure 5-1. 

Figure 5-1.  SequeLink Proxy Server Installed on a Web Server

In addition, you can use SSL encryption with the proxy server to 
encrypt data between the SequeLink Proxy Server and the JDBC 
Client. You can also use SSL with a Java application running on 
SequeLink Developer’s Reference



About the JDBC Client 217
your Intranet to secure data over your entire network by 
installing the SequeLink Proxy Server on the same machine as 
the SequeLink Server. For example, you may want to use SSL to 
encrypt the data sent between an application server and the 
data store serviced by a SequeLink Server on another machine. 
For more information about SSL, refer to the SequeLink 
Administrator’s Guide.
 

DataDirect Spy™ 

DataDirect Spy is a software component for tracking JDBC calls 
at runtime. It passes calls issued by an application to an 
underlying JDBC driver and logs detailed information about 
those calls. DataDirect Spy provides the following advantages:

■ Logging is JDBC 3.0-compliant, including support for the 
JDBC 2.0 Optional Package.

■ Logging is consistent, regardless of the JDBC driver used.

■ All parameters and function results for JDBC calls can be 
logged.

■ Logging can be enabled without changing the application.

■ DataDirect Spy can only be used with the SequeLink for JDBC 
Driver and the DataDirect Connect® for JDBC drivers.

When you enable DataDirect Spy for a connection, you can 
customize DataDirect Spy logging for your needs by setting one 
or multiple options for DataDirect Spy. For example, you may 
want to direct logging to a local file on your machine.
SequeLink Developer’s Reference



218 Chapter 5  Using the JDBC Client  
DataDirect Test™ 

DataDirect Test is a menu-driven software component that is 
included in the SequeLink package. It helps you debug your JDBC 
applications and learn how to use the JDBC driver. DataDirect 
Test contains menu selections that:

■ Correspond to specific JDBC functions—for example, 
connecting to a database or passing a SQL statement.

■ Encapsulate multiple JDBC function calls as a shortcut to 
perform some common tasks, such as displaying the contents 
of a result set.

DataDirect Test displays the results of all JDBC function calls in 
one window, while displaying fully commented, Java JDBC code 
in an alternate window.
 

DataDirect Connection Pool Manager

Database access performance can be improved significantly when 
connection pooling is used. Connection pooling means that 
connections are reused rather than created each time a 
connection is requested. 

Your application can use connection pooling through the 
DataDirect Connection Pool Manager. See Appendix D “JDBC 
Connection Pool Manager” on page 541 for more information 
about the DataDirect Connection Pool Manager.
SequeLink Developer’s Reference



About the JDBC Client 219
J2EE Connector Architecture (JCA) 
Resource Adapter

The J2EE Connector architecture (JCA) defines a standard 
structure for connecting the J2EE platform to Enterprise 
Information Systems (EISs). JCA enables the integration of EISs 
with application servers and enterprise applications.

The JDBC Driver supports appropriate JDBC functionality 
through the JCA SPI by providing a resource adapter. The 
DataDirect resource adapter is provided in a resource archive 
(RAR) file, and is named like the JDBC driver files, for example, 
sljc.rar. See the Installed File list in the SequeLink readme file for 
the names and locations of the RAR files. See the SequeLink 
Installation Guide for information about creating the resource 
adapters. See “J2EE Connector Architecture Resource Adapter” 
on page 232 for more information about using resource 
adapters with SequeLink.
SequeLink Developer’s Reference



220 Chapter 5  Using the JDBC Client  
JDBC Client Directory Structure

Table 5-1 shows the JDBC Client directory after installation and 
provides a description of the files.

Table 5-1.  JDBC Client Directory and Files

Directories and Files Description

books/*.* Files for the SequeLink online 
books, which are in HTML format.

driver/examples/CheckAgainstCertificateFromFile.java
driver/examples/CheckAgainstCertificateFromJar.java
driver/examples/KeyStoreCertificateChecker.java

Contain Java source files that 
provide examples of certificate 
checkers.

driver/examples/JNDI_FILESYSTEM_Example.java
driver/examples/JNDI_LDAP_Example.java

Contain Java source files that allow 
you to create JDBC data sources. 
These source files must be adapted 
for your environment, and 
subsequently compiled and run.

driver/lib/sljc.jar JAR file containing all classes of the 
JDBC driver implementing the 
JDBC 3.0 API. To load the driver, add 
this path to your CLASSPATH 
variable. This JAR file also contains 
all classes of the JDBC driver 
implementing the JDBC 2.0 
Optional Package. To use the 
JDBC 2.0 Optional Package, add this 
path to your CLASSPATH variable.

driver/lib/slssl14.jar
driver/lib/iaik_jce_full.jar

JAR files required for J2SE 1.4.2 or 
higher JVMs. The files contain all 
classes of the JDBC driver that 
implement SSL encryption.

driver/lib/sljc.rar Resource Archive for use with J2EE 
Connector Architecture.

help/*.* Files for the HTML-based online 
help for the JDBC driver.
SequeLink Developer’s Reference



About the JDBC Client 221
testforjdbc/lib/testforjdbc.jar JAR file containing all the 
DataDirect Test classes. To use 
DataDirect Test, add this path to 
your CLASSPATH variable.

testforjdbc/testforjdbc14.bat Batch file that starts DataDirect 
Test.

testforjdbc/testforjdbc14.sh UNIX shell script that starts 
DataDirect Test.

pool/lib/pool.jar JAR file containing all the classes for 
the DataDirect Connection Pool 
Manager.

proxy/cmdsrvc.exe Executable that registers the 
SequeLink Proxy Server as a 
Windows service.

proxy/proxyserver14.bat Batch file that starts the SequeLink 
Proxy Server.

proxy/cert/ Directory containing demo 
certificates.

proxy/demos/com/ddtek/sequelink/demo/
demo.properties
proxy/demos/com/ddtek/sequelink/demo/
GenerateDemoCertificates$DN.class
proxy/demos/com/ddtek/sequelink/demo/
GenerateDemoCertificates.class

Contain Java files you can use to 
generate certificates.

proxy/demos/com/ddtek/sequelink/demo/
KeyTool.class

Contains a Java class file that 
extracts certificates from a Java2 
KeyStore and converts certificates 
to different formats.

proxy/lib/slproxy.jar JAR file containing all classes for the 
SequeLink Proxy Server.

proxy/log The directory that contains all 
messages logged by the SequeLink 
Proxy Server.

Table 5-1.  JDBC Client Directory and Files (cont.)

Directories and Files Description
SequeLink Developer’s Reference



222 Chapter 5  Using the JDBC Client  
proxy/proxyserver14.sh UNIX shell script that starts the 
SequeLink Proxy Server.

spy/lib/spy.jar JAR file containing all Spy classes. To 
use DataDirect Spy, add this path to 
your CLASSPATH variable.

sun/lib/jdbc2_0-stdext.jar JAR file containing redistributable 
Sun Microsystems components for 
the JDBC 2.0 Optional Package.

sun/lib/jndi.jar JAR file containing redistributable 
Sun Microsystems components for 
JNDI 1.2.

sun/lib/jta-spec1_0_1.jar JAR file containing redistributable 
Sun Microsystems components for 
JTA 1.0.1.

sun/lib/fs/fscontext.jar
sun/lib/fs/providerutil.jar

JAR files containing redistributable 
Sun Microsystems components for 
the File System JNDI Provider.

sun/lib/ldap/jaas.jar
sun/lib/ldap/ldap.jar
sun/lib/ldap/ldapbp.jar
sun/lib/ldap/providerutil.jar

JAR files containing redistributable 
Sun Microsystems components for 
the LDAP JNDI Provider.

Table 5-1.  JDBC Client Directory and Files (cont.)

Directories and Files Description
SequeLink Developer’s Reference



Registering the JDBC Driver 223
Registering the JDBC Driver
To use the JDBC driver, you first must register it with the JDBC 
Driver Manager. You can register the JDBC driver in any of the 
following ways:

■ Method 1: Set the Java property jdbc.drivers using the Java 
-D option. The jdbc.drivers property is defined as a 
colon-separated list of driver class names. For example:

com.ddtek.jdbc.sequelink.SequeLinkDriver:sun.jdbc.odbc.JdbcOdbcDriver

The jdbc.drivers property can be set like other Java 
properties, using the -D option. For example:

java -Djdbc.drivers=com.ddtek.jdbc.sequelink.SequeLinkDriver

■ Method 2: Set the Java property jdbc.drivers from within 
your Java application or applet. To do this, include the 
following code in your application or applet, and call 
DriverManager.getConnection():

Properties p = System.getProperties();
p.put ("jdbc.drivers", 
"com.ddtek.jdbc.sequelink.SequeLinkDriver");
System.setProperties (p);

■ Method 3: Explicitly load the driver class using the standard 
Class.forName() method. To do this, include the following 
code in your application or applet and call 
DriverManager.getConnection():

Class.forName("com.ddtek.jdbc.sequelink.SequeLinkDriver");
SequeLink Developer’s Reference



224 Chapter 5  Using the JDBC Client  
Specifying JDBC Driver Connection URLs
The connection URL format depends on whether you are using 
SSL encryption. For more information about SSL encryption, refer 
to the SequeLink Administrator’s Guide.

NOTE: SequeLink Server for DB2 for z/OS does not support SSL. To 
use SSL encryption in a DB2 for z/OS environment, use the 
SequeLink Proxy Server.

If not using SSL encryption over the SequeLink Proxy Server, the 
connection URL format is:

jdbc:sequelink://hostname:port[;key=value]...

If using SSL encryption over the SequeLink Proxy Server, the 
connection URL format is:

jdbc:sequelink:ssl://hostname:port[;key=value]...

where:

hostname is the TCP/IP address or TCP/IP host name of the 
SequeLink server to which you are connecting.

NOTE: Untrusted applets cannot open a socket 
to a machine other than the originating host. 
For more information about untrusted applets, 
refer to the SequeLink Administrator’s Guide.

port is the TCP/IP port on which the SequeLink 
server is listening. A default installation of 
SequeLink Server uses the port 19996.

key=value specifies connection properties. See “JDBC 
Connection Properties” on page 237 for a list 
of connection properties and their valid values.
SequeLink Developer’s Reference



Configuring JDBC Data Sources 225
JDBC Connection URL Examples:

The following examples show some typical JDBC driver 
connection URLs:

jdbc:sequelink://sequelinkhost:19996;

jdbc:sequelink://189.23.5.25:19996;user=john;
password=whatever

jdbc:sequelink://189.23.5.132:19996;databaseName=stores7

jdbc:sequelink://189.23.5.68:19996;databaseName=pubs;
HUser=john;HPassword=whatever

jdbc:sequelink://sequelinkhost:4006;
databaseName=pubs;DBUser=john;DBPassword=whatever

jdbc:sequelink:ssl://mysecurehost:9500;
cipherSuites=SSL_DH_anon_WITH_RC4_128_MD5

jdbc:sequelink:ssl://mysecurehost:9502;
cipherSuites=SSL_DHE_RSA_WITH_DES_CBC_SHA;
certificateChecker=CheckAgainstCertificateFromJar

The preceding examples do not show the user and password 
connection properties. Typically, these properties are specified in 
the connection properties stored in the java.util.Properties 
object, which is supplied as a parameter to the getConnection 
method.
 

Configuring JDBC Data Sources
Using JDBC data sources provides flexibility to make 
environment changes and reduces the time it takes to 
reconfigure your infrastructure when a change is made. For 
example, if a SequeLink service is reconfigured (for example, 
moved to another machine, port, and so on), the SequeLink 
administrator can change and run the configuration source file 
SequeLink Developer’s Reference



226 Chapter 5  Using the JDBC Client  
described in “Creating and Managing JDBC Data Sources” on 
page 226, reassigning the logical name of the JDBC data source 
to the changed data source configuration. As a result, the client 
application code does not have to change, because it only refers 
to the logical name of the JDBC data source. 

SequeLink supports the following JDBC data source 
implementations defined by the JDBC 2.0 Optional Package:

■ JNDI for Naming Databases
■ Connection pooling
■ Distributed Transaction Management Support

NOTES: 

■ You must include the javax.sql.* and javax.naming.* classes to 
create and use JDBC data sources. The JDBC Client provides all 
the necessary JAR files that contain the required classes and 
interfaces.

■ In addition, you must include the javax.transaction.xa.* class 
to use and implement distributed transactions.

Creating and Managing JDBC Data 
Sources

JDBC data sources are implemented using a SequeLink class 
com.ddtek.sequelink.jdbcx.datasource.SequeLinkDataSource. 
This single data source implementation implements the following 
interfaces defined in the JDBC 2.0 Optional Package:

■ javax.sql.DataSource
■ javax.sql.ConnectionPoolDataSource
■ javax.sql.XADataSource

The SequeLink Data Source implementation implements both the 
java.io.Serializable and javax.naming.Referenceable interfaces. 
The interface that is used depends on the service provider you are 
SequeLink Developer’s Reference



Configuring JDBC Data Sources 227
using and how the SequeLinkDataSource object is saved in your 
JNDI environment.

Your JDBC Client installation contains the following examples 
that show how to create and use JDBC data sources:

■ JNDI_LDAP_Example.java. Use this example to create a JDBC 
data source and save it in your LDAP directory, using the JNDI 
Provider for LDAP.

■ JNDI_FILESYSTEM_Example.java. Use this example to create a 
JDBC data source and save it in your local file system, using 
the File System JNDI Provider.

NOTE: You must include the javax.sql.* and javax.naming.* 
classes to create and use SequeLink JDBC data sources. The 
SequeLink JDBC driver provides all the necessary JAR files, which 
contain the required classes and interfaces. 

Calling a Data Source in an Application 

Applications can call a SequeLink JDBC data source using a 
logical name to retrieve the javax.sql.DataSource object. This 
object loads the specified driver and can be used to establish a 
connection to the database. 

Once the data source has been registered with JNDI, it can be 
used by your JDBC application as shown in the following 
example: 

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("EmployeeDB");
Connection con = ds.getConnection("scott", "tiger");

In this example, the JNDI environment is first initialized. Next, 
the initial naming context is used to find the logical name of the 
data source (EmployeeDB). The Context.lookup() method returns 
a reference to a Java object, which is narrowed to a 
javax.sql.DataSource object. Finally, the 
SequeLink Developer’s Reference



228 Chapter 5  Using the JDBC Client  
DataSource.getConnection() method is called to establish a 
connection with the database.

See “Creating and Managing JDBC Data Sources” on page 226 
for information about example data sources shipped with 
SequeLink Client for JDBC that you can use as a template for 
creating your own data sources.

Using JNDI for Naming Databases

Instead of using connection URLs, client applications can access a 
JNDI-named data source using a logical name to retrieve the 
javax.sql.DataSource object. This object loads the JDBC driver and 
establishes the connection to the SequeLink service. 

Once a JDBC data source has been registered with JNDI, it can be 
used by your JDBC application as shown in the following 
example:

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/EmployeeDB");
Connection con = ds.getConnection("scott", "tiger");

In this example, the JNDI environment is first initialized. Next, the 
initial naming context is used to find the logical name of the 
JDBC data source. The Context.lookup() method returns a 
reference to a Java object, which is narrowed to a 
javax.sql.DataSource object. Finally, the 
DataSource.getConnection() method is called to establish a 
connection with the SequeLink service.

See “Creating and Managing JDBC Data Sources” on page 226 
for instructions on creating JDBC data sources.
SequeLink Developer’s Reference



Configuring JDBC Data Sources 229
Using Connection Pooling

Connection pooling allows you to reuse connections rather than 
create a new one every time the SequeLink Client needs to 
establish a data access connection. Connection pooling manages 
connection sharing across different user requests to maintain 
performance and reduce the number of new connections that 
must be created. For example, compare the transaction 
sequences shown in “Example A: Without Connection Pooling” 
on page 229 and “Example B: With Connection Pooling” on 
page 229.

Example A: Without Connection Pooling

1 The client application creates a connection.

2 The client application sends a data access query.

3 The client application obtains the result set of the query.

4 The client application displays the result set to the end user.

5 The client application ends the connection.

Example B: With Connection Pooling

1 The client checks the connection pool for an unused 
connection.

2 If an unused connection exists, it is returned by the pool 
implementation; otherwise, it creates a new connection.

3 The client application sends a data access query.

4 The client application obtains the result set of the query.

5 The client application displays the result set to the end user.

6 The client application returns the connection to the pool.

NOTE: The client application still calls close(), but the connection 
remains open and the pool is notified of the close request.
SequeLink Developer’s Reference



230 Chapter 5  Using the JDBC Client  
The pool implementation creates real database connections using 
the getPooledConnection() method of 
ConnectionPoolDataSource. Then, the pool implementation 
registers itself as a listener to the PooledConnection. When a 
client application requests a connection, the pool 
implementation is notified by the ConnectionEventListener 
interface that the connection is free and available for reuse. The 
pool implementation is also notified by the 
ConnectionEventListener interface when the client somehow 
corrupts the database connection, so that the pool 
implementation can remove that connection from the pool.

Once a JDBC data source has been registered with JNDI, it can be 
used by your JDBC application as shown in the following 
example, typically through a third-party connection pool tool:

Context ctx = new InitialContext();
ConnectionPoolDataSource ds = (ConnectionPoolDataSource)
ctx.lookup("jdbc/EmployeeDB");
pooledConnection pcon = ds.getPooledConnection("scott", 
"tiger");

In this example, the JNDI environment is first initialized. Next, the 
initial naming context is used to find the logical name of the 
JDBC data source. The Context.lookup() method returns a 
reference to a Java object, which is narrowed to a 
javax.sql.ConnectionPoolDataSource object. Finally, the 
ConnectionPoolDataSource.getPooledConnection() method is 
called to establish a connection with the SequeLink service.

See “Creating and Managing JDBC Data Sources” on page 226 
for instructions on creating JDBC data sources. See Appendix D 
“JDBC Connection Pool Manager” on page 541 for more 
information on the DataDirect Connection Pool Manager.
SequeLink Developer’s Reference



Using the Java Transaction API 231
Using the Java Transaction API
Table 5-2 lists which databases are supported for the Java 
Transaction API (JTA) by the JDBC Client. 

Once a JDBC data source has been registered with JNDI, it can be 
used by your JDBC application as shown in the following 
example, typically through application server software:

Context ctx = new InitialContext();
XADataSource ds = (XADataSource)
ctx.lookup("jdbc/EmployeeDB");
XAConnection xacon = ds.getXAConnection("scott", "tiger");

In this example, the JNDI environment is first initialized. Next, 
the initial naming context is used to find the logical name of the 
JDBC data source. The Context.lookup() method returns a 
reference to a Java object, which is narrowed to a 
javax.sql.XADataSource object. Finally, the 

Table 5-2.  Support for the Java Transaction API (JTA) by the 
JDBC Client

Database JTA Supported?

Oracle Yes

Informix Yes

DB2 UDB on z/OS Yes

DB2 UDB on Linux, UNIX, and Windows Yes

JDBC Socket No

Microsoft SQL Server Yes

ODBC Socket No

Sybase Yes
SequeLink Developer’s Reference



232 Chapter 5  Using the JDBC Client  
XADataSource.getXAConnection() method is called to establish a 
connection with the SequeLink service.

See “Creating and Managing JDBC Data Sources” on page 226 
for instructions on creating JDBC data sources.

J2EE Connector Architecture Resource Adapter
The J2EE Connector Architecture defines a standard structure for 
connecting the J2EE platform to Enterprise Information Systems 
(EIS). Examples of EIS include mainframe transaction processing, 
database systems, and legacy applications that are not written in 
the Java programming language. The J2EE Connector 
Architecture allows you to integrate EIS with application servers 
and enterprise applications. The J2EE Connector Architecture 
defines a standard set of system-level contracts between an 
application server and the EIS to ensure compatibility between 
them. The resource adapter implements the EIS portion of these 
system-level contracts.

The J2EE Connector Architecture also defines a standard Service 
Provider Interface (SPI) for integrating the transaction, security 
and connection management facilities of an application server 
with those of a transactional resource manager. The JDBC 
specification provides more information about the relationship 
of JDBC to the SPI specified in the J2EE Connector Architecture.

The JDBC driver supports JDBC functionality through the J2EE 
Connector Architecture SPI by providing resource adapters. A 
resource adapter is a system-level software driver used by an 
application server to connect to an EIS. The resource adapter 
communicates with the server to provide the underlying 
transaction, security, and connection pooling mechanisms.

The SequeLink resource adapter conforms to the J2EE Connector 
Architecture 1.0 specification. The resource adapter is provided in 
SequeLink Developer’s Reference



J2EE Connector Architecture Resource Adapter 233
a resource archive (RAR) file, sljc.rar. Refer to the SequeLink 
Installation Guide for information about creating the resource 
adapter.

Using the Resource Adapter with an 
Application Server

The SequeLink resource adapter can be used with any J2EE 1.3 or 
higher application server. To use the resource adapter with 
J2EE 1.4 or higher application servers, it must be used in 
conjunction with the Sun Microsystems JDBC Connector. Refer to 
the Sun Microsystems JDBC Connector documentation for more 
information or see the following Web site:

http://java.sun.com/developer/earlyAccess/jdbc/index.html 

In an application server environment, the resource adapter is 
deployed using a deployment tool. Each RAR file includes a 
deployment descriptor, which instructs the application server 
about how to use the resource adapter in an application server 
environment. The deployment descriptor contains information 
about the resource adapter, including security and transactional 
capabilities, and the ManagedConnectionFactory class name. 
Refer to your application server documentation for details about 
how to deploy components using the deployment tool.

Using the Resource Adapter from an 
Application

The JCA resource adapter may also be used directly from an 
application, rather than through a container-managed, 
application server environment. The following code example 
shows how you might access a database using the resource 
adapter:
SequeLink Developer’s Reference

http://java.sun.com/developer/earlyAccess/jdbc/index.html


234 Chapter 5  Using the JDBC Client  
package examples;

import java.util.Hashtable;
import java.sql.Connection;
import javax.sql.DataSource;
import javax.naming.*;
import javax.resource.spi.*;
import com.ddtek.resource.sljdbc.JCAConnectionFactory;
import com.ddtek.resource.sljdbc.spi.*;

public class RAExample {
    static public void main(String[] args) {
        try {
// Create a connection factory instance
            SequeLinkManagedConnectionFactory managedFactory =
            new SequeLinkManagedConnectionFactory();
            managedFactory.setServerName("MyOracleServer");
            managedFactory.setPortNumber("1521");
            JCAConnectionFactory factory = (JCAConnectionFactory)

managedFactory.createConnectionFactory();
// Get an InitialContext. Using File System JNDI Service
// Provider as an example
            Hashtable env = new Hashtable();
            env.put(Context.INITIAL_CONTEXT_FACTORY,
                    "com.sun.jndi.fscontext.RefFSContextFactory");
            env.put(Context.PROVIDER_URL,
                    "file:c:/ConnectionFactories");
            Context connectorContext = new InitialContext(env);
// Bind the connection factory
            try {
                connectorContext.bind("ConnectionFactory", 
factory);
            } catch (NameAlreadyBoundException except) {
                connectorContext.rebind("ConnectionFactory",
                                        factory);
            }
        } catch (Exception except) {
            System.out.println("Error creating DataSource");
            System.exit(0);
        }
SequeLink Developer’s Reference



Specifying Connection Properties 235
// Connect via the DataSource
        try {
// Get an InitialContext. Using File System JNDI Service
// Provider as an example
            Hashtable env = new Hashtable();
            env.put(Context.INITIAL_CONTEXT_FACTORY,
                    
"com.sun.jndi.fscontext.RefFSContextFactory");
            env.put(Context.PROVIDER_URL,
                    "file:c:/ConnectionFactories");
            Context connectorContext = new InitialContext(env);
// Lookup the connection factory
            DataSource dataSource = (DataSource)

connectorContext.lookup("ConnectionFactory");
Connection connection =dataSource.getConnection("scott", 
"tiger");
        catch (Exception except) {
            System.out.println("Error looking up connection 
factory");  }  }
        }

Specifying Connection Properties
You can specify connection properties using a connection URL, 
the JDBC Driver Manager, or JDBC data sources. The properties 
you can specify depend on the connection method you choose. 
See “JDBC Connection Properties” on page 237 for a list of the 
connection properties.
SequeLink Developer’s Reference



236 Chapter 5  Using the JDBC Client  
Using Connection URLs or the JDBC 
Driver Manager

In order of precedence, you can specify connection properties 
using:

■ getConnection(url, user, password), where user and password 
are specified using the getConnection method defined in 
java.sql.DriverManager.

■ java.util.properties object. 

■ Connection URL specified using the URL parameter of the 
getConnection method defined in java.sql.DriverManager.

■ Server data sources specified using the SequeLink Manager.

For more information about server data sources, refer to the 
SequeLink Administrator’s Guide.

Using JDBC Data Sources

In order of precedence, you can specify connection properties 
using:

■ getConnection(user, password), where user and password are 
specified using the getConnection method defined in 
javax.sql.DataSource

getConnection("scott", "tiger") 

■ JDBC DataSource object

■ Server data sources specified using the SequeLink Manager

For more information about server data sources, refer to the 
SequeLink Administrator’s Guide.

 

SequeLink Developer’s Reference



JDBC Connection Properties 237
JDBC Connection Properties
Table 5-3 lists the JDBC connection properties supported by the 
JDBC driver, describes each property, and specifies the methods 
with which it can be specified.

Table 5-3.  JDBC Connection Properties 

Property Description

allowPrefetch allowPrefetch={0 | 1}. Enables the prefetch feature. When 
enabled, the JDBC driver requests a next set of rows from 
the server while the client application is processing the 
previous set of rows. 

When set to 1, the prefetch feature is enabled. Overall 
throughput increases, if the application always fetches all 
rows from a result set. When this feature is enabled and 
the application does not fetch all data from result sets, 
performance can be significantly degraded.

When set to 0 (the initial default), the prefetch feature is 
disabled. 

This property can be specified using: 

■ JDBC data source
■ URL
■ java.util.properties
■ server data source
SequeLink Developer’s Reference



238 Chapter 5  Using the JDBC Client  
AlternateServers A comma-separated list of alternate SequeLink servers 
that the driver will try to connect to if the primary 
SequeLink server is unavailable. The value of this 
property is a string that specifies each alternate 
SequeLink server. This string has the format:

(servername1:port1[;serverDataSource=
datasourcename], 
servername2:port2[;serverDataSource=
datasourcename],...)

The server name and port number are required for each 
alternate server entry. The serverDataSource property 
(serverDataSource=datasourcename) is optional for each 
alternate SequeLink server entry.  

For example, the connection string

jdbc:sequelink://server1:19996;serverDataSource=
SDSN1;User=test;Password=secret;AlternateServers=
(server2:19996;serverDataSource=SDSN2, 
server3:19996;serverDataSource=SDSN3)

contains alternate server entries for server2 and server3.

The ConnectionRetryCount property controls the number 
of times the driver retries the primary database server, 
and if specified, alternate servers while attempting to 
establish a connection. The ConnectionRetryDelay 
property sets the wait interval, in seconds, between retry 
attempts.

The LoadBalancing property controls the order in which 
the driver sequences through the list of servers (primary 
and alternate) while attempting to establish a 
connection.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 239
ApplicationName Identifies the application that is establishing the 
connections. When the application does not provide a 
value, the initial default is SequeLink for JDBC 
Application.

This property can be specified using: 

■ JDBC data source
■ URL
■ java.util.properties

blockFetchForUpdate blockFetchForUpdate={0 | 1}. Specifies a workaround 
connection attribute. When the isolation level is Read 
Committed and a SELECT FOR UPDATE statement is issued 
against some data stores, the JDBC Client does not lock 
the expected row. 

When set to 0, the appropriate row is locked.

When set to 1 (the initial default), the appropriate row is 
not locked.

IMPORTANT: Specifying 0 will degrade performance for 
SELECT FOR UPDATE statements because rows will be 
fetched one at a time.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties
■ server data source

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



240 Chapter 5  Using the JDBC Client  
certificateChecker The fully qualified class name of a user-defined server 
certificate checker class. When the SequeLink Client and 
SequeLink Server have agreed on an SSL cipher suite that 
requires a server certificate, this class is used to verify the 
server certificate on behalf of the client. The class must 
be an implementation of the 
com.ddtek.sequelink.cert.CertificateCheckerInterface 
interface.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

For more information about certificate checker classes, 
refer to the SequeLink Administrator’s Guide.

cipherSuites The SSL cipher suites with which the JDBC Client can use 
to connect. This property is required when 
networkProtocol=ssl.

For a list of supported cipher suites, refer to the 
SequeLink Administrator’s Guide.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 241
ConnectionRetryCount The number of times the driver retries connection 
attempts to the primary SequeLink server, and if 
specified, alternate SequeLink servers until a successful 
connection is established. Valid values are 0 and any 
positive integer. 

When set to 0 (the initial default), the driver does not try 
to reconnect after the initial unsuccessful attempt.

For example, in the case where the following properties 
are specified:

AlternateServers=(server2:19996,server3:19996, 
server4:19999);

and

ConnectionRetryCount=1

If a connection is not successfully established on the 
driver's first pass through the list of database servers, the 
driver retries all the servers in the list only once. 

If an application sets a login timeout value (for example, 
using DataSource.loginTimeout or 
DriverManager.loginTimeout), the login timeout takes 
precedence over this property. For example, if the login 
timeout expires, any connection attempts stop.

The ConnectionRetryDelay property sets the wait 
interval, in seconds, between retry attempts.

If the LoadBalancing property is set to true, the driver 
sequence through the list of servers (primary and 
alternate) in a different order each time.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



242 Chapter 5  Using the JDBC Client  
ConnectionRetryDelay The number of seconds the driver will wait between 
connection retry attempts when ConnectionRetryCount is 
set to a positive integer. 

The initial default is 3.

For example, in the case where the following properties 
are specified:

AlternateServers=
(server2:19996,server3:19996,server4:19996)

and

ConnectionRetryCount=2

and

ConnectionRetryDelay=5

If a connection is not successfully established on the 
driver's first pass through the list of SequeLink servers, 
the driver retries the list of servers twice. It waits 5 
seconds between the first connection retry attempt and 
the second connection retry attempt.

ConvertNull ConvertNull={1 | 0}. Controls how data conversions are 
handled for null values.

If set to 1 (the default), the driver checks the data type 
being requested against the data type of the table 
column storing the data. If a conversion between the 
requested type and column type is not defined, the driver 
generates an "unsupported data conversion" exception 
regardless of the data type of the column value.

If set to 0, the driver does not perform the data type 
check if the value of the column is null. This allows null 
values to be returned even though a conversion between 
the requested type and the column type is undefined.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 243
databaseName The name of the data store to which you want to 
connect.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties
■ server data source

DBPassword The data store password, which may be required 
depending on the server configuration.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

DBUser The data store user name, which may be required 
depending on the server configuration.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

description A description of the connection or data source.

This property can be specified using:

■ JDBC data source

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



244 Chapter 5  Using the JDBC Client  
encrypted encrypted={0 | 1}. Enables the use of direct SSL 
encryption. When SSL encryption is configured on the 
SequeLink Server, only this setting is required. When SSL 
encryption is not configured on the SequeLink Server, this 
property is ignored.

NOTE: Because SequeLink Server for DB2 for z/OS cannot 
support SSL, enabling this property in the connection 
string generates an error.

When set to 0 (the default), direct SSL encryption is not 
used.

When set to 1, direct SSL encryption is used.

Example:

jdbc:sequelink://mysecurehost:19996;encrypted=1

HPassword The host password, which may be required depending on 
the server configuration.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

HUser The host user name, which may be required depending 
on the server configuration.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 245
InitializationString Specifies one or multiple SQL commands to be executed 
by the driver after it has established the connection to 
the database and has performed all initialization for the 
connection. The following connection URL sets the 
handling of null values to the SequeLink default:

jdbc:datadirect:sybase://server1:5000; 
InitializationString=set ANSINULL off; 
DatabaseName=test 

Multiple commands must be separated by semicolons. In 
addition, if this property is specified in a connection URL, 
the entire value must be enclosed in parentheses when 
multiple commands are specified. The following 
connection URL sets the handling of null values to the 
Sybase default and allows delimited identifiers:

jdbc:datadirect:sybase://server1:5000; 
InitializationString=(set ANSINULL off; 
set QUOTED_IDENTIFIER on);DatabaseName=test 

If the execution of a SQL command fails, the connection 
attempt also fails and the driver throws an exception 
indicating which SQL command or commands failed.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



246 Chapter 5  Using the JDBC Client  
insensitiveResultSetBufferSize insensitiveResultSetBufferSize={-1 | 0 | x}. Determines the 
amount of memory used by the driver to cache 
insensitive result set data. It must have one of the 
following values:

If set to -1, the driver caches all insensitive result set data 
in memory. If the size of the result set exceeds available 
memory, an OutOfMemoryException is generated. 
Because the need to write result set data to disk is 
eliminated, the driver processes the data more efficiently.

If set to 0, the driver caches all insensitive result set data 
in memory, up to a maximum of 2 GB. If the size of the 
result set data exceeds available memory, the driver 
pages the result set data to disk. Because result set data 
may be written to disk, the driver may have to reformat 
the data to write it correctly to disk.

If set to x, where x is a positive integer, the driver caches 
all insensitive result set data in memory, using this value 
to set the size (in KB) of the memory buffer for caching 
insensitive result set data. If the size of the result set data 
exceeds the buffer size, the driver pages the result set 
data to disk. Because the result set data may be written 
to disk, the driver may have to reformat the data to write 
it correctly to disk. Specifying a buffer size that is a power 
of 2 results in more efficient memory use.

The initial default is 2048 (KB).

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 247
JavaDoubleToString JavaDoubleToString={true | false}. Determines whether 
the driver uses its internal conversion algorithm or the 
JVM conversion algorithm when converting double or 
float values to string values.

If set to true, the driver uses the JVM algorithm when 
converting double or float values to string values.

If set to false (the initial default), the driver uses its 
internal algorithm when converting double or float 
values to string values. Using this value improves 
performance; however, slight rounding differences can 
occur when compared to the same conversion using the 
JVM algorithm. These differences are within the 
allowable error of the double and float data types.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



248 Chapter 5  Using the JDBC Client  
LoadBalancing LoadBalancing={true | false}. Determines whether the 
driver will use client load balancing in its attempts to 
connect to the list of SequeLink servers (primary and 
alternate). 

When set to true, client load balancing is used and the 
driver attempts to connect to the list of SequeLink servers 
(primary and alternate servers) in random order.

When set to false (the initial default), client load 
balancing is not used and the driver connects to each 
server based on their sequential order (primary server 
first, then, alternate servers in the order they are 
specified).

For example, in the case where the following properties 
are specified: 

AlternateServers=
(server2:19996,server3:19996,server4:19996) 

and 

LoadBalancing=true, 

The driver randomly selects from the list of primary and 
alternate servers which server to connect to first. If that 
connection fails, the driver again randomly selects from 
this list of servers until all servers in the list have been 
tried or a connection is successfully established.

Refer to the SequeLink Administrator’s Guide for a 
discussion of specifying connection information for 
primary and secondary SequeLink servers.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 249
LongDataCacheSize LongDataCacheSize={-1 | 0 | x}. Determines whether the 
driver caches long data in result sets (images, pictures, 
long text, or binary data).

If set to -1, the driver does not cache long data in result 
sets. It is cached on the server. Use this value only if your 
application returns columns in the order they are defined 
in the result set.

If set to 0, the driver caches long data in result sets in 
memory. If the size of the result set data exceeds 
available memory, the driver pages the result set data to 
disk.

If set to x, where x is a positive integer, the driver caches 
long data in result sets in memory and uses this value to 
set the size (in KB) of the memory buffer for caching 
result set data. If the size of the result set data exceeds 
available memory, the driver pages the result set data to 
disk.

MSSMapLongtoDecimal Turns on client-side workarounds that allow you to take 
full advantage of the JDBC driver with JDBC applications 
that require non-standard or extended behavior. For 
more information, refer to the SequeLink Administrator’s 
Guide.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties
■ server data source

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



250 Chapter 5  Using the JDBC Client  
networkProtocol networkProtocol={socket | ssl}. Specifies the protocol to 
be used.

The initial default is socket.

When set to socket (the initial default), SSL encryption is 
not used.

When set to ssl, SSL encryption over the SequeLink Proxy 
Server is used. This has the same effect as specifying the 
following:

jdbc:sequelink:ssl://host= ...

NOTE: This property is not required when using the 
encrypted connection property to define direct SSL 
encryption without the use of the SequeLink Proxy 
Server.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

newPassword The new host password to be used. If specified and 
applicable to the connection, the SequeLink password 
change mechanism is invoked. When the password has 
been changed successfully, the following warning is 
returned:

[DataDirect][SequeLink JDBC driver]
[SequeLink Server] The user password was changed 
successfully 

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

For more information about the SequeLink password 
change mechanism, refer to the SequeLink 
Administrator’s Guide.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 251
ORANumber0IsNumeric Turns on client-side workarounds that allow you to take 
full advantage of the JDBC driver with JDBC applications 
that require non-standard or extended behavior. For 
more information, refer to the SequeLink Administrator’s 
Guide.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties
■ server data source

password The host or data store password, which may be required 
depending on the server configuration.

This property can be specified using:

■ getConnection
■ JDBC data source
■ URL
■ java.util.properties

portNumber The TCP/IP port on which the SequeLink service is 
listening.

This property can be specified using:

■ JDBC data source
■ URL

QueryTimeout QueryTimeout={0 | -1}. The value of this option will set 
the default query timeout (in seconds) for all statements 
created by the connection. 

When set to 0 (the initial default), there is no timeout.  If 
an application calls the Statement.setQueryTimeout 
method to set a timeout value for a statement, the value 
specified in the setQueryTimeout method will override 
the default value specified by this connection option.  

When set to -1, the driver query timeout functionality is 
disabled. The driver silently ignores calls to 
Statement.setQueryTimeout.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



252 Chapter 5  Using the JDBC Client  
resultSetMetaDataOptions resultSetMetaDataOptions={0 | 1}. Returns table name 
information in the ResultSet metadata for Select 
statements if your application requires that information.

If set to 0 (the initial default) and the 
ResultSetMetaData.getTableName() method is called, the 
driver does not perform additional processing to 
determine the correct table name for each column in the 
result set. In this case, the getTableName() method may 
return an empty string for each column in the result set.

If set to 1 and the ResultSetMetaData.getTableName() 
method is called, the driver performs additional 
processing to determine the correct table name for each 
column in the result set. The driver also can return 
schema name and catalog name information when the 
ResultSetMetaData.getSchemaName() and 
ResultSetMetaData.getCatalogName() methods are 
called if the driver can determine that information.

By default, the JDBC driver skips the additional 
processing required to return the correct table name for 
each column in the result set when the 
ResultSetMetaData.getTableName() method is called. 
Because of this, the getTableName() method may return 
an empty string for each column in the result set. If you 
know that your application does not require table name 
information, this setting provides the best performance.

serverDataSource A property that specifies a string to identify the server 
data source to be used for the connection. If unspecified, 
the configuration of the default server data source will 
be used for the connection.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



JDBC Connection Properties 253
serverName The TCP/IP address of the SequeLink server in dotted 
format or host name format.

This property can be specified using:

■ JDBC data source
■ URL

SLKStaticCursorLongColBuffLen The amount of data (in KB) that is buffered for 
SQL_LONGVARCHAR and SQL_LONGVARBINARY columns 
with an insensitive result set. 

The initial default is 4.

This property can be specified using:

■ JDBC data source
■ URL
■ java.util.properties
■ server data source

spyAttributes Enables DataDirect Spy, a tool that can be used to log 
detailed information about calls issued by a running 
application to the SequeLink for JDBC driver. The format 
for the value of this property is:

(spy_attribute[;spy_attribute]...) 

where spy_attribute is any valid DataDirect Spy attribute. 
See Chapter 7 “Tracking JDBC Calls” on page 315 for a list 
of supported attributes.

For example:

SpyAttributes=(log=(file)/tmp/spy.log;linelimit=80) 

logs all JDBC activity to a file using a maximum of 80 
characters for each line.

NOTE: If coding a path on Windows to the log file in a 
Java string, the backslash character (\) must be preceded 
by the Java escape character, a backslash. For example:

log=(file)C:\\temp\\spy.log

By default, DataDirect Spy is not enabled.

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



254 Chapter 5  Using the JDBC Client  
Configuring Connection Failover
Connection failover allows an application to connect to an 
alternate, or backup, SequeLink Server if the primary SequeLink 
Server is unavailable, for example, because of a hardware failure 
or traffic overload. Connection failover ensures that the data on 
which your critical JDBC applications depend is always available. 

You can customize the JDBC Client for connection failover by 
configuring a list of alternate SequeLink servers that are tried if 
the primary server is not accepting connections. Connection 
attempts continue until a connection is successfully established or 
until all the alternate SequeLink servers have been tried the 
specified number of times.

transliterationWorkaroundServer transliterationWorkaroundServer={0 | 1 | 2}. Turns on a 
workaround for multiple transliteration workarounds. 
Refer to the SequeLink Administrator’s Guide for more 
information about how SequeLink handles 
transliteration.

When set to 0 (the initial default), the workaround is not 
enabled.

When set to 1 or 2, this workaround resolves 
transliteration issues between Shift-JIS/Windows-31j and 
eucJP by mapping "look-alike" characters.

user The host or data store user name, which may be required 
depending on the server configuration.

This property can be specified using:

■ getConnection
■ JDBC data source
■ URL
■ java.util.properties

Table 5-3.  JDBC Connection Properties  (cont.)

Property Description
SequeLink Developer’s Reference



Configuring Connection Failover 255
For example, suppose you have the environment shown in 
Figure 5-2 with multiple SequeLink servers: SequeLink server A, 
B, and C. SequeLink server A is designated as the primary 
SequeLink server, SequeLink server B is the first alternate server, 
and SequeLink Server C is the second alternate server.

Figure 5-2.  Connection Failover Using the JDBC Client

First, the application attempts to connect to the primary 
SequeLink server, SequeLink server A (1). If connection failover is 
enabled and SequeLink server A fails to accept the connection, 
the application attempts to connect to SequeLink Server B (2). If 
that connection attempt also fails, the application attempts to 
connect to SequeLink Server C (3).

In this scenario, it is probable that at least one connection 
attempt would succeed, but if no connection attempt succeeds, 
the SequeLink Client can retry each alternate SequeLink server 
(primary and alternate) for a specified number of attempts. 

To configure connection failover, you must specify a list of 
alternate SequeLink servers that are tried at connection time if 
SequeLink Developer’s Reference



256 Chapter 5  Using the JDBC Client  
the primary server is not accepting connections. To do this, use 
the AlternateServers connection property. Connection attempts 
continue until a connection is successfully established or until all 
the SequeLink servers in the list have been tried once (the 
default). 

Optionally, you can specify the following additional connection 
failover features:

■ The number of times the JDBC Client attempts to connect to 
the primary and alternate SequeLink servers after the initial 
unsuccessful connection attempt. By default, the JDBC Client 
does not retry. To set this feature, use the 
ConnectionRetryCount connection property. See “Using 
Connection Retry” on page 258 for more information.

■ The wait interval, in seconds, between attempts to connect to 
the primary and alternate SequeLink servers. The default 
interval is 3 seconds. To set this feature, use the 
ConnectionRetryDelay connection property.

■ Whether the JDBC Client will use client load balancing in its 
attempts to connect to primary and alternate SequeLink 
servers. If load balancing is enabled, the JDBC Client uses a 
random pattern instead of a sequential pattern in its attempts 
to connect. The default value is not to use load balancing. To 
set this feature, use the LoadBalancing connection property. 
See “Using Client Load Balancing” on page 257 for more 
information.

You can use a connection URL to direct the JDBC to use 
connection failover, or use a JNDI LDAP provider. Refer to the 
SequeLink Administrator’s Guide for detailed information.
SequeLink Developer’s Reference



Using Client Load Balancing 257
Using Client Load Balancing
Client load balancing helps distribute new connections in your 
environment so that no one server is overwhelmed with 
connection requests. When client load balancing is enabled, the 
order in which primary and alternate SequeLink servers are tried 
is random. For example, let us suppose that client load balancing 
is enabled as shown in Table 5-3:

Figure 5-3.  Client Load Balancing Using the JDBC Driver

First, SequeLink Server B is tried (1). Then, SequeLink Server C 
may be tried (2), followed by a connection attempt to SequeLink 
Server A (3). In contrast, if client load balancing were not 
enabled in this scenario, each SequeLink Server would be tried in 
sequential order, primary server first, then each alternate 
SequeLink server based on its entry order in the alternate servers 
list.
SequeLink Developer’s Reference



258 Chapter 5  Using the JDBC Client  
For details on configuring client load balancing, refer to the 
SequeLink Administrator’s Guide.

Using Connection Retry
Connection retry defines the number of times the driver attempts 
to connect to the primary SequeLink Server and, if configured, 
alternate SequeLink Servers after the initial unsuccessful 
connection attempt. Connection retry can be an important 
strategy for system recovery. For example, suppose you have a 
power failure in which both the SequeLink Client and the 
SequeLink Server fail. When the power is restored and all 
computers are restarted, the SequeLink Client may be ready to 
attempt a connection before the SequeLink Server has completed 
its startup routines. If connection retry is enabled, the client 
application can continue to retry the connection until a 
connection is successfully accepted by the SequeLink Server.

Connection retry can be used in environments that have only one 
server or can be used as a complementary feature with 
connection failover in environments with multiple SequeLink 
Servers.

Using connection options, you can specify the number of times 
the driver attempts to connect and the time in seconds between 
connection attempts. For details on configuring connection retry, 
see “Using Connection Retry” on page 258.

Testing JDBC Connections
See Chapter 6 “Using DataDirect Test™” on page 263 for 
instructions on connecting with the JDBC Client using DataDirect 
Test.
SequeLink Developer’s Reference



Using the JDBC Client on a Java 2 Platform 259
Using the JDBC Client on a Java 2 Platform
When using the JDBC driver on a Java 2 Platform with the 
standard security manager enabled, you must give the driver 
some additional permissions. Refer to your Java 2 Platform 
documentation for more information about the Java 2 Platform 
security model and permissions.

You can run an application on a Java 2 Platform with the 
standard security manager using:

"java -Djava.security.manager application_class_name"

where application_class_name is the class name of the 
application.

Web browser applets running in the Java 2 plug-in are always 
running in a JVM with the standard security manager enabled. 
To enable the necessary permission, you must add them to the 
security policy file of the Java 2 Platform. This security policy file 
can be found in the jre\lib\security subdirectory of the Java 2 
Platform installation directory.

To use JDBC data sources, all code bases must have the following 
permissions: 

// permissions granted to all domains
grant {
// DataSource access
permission java.util.PropertyPermission "java.naming.*", 
"read,write";
// Adjust the server host specification for your environment
permission java.net.socketPermission "*.ddtek.be:0-65535", 
"connect";
};
SequeLink Developer’s Reference



260 Chapter 5  Using the JDBC Client  
To use scroll-insensitive scrollable cursors, all code bases must 
have access to temporary files: 

// permissions granted to all domains
grant {
// Permission to create and delete temporary files.
// Adjust the temporary directory for your environment.
permission java.io.FilePermission "C:\\TEMP\\-", 
"read,write,delete";
};

To use SSL or other data privacy functionality, the following 
permissions are required for the JDBC Client code base only: 

// permissions granted to the SequeLink JDBC Client code base only
grant codeBase "file:/slje/lib/-" {
// Security providers
// Only needed when using SSL or other data privacy functionality
// (e.g. fixed key DES/3DES)
permission java.security.SecurityPermission 
"putProviderProperty.IAIK";
permission java.security.SecurityPermission "insertProvider.IAIK";
};

Applets that connect to another server other than the one they 
are downloaded from must have the following permission: 

// permissions granted to the SequeLink JDBC Client code base only
grant codeBase "file:/slje/lib/-" {
// TCP/IP

// Adjust the server host specification for your environment
permission java.net.SocketPermission "*.ddtek.be:0-65535", 
"connect";
};
SequeLink Developer’s Reference



Using the JDBC Client on a Java 2 Platform 261
NOTES:

■ Make sure that you adjust the code base of the JDBC Client 
for your environment. For an applet, this will probably start 
with http:// or https://. 

■ Make sure you adjust the server host specification and 
location of temporary files for your environment.
SequeLink Developer’s Reference



262 Chapter 5  Using the JDBC Client  
SequeLink Developer’s Reference



263
6 Using DataDirect Test™ 

This chapter provides information about DataDirect Test, a tool 
that allows you to test and learn the JDBC API, and contains a 
tutorial that takes you through a working example of its use.

DataDirect Test contains menu selections that correspond to 
specific JDBC functions—for example, connecting to a database 
or passing a SQL statement. It allows you to:

■ Execute a single JDBC method or execute multiple JDBC 
methods simultaneously, so that you can easily perform some 
common tasks, such as returning result sets

■ Display the results of all JDBC function calls in one window, 
while displaying fully commented, Java JDBC code in an 
alternate window

DataDirect Test™ Tutorial
This DataDirect Test tutorial explains how to use the most 
important features of DataDirect Test (and the JDBC API) and 
assumes that you can connect to a database with the standard 
available demo table or fine-tune the sample SQL statements 
shown in this example as appropriate for your environment. 

NOTE: The step-by-step examples used in this tutorial do not 
show typical clean-up routines (for example, closing result sets 
and connections). These steps have been omitted to simplify the 
examples. Do not forget to add these steps when you use 
equivalent code in your applications.
SequeLink Developer’s Reference



264 Chapter 6  Using DataDirect Test™  
Configuring DataDirect Test™

The default DataDirect Test configuration file is:

 install_dir/testforjdbc/Config.txt

where install_dir is your SequeLink for JDBC Driver installation 
directory. This file can be edited as appropriate for your 
environment using any text editor. All parameters are 
configurable, but the most commonly configured parameters are:

Drivers A list of colon-separated JDBC driver classes.

DefaultDriver The default JDBC driver that appears in the Get Driver 
URL window.

Databases A list of comma-separated JDBC URLs. The first item in 
the list appears as the default in the database selection 
window. You can use one of these URLs as a template 
when you make a JDBC connection. The default 
Config.txt file contains example URLs for most 
databases.

InitialContextFactory Should be set to 
com.sun.jndi.fscontext.RefFSContextFactory
if you are using file system data sources, or
com.sun.jndi.ldap.LdapCtxFactory
if you are using LDAP.

ContextProviderURL The location of the .bindings file if you are using file 
system data sources, or your LDAP Provider URL if you 
are using LDAP.

Datasources A list of comma-separated JDBC data sources. The first 
item in the list appears as the default in the data source 
selection window.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 265
Starting DataDirect Test™ 

How you start DataDirect Test depends on your platform:

■ As a Java application on Windows—Run the testforjdbc.bat 
file located in the testforjdbc directory. 

■ As a Java application on UNIX—Run the testforjdbc.sh shell 
script located in the testforjdbc directory beneath the 
installation directory.

After you start DataDirect Test, the following window appears:
SequeLink Developer’s Reference



266 Chapter 6  Using DataDirect Test™  
The main DataDirect Test window shows the following 
information:

■ In the Connection List box, a list of available connections.

■ In the JDBC/Database scroll box, a report indicating whether 
the last action succeeded or failed.

■ In the Java Code scroll box, the actual Java code used to 
implement the last action.

TIP: The DataDirect Test windows contain two Concatenate check 
boxes. Select a Concatenate check box to see a cumulative record 
of previous actions; otherwise, only the last action is shown. 
Selecting Concatenate can degrade performance, particularly 
when displaying large resultSets.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 267
Connecting Using DataDirect Test™ 

There are two methods to connect using DataDirect Test: 
through a data source or through driver/database selection.

Connecting Using a Data Source

1 From the DataDirect Test main window menu, select 
Connection / Connect to DB via Data Source. DataDirect Test 
displays the Select A Datasource window.

2 Select a data source from the Defined Datasources pane. In 
the User Name and Password fields, type the required user 
and password connection properties; then, click Connect. See 
Chapter 8 “Developing JDBC Applications” on page 327 for 
information about JDBC connection properties.
SequeLink Developer’s Reference



268 Chapter 6  Using DataDirect Test™  
3 If the connection was successful, the Connection window 
appears and displays Connection Established in the 
JDBC/Database Output scroll box.

Connecting Using Driver/Database Selection

1 From the DataDirect Test main window menu, select Driver / 
Register Driver. DataDirect Test prompts you for a JDBC driver 
name.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 269
2 In the Please Supply a Driver URL field, make sure that a 
driver is specified, as in the following example; then, click 
OK.

com.ddtek.jdbc.sequelink.SequeLinkDriver

If the JDBC driver was registered successfully, the main 
DataDirect Test window appears with a confirmation in the 
JDBC/Database Output scroll box.
SequeLink Developer’s Reference



270 Chapter 6  Using DataDirect Test™  
3 Select Connection / Connect to DB from the main menu. JDBC 
prompts with a list of default connection URLs.

4 Select one of the default JDBC driver connection URLs. In the 
Database field, modify the default values of the connection 
URL appropriately for your environment.

5 In the User Name and Password fields, type the required user 
and password connection properties; then, click Connect. See 
Chapter 8 “Developing JDBC Applications” on page 327 for 
information about JDBC connection properties.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 271
6 If the connection was successful, the Connection window 
appears and displays Connection Established in the 
JDBC/Database Output scroll box.
SequeLink Developer’s Reference



272 Chapter 6  Using DataDirect Test™  
Executing a Simple Select Statement

This example explains how to execute a simple Select statement 
and retrieve the results.

1 From the Connection window menu, select Connection / 
Create Statement. The connection window indicates that the 
creation of the statement was successful.

2 Select Statement / Execute Stmt Query. DataDirect Test 
displays a dialog box that prompts for a SQL statement.

3 Specify the Select statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 273
4 Select Results / Show All Results. The data from your result 
set is displayed.

5 Scroll through the code in the Java Code scroll box to see 
which JDBC calls have been implemented by DataDirect Test.
SequeLink Developer’s Reference



274 Chapter 6  Using DataDirect Test™  
Executing a Prepared Statement

This example explains how to execute a parameterized statement 
multiple times.

1 From the Connection window menu, select Connection / 
Create Prepared Statement. DataDirect Test prompts you for a 
SQL statement.

2 Specify the Insert statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 275
3 Select Statement / Set Prepared Parameters. To set the value 
and type for each parameter:

a Type the parameter number.

b Select the parameter type.

c Type the parameter value.

d Click Set to pass this information to the JDBC driver.

4 When you are finished, click Close.
SequeLink Developer’s Reference



276 Chapter 6  Using DataDirect Test™  
5 Select Statement / Execute Stmt Update. The JDBC/Database 
Output scroll box indicates that one row has been inserted.

6 If you want to insert multiple records, repeat Step 3 and 
Step 5 for each record.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 277
7 If you repeat the steps described in “Executing a Simple 
Select Statement” on page 272, you will see that the 
previously inserted records are also returned.
SequeLink Developer’s Reference



278 Chapter 6  Using DataDirect Test™  
Retrieving Database Metadata
1 From the Connection window menu, select Connection / 

Get DB Meta Data.

2 Select MetaData / Show Meta Data. Information about the 
JDBC driver and the database to which you are connected is 
returned.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 279
3 Scroll through the Java code in the Java Code scroll box to 
find out which JDBC calls have been implemented by 
DataDirect Test.

Metadata also allows you to query the database catalog 
(enumerate the tables in the database, for example). In this 
example, we will query all tables that are owned by the user 
SCOTT.

4 Select MetaData / Tables.

5 In the Schema Pattern field, type SCOTT.

6 Click Ok. The Connection window indicates that getTables() 
succeeded.
SequeLink Developer’s Reference



280 Chapter 6  Using DataDirect Test™  
7 Select Results / Show All Results. All tables owned by SCOTT 
are returned.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 281
Scrolling Through a Result Set

NOTE: Scrollable result sets are supported by JDBC 2.0 and 
higher and require a Java 2 Platform (J2SE 1.4 or 
higher)-compatible Java Virtual Machine.

1 From the Connection window menu, select Connection / 
Create JDBC 2.0 Statement. DataDirect Test prompts you for 
a result set type and concurrency.

2 In the resultSetType field, select TYPE_SCROLL_SENSITIVE. In 
the resultSetConcurrency field, select CONCUR_READ_ONLY.

Click Submit; then, click Close.

3 Select Statement / Execute Stmt Query.

4 Specify the Select statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



282 Chapter 6  Using DataDirect Test™  
5 Select Results / Scroll Results. The Scroll Result Set window 
indicates that the cursor is positioned before the first row.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 283
6 Click the Absolute, Relative, Before, First, Prev, Next, Last, 
and After buttons as appropriate to navigate through the 
result set. After each action, the Scroll Result Set window 
displays the data at the current position of the cursor.

7 Click Close.
SequeLink Developer’s Reference



284 Chapter 6  Using DataDirect Test™  
Batch Execution on a Prepared 
Statement

Batch execution on a prepared statement allows you to update or 
insert multiple records simultaneously. In some cases, this can 
significantly improve system performance because fewer 
round-trips to the database are required.

NOTE: Batch execution on a prepared statement is supported by 
the JDBC 2.0 and higher specifications and requires a Java 2 
Platform (J2SE 1.4 or higher)-compatible Java Virtual Machine.

1 From the Connection window menu, select Connection / 
Create Prepared Statement.

2 Specify the Insert statement that you want to execute.

Click Submit; then, click Close.

3 Select Statement / Add Stmt Batch.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 285
4 For each parameter:

a Type the parameter number.

b Select the parameter type.

c Type the parameter value.

d Click Set.

5 Click Add to add the specified set of parameters to the batch. 
To add multiple parameter sets to the batch, repeat Step 3 
through Step 5 as many times as necessary. When you are 
finished adding parameter sets to the batch, click Close.
SequeLink Developer’s Reference



286 Chapter 6  Using DataDirect Test™  
6 Select Statement / Execute Stmt Batch. DataDirect Test 
displays the rowcount for each of the elements in the batch.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 287
7 If you re-execute the Select statement from “Executing a 
Simple Select Statement” on page 272, you see that the 
previously inserted records are returned.

.

SequeLink Developer’s Reference



288 Chapter 6  Using DataDirect Test™  
Returning ParameterMetaData

NOTE: Returning ParameterMetaData is a JDBC 3.0 feature and 
requires a J2SE 1.4 or higher Java Virtual Machine.

1 From the Connection window menu, select Connection / 
Create Prepared Statement.

2 Specify the prepared statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 289
3 Select Statement / Get ParameterMetaData. The Connection 
window displays ParameterMetaData.
SequeLink Developer’s Reference



290 Chapter 6  Using DataDirect Test™  
Establishing Savepoints

NOTE: Savepoints is a JDBC 3.0 feature and requires a J2SE 1.4 or 
higher Java Virtual Machine.

1 From the Connection window menu, select Connection / 
Connection Properties.

2 Select TRANSACTION_COMMITTED from the Transaction 
Isolation drop-down list. Do not select the Auto Commit check 
box.

Click Set; then, click Close.

3 From the Connection window menu, select Connection / Load 
and Go. The Get Load And Go SQL window appears.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 291
4 Specify the statement that you want to execute. 

Click Submit.

5 Select Connection / Set Savepoint. In the Set Savepoints 
window, specify a savepoint name.
SequeLink Developer’s Reference



292 Chapter 6  Using DataDirect Test™  
Click Apply; then, click Close. The Connection window 
indicates whether or not the savepoint succeeded.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 293
6 Return to the Get Load And Go SQL window and specify 
another statement.

Click Submit.

7 Select Connection / Rollback Savepoint. In the Rollback 
Savepoints window, specify the savepoint name.
SequeLink Developer’s Reference



294 Chapter 6  Using DataDirect Test™  
Click Apply; then, click Close. The Connection window 
indicates whether or not the savepoint rollback succeeded.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 295
8 Return to the Get Load And Go SQL window and specify 
another statement.

Click Submit; then, click Close. 
SequeLink Developer’s Reference



296 Chapter 6  Using DataDirect Test™  
The Connection window displays data that was inserted 
before the first Savepoint. The second insert was rolled back.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 297
Updatable Result Sets

The following examples illustrate Updatable result sets by 
deleting, inserting, and updating a row.

Deleting a Row

1 From the Connection window menu, select Connection / 
Create JDBC 2.0 Statement.

2 In the resultSetType field, select TYPE_SCROLL_SENSITIVE. In 
the resultSetConcurrency field, select CONCUR_UPDATABLE.

Click Submit; then, click Close.

3 Select Statement / Execute Stmt Query.

4 Specify the Select statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



298 Chapter 6  Using DataDirect Test™  
5 Select Results / Inspect Results. The Inspect Result Set window 
is displayed.

6 Click Next. Current Row changes to 1.

7 Click Delete Row. 
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 299
8 To verify the result, return to the Connection menu and 
select Connection / Load And Go. The Get Load and Go SQL 
window appears.

9 Specify the statement that you want to execute. 

Click Submit; then, click Close.
SequeLink Developer’s Reference



300 Chapter 6  Using DataDirect Test™  
10 The Connection window shows one row returned.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 301
Inserting a Row

1 From the Connection window menu, select Connection / 
Create JDBC 2.0 Statement.

2 In the resultSetType field, select TYPE_SCROLL_SENSITIVE. In 
the resultSetConcurrency field, select CONCUR_UPDATABLE.

Click Submit; then, click Close.

3 Select Statement / Execute Stmt Query.

4 Specify the Select statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



302 Chapter 6  Using DataDirect Test™  
5 Select Results / Inspect Results. The Inspect Result Set window 
is displayed.

6 Click Move to insert row; Current Row is now Insert row.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 303
7 Change Data Type to int. In Set Cell Value, enter 20. Click Set 
Cell.

8 Select the second row in the top pane. Change the Data Type 
to String. In Set Cell Value, enter RESEARCH. Click Set Cell.

9 Select the third row in the top pane. In Set Cell Value, enter 
DALLAS. Click Set Cell.

10 Click Insert Row.

11 To verify the result, return to the Connection menu and 
select Connection / Load And Go. The Get Load and Go SQL 
window appears.

12 Specify the statement that you want to execute. 

Click Submit; then, click Close.
SequeLink Developer’s Reference



304 Chapter 6  Using DataDirect Test™  
13 The Connection window shows two rows returned.

Note that the ID will be 3 for the row just inserted, because it is 
an auto increment column.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 305
Updating a Row

1 From the Connection window menu, select Connection / 
Create JDBC 2.0 Statement.

2 In the resultSetType field, select TYPE_SCROLL_SENSITIVE. In 
the resultSetConcurrency field, select CONCUR_UPDATABLE.

Click Submit; then, click Close.

3 Select Statement / Execute Stmt Query.

4 Specify the Select statement that you want to execute.

Click Submit; then, click Close.
SequeLink Developer’s Reference



306 Chapter 6  Using DataDirect Test™  
5 Select Results / Inspect Results. The Inspect Result Set window 
is displayed.

6 Click Next. Current Row changes to 1.

7 In Set Cell Value, enter RALEIGH. Click Set Cell.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 307
8 Click Update Row.

9 To verify the result, return to the Connection menu and 
select Connection / Load And Go. The Get Load and Go SQL 
window appears.

10 Specify the statement that you want to execute. 

Click Submit; then, click Close.
SequeLink Developer’s Reference



308 Chapter 6  Using DataDirect Test™  
11 The Connection window shows LOC for accounting changed 
from NEW YORK to RALEIGH.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 309
LOB Support

NOTE: LOB support (Blobs and Clobs) is a JDBC 3.0 feature and 
requires a J2SE 1.4 or higher Java Virtual Machine.

The following example uses CLOB data; however, this procedure 
also applies to BLOB data. This example illustrates only one of 
several ways in which LOB data can be processed.

1 From the Connection window menu, select Connection / 
Create Statement.

2 Select Statement / Execute Stmt Query.

3 Specify the Select statement that you want to execute.

Click Submit; then, click Close.

4 Select Results / Inspect Results. The Inspect Result Set 
window is displayed.
SequeLink Developer’s Reference



310 Chapter 6  Using DataDirect Test™  
5 Click Next. Current Row changes to 1.

6 Deselect Auto Traverse. This disables automatic traversal to 
the next row.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 311
7 Click Get Cell.

8 Values are returned in the Get Cell Value field.
SequeLink Developer’s Reference



312 Chapter 6  Using DataDirect Test™  
9 Change the Data Type to Clob.
SequeLink Developer’s Reference



DataDirect Test™ Tutorial 313
10 Click Get Cell. The Clob data window appears.
SequeLink Developer’s Reference



314 Chapter 6  Using DataDirect Test™  
11 Click Get Cell.

12 Values are returned in the Cell Value field.
SequeLink Developer’s Reference



315
7 Tracking JDBC Calls

This chapter introduces DataDirect Spy, a development software 
component that allows you to track JDBC calls, and describes 
how to use it.

About DataDirect Spy™ 
DataDirect Spy is a software component for tracking JDBC calls 
at runtime. It passes calls issued by an application to an 
underlying JDBC driver and logs detailed information about 
those calls. DataDirect Spy provides the following advantages:

■ Logging is JDBC 3.0-compliant, including support for the 
JDBC 2.0 Optional Package.

■ Logging is consistent, regardless of the JDBC driver used.

■ All parameters and function results for JDBC calls can be 
logged.

■ Logging can be enabled without changing the application.

■ DataDirect Spy can only be used with the SequeLink for JDBC 
Driver and the DataDirect Connect® for JDBC drivers.

When you enable DataDirect Spy for a connection, you can 
customize DataDirect Spy logging for your needs by setting one 
or multiple options for DataDirect Spy. For example, you may 
want to direct logging to a local file on your machine.
 

SequeLink Developer’s Reference



316 Chapter 7  Tracking JDBC Calls  
Enabling DataDirect Spy™

You can enable DataDirect Spy for a connection using any of the 
following methods:

■ Specifying the SpyAttributes connection property for 
connections using the JDBC Driver Manager. See “Using the 
JDBC Driver Manager” on page 317 for instructions.

■ Specifying DataDirect Spy attributes using a JDBC data source. 
See “Using JDBC Data Sources” on page 318 for instructions.

■ Specifying a DataDirect Spy-specific connection URL. See 
“Using the DataDirect Spy™ URL” on page 320 for instructions. 
If you use this method to enable DataDirect Spy, you first 
must register the DataDirect Spy driver. 

Using any of these methods, you can set one or multiple options 
to customize DataDirect Spy logging. See “DataDirect Spy™ 
Attributes” on page 323 for a complete list of supported 
attributes.
SequeLink Developer’s Reference



Enabling DataDirect Spy™ 317
Using the JDBC Driver Manager

The SpyAttributes connection property allows you to specify a 
semi-colon separated list of DataDirect Spy attributes (see 
“DataDirect Spy™ Attributes” on page 323). The format for the 
value of the SpyAttributes property is:

(spy_attribute[;spy_attribute]...)

where spy_attribute is any valid DataDirect Spy attribute. See 
“DataDirect Spy™ Attributes” on page 323 for a list of supported 
attributes.

Example on Windows:

The following example uses the JDBC Driver Manager to connect 
to Oracle while enabling DataDirect Spy:

Class.forName("com.ddtek.jdbc.sequelink.SequeLinkDriver");
Connection conn = DriverManager.getConnection 
("jdbc:sequelink://QANT:4003;user=TEST;password=secret;
SpyAttributes=(log=(file)C:\\temp\\spy.log;
      linelimit=80;logTName=yes;timestamp=yes)");

Using this example, DataDirect Spy would load the SequeLink 

for JDBC driver and log all JDBC activity to the spy.log file located 
in the C:\temp directory (log=(file)C:\temp\spy.log). The 
spy.log file logs a maximum of 80 characters on each line 
(linelimit=80) and includes the name of the current thread 
(logTName=yes) and a timestamp on each line in the log 
(timestamp=yes).

NOTE: If coding a path on Windows to the log file in a Java 
string, the backslash character (\) must be preceded by the Java 
escape character, a backslash. For example: log=
(file)C:\\temp\\spy.log.
SequeLink Developer’s Reference



318 Chapter 7  Tracking JDBC Calls  
Example on Linix and UNIX:

The following code example uses the JDBC Driver Manager to 
connect to DB2 while enabling DataDirect Spy:

Class.forName("com.ddtek.jdbc.sequelink.SequeLinkDriver");
Connection conn = DriverManager.getConnection
  ("jdbc:sequelink://user=TEST;password=secret;
SpyAttributes=(log=(file)C:\\temp\\spy.log;
      linelimit=80;logTName=yes;timestamp=yes)");

Using this example, DataDirect Spy would load the DataDirect 
SequeLink driver and log all JDBC activity to the spy.log file 
located in the /tmp directory (log=(file)/tmp/spy.log). The 
spy.log file includes the name of the current thread (logTName=
yes) and a timestamp on each line in the log (timestamp=yes).

Using JDBC Data Sources

The SequeLink for JDBC driver implements the following JDBC 
features:

■ JNDI for Naming Databases
■ Connection Pooling
■ JTA

You can use DataDirect Spy to track JDBC calls made by a running 
application with any of these features. The 
com.ddtek.jdbcx.sequelink.datasource.SequeLinkDataSource 
class supports setting a semi-colon-separated list of DataDirect 
Spy attributes (see “DataDirect Spy™ Attributes” on page 323).

See “Configuring JDBC Data Sources” on page 225 for more 
information about configuring data sources.
SequeLink Developer’s Reference



Enabling DataDirect Spy™ 319
Example on Windows:

The following example creates a JDBC data source for the 
SequeLink for JDBC driver, which enables DataDirect Spy. 

...
SequeLinkDataSource sds=new SequeLinkDataSource():
sds.setServerName("MyServer");
sds.setPortNumber(1234);
sds.setSpyAttributes("log=(file)C:\tmp\spy.log;logIS=yes;
logTName=yes");
Connection conn=sds.getConnection("scott","tiger");
...

Using this example, DataDirect Spy would load the SequeLink for 
JDBC driver and log all JDBC activity to the spy.log file located in 
the C:\temp directory (log=(file)C:\temp\spy.log). In addition 
to regular JDBC activity, the spy.log file also logs activity on 
InputStream and Reader objects (logIS=yes). It also includes the 
name of the current thread (logTName=yes).

NOTE: If coding a path on Windows to the log file in a Java 
string, the backslash character (\) must be preceded by the Java 
escape character, a backslash. For example: "log=
(file)C:\\temp\\spy.log;logIS=yes;logTName=yes".

Example on Linux and UNIX:

The following example creates a JDBC data source for the 
SequeLink for JDBC driver, which enables DataDirect Spy.

...
SequeLinkDataSource sds=new SequeLinkDataSource():
sds.setServerName("MyServer");
sds.setPortNumber(1234);
sds.setSpyAttributes("log=(file)C:\tmp\spy.log;logIS=yes;logTName=yes");
Connection conn=sds.getConnection("TEST","secret");
...
SequeLink Developer’s Reference



320 Chapter 7  Tracking JDBC Calls  
Using this example, DataDirect Spy would load the SequeLink for 
JDBC driver and log all JDBC activity to the spy.log file located in 
the /tmp directory (log=(file)/tmp/spy.log). The spy.log file 
includes the name of the current thread (logTName=yes).

Using the DataDirect Spy™ URL

If you enable DataDirect Spy using a DataDirect Spy URL, you first 
must register the DataDirect Spy driver with the JDBC Driver 
Manager. Registering a driver tells the Driver Manager which 
driver to load. The DataDirect Spy driver name is 
com.ddtek.jdbc.SpyDriver. 

For example, to load the DataDirect Spy driver using the standard 
Class.forName method, include the following code in your 
application or applet and call DriverManager.getConnection:

Class.forName("com.ddtek.jdbcspy.SpyDriver");

For complete information about registering drivers with the JDBC 
Driver Manager, see “Registering the JDBC Driver” on page 223. 

You can enable DataDirect Spy using a DataDirect Spy-specific 
URL that has the following format:

jdbc:spy:{original-url};[key=value]...

where:

original-url is the connection URL of the SequeLink for JDBC 
driver. For example, the following connection URL uses the 
SequeLink for JDBC driver:

jdbc:sequelink://QANT:4003;databaseName=Oracle;
OSUser=qauser;OSPassword=null12

key=value is a semi-colon separated list of DataDirect Spy 
attributes (see “DataDirect Spy™ Attributes” on page 323).
SequeLink Developer’s Reference



Enabling DataDirect Spy™ 321
Example on Windows:

The following example uses a DataDirect Spy URL to enable 
DataDirect Spy:

jdbc:spy:{jdbc:sequelink://QANT:4003;databaseName=Oracle;
OSUser=qauser;OSPassword=null12};log=System.out;
linelimit=72

Using this example, DataDirect Spy would load the JDBC driver 
and log all JDBC activity to the Java output standard file, 
System.out (log=System.out). The spy.log file logs a maximum of 
72 characters on each line (linelimit=72).

Example on Linux/UNIX:

The following example uses a DataDirect Spy URL to enable 
DataDirect Spy:

jdbc:spy:{jdbc:sequelink://QANT:4003;
databaseName=Oracle;OSUser=qauser;OSPassword=null12};
log=System.out;linelimit=72

Using this example, DataDirect Spy would load the JDBC driver 
and log all JDBC activity to the Java output standard file, 
System.out (log=System.out). The spy.log file logs a maximum of 
72 characters on each line (linelimit=72).
SequeLink Developer’s Reference



322 Chapter 7  Tracking JDBC Calls  
Registering the DataDirect Spy™ JDBC Driver
To use the Spy JDBC Driver, you first must register it with the 
JDBC Driver Manager. You can register the Spy JDBC Driver in any 
of the following ways:

■ Method 1: Set the Java property jdbc.drivers using the Java -D 
option. The jdbc.drivers property is defined as a 
colon-separated list of driver class names. For example:

com.ddtek.jdbcspy.SpyDriver:
com.ddtek.jdbc.sequelink.SequeLinkDriver

The jdbc.drivers property can be set like other Java properties, 
using the -D option. For example:

java -Djdbc.drivers=com.ddtek.jdbcspy.SpyDriver

■ Method 2: Set the Java property jdbc.drivers from within your 
Java application or applet. To do this, code the following lines 
in your Java application or applet, and call 
DriverManager.getConnection():

Properties p = System.getProperties();
p.put (“jdbc.drivers”, “com.ddtek.jdbcspy.SpyDriver”);
System.setProperties (p);

■ Method 3: Explicitly load the driver class using the standard 
Class.forName() method. To do this, code the following line 
and call DriverManager.getConnection():

Class.forName("com.ddtek.jdbcspy.SpyDriver");
SequeLink Developer’s Reference



Registering the DataDirect Spy™ JDBC Driver 323
DataDirect Spy™ Attributes

DataDirect Spy uses the following format as a connection URL:

jdbc:spy:{original-url};[key=value]...

where original-url is the connection URL of the underlying 
JDBC driver.

In addition, you can specify the following options:

log=System.out Redirects logging to the Java output standard, 
System.out.

log=(file)filename Redirects logging to the file specified by filename. 

load=classname Loads the driver specified by classname. The 
default value is com.ddtek.sequelink.jdbc.
SequeLinkDriver.

This attribute is supported only when you enable 
DataDirect Spy using the DataDirect Spy URL.

linelimit=numberofchars The maximum number of characters, specified by 
numberofchars, that Spy will log on one line. 

When set to no (the initial default), there is no 
maximum limit on the number of characters.

logLobs={yes | no} Specifies whether Spy logs activity on Blob / Clob. 
The initial default is no.

logIS={yes | no | nosingleread} Specifies whether DataDirect Spy logs activity on 
InputStreams.

When logIS=nosingleread, logging on InputStream 
and Reader objects is active; however, logging of 
the single-byte read InputStream.read or 
single-character Reader.read is suppressed to 
prevent generating large log files that contain 
single-byte or single character read messages.

When set to no (the initial default), DataDirect Spy 
does not log activity on InputStreams.
SequeLink Developer’s Reference



324 Chapter 7  Tracking JDBC Calls  
Using DataDirect Spy™ with JDBC Data Sources
The JDBC driver implements the following features defined by 
the JDBC 2.0 Optional Package:

■ JNDI for Naming Databases
■ Connection Pooling
■ Distributed Transaction Management (DTC)

You can use Spy to track JDBC calls with all of these features. The 
com.ddtek.jdbcx.sequelink.SequeLinkDataSource class supports 
the SpyAttributes connection attribute, which specifies a 
semi-colon-separated list of Spy attributes as described in 
“DataDirect Spy™ Attributes” on page 323. See “JDBC Connection 
URL Examples:” on page 225 for more information about 
configuring JDBC data sources.

logTName={yes | no} Specifies whether DataDirect Spy logs the name of 
the current thread. 

When set to no (the initial default), DataDirect Spy 
does not log the name of the current thread.

timestamp={yes | no} Specifies whether a timestamp should be included 
on each line of the DataDirect Spy log. 

When set to no (the initial default), DataDirect Spy 
does not include a timestamp on each line.
SequeLink Developer’s Reference



Checking the DataDirect Spy™ Version 325
The following examples create a SequeLinkDataSource and 
specifies that all JDBC calls must be logged in the file 
/tmp/spy.log, including the name of the current thread:

...
SequeLinkDataSource sds=new SequeLinkDataSource():
sds.setServerName("MyServer");
sds.setPortNumber(1234);
sds.setSpyAttributes("log=(file)/tmp/spy.log;logTName=yes");
Connection conn=sds.getConnection("scott","tiger");
...

Checking the DataDirect Spy™ Version
To check the version of your DataDirect Spy, change to the 
subdirectory containing DataDirect Spy (install_dir/spy where 
install_dir is your SequeLink installation directory). At a 
command prompt, enter the command:

On Windows:

java -classpath spy_dir\spy.jar com.ddtek.jdbcspy.SpyDriver

On Linux/UNIX:

java -classpath spy_dir/spy.jar com.ddtek.jdbcspy.SpyDriver

where spy_dir is the directory containing DataDirect Spy.
SequeLink Developer’s Reference



326 Chapter 7  Tracking JDBC Calls  
SequeLink Developer’s Reference



327
8 Developing JDBC Applications

This chapter provides information about developing JDBC 
applications for SequeLink environments including:

■ “JDBC 3.0 Support” on page 328
■ “SQL Support” on page 329
■ “Data Types and Isolation Levels” on page 331
■ “Threading” on page 331
■ “Using Scrollable Cursors” on page 333
■ “Specifying Application IDs” on page 336
■ “Error Handling” on page 342
■ “Fine-Tuning JDBC Application Performance” on page 344
SequeLink Developer’s Reference



328 Chapter 8  Developing JDBC Applications  
JDBC 3.0 Support
The SequeLink for JDBC driver supports the JDBC 3.0 API. This 
functionality is available only to applications running on 
JDK 1.4.2 or higher Virtual Machines. 

Table 8-1 summarizes the JDBC 3.0 and enhanced JDBC 2.0 
functionality that the JDBC driver supports. 

See Appendix C “JDBC Support” on page 489 for information on 
the methods that SequeLink supports and the compatibility 
between the JDBC application versions.

Table 8-1.  Supported JDBC Features

DB2 UDB 
on z/OS

DB2 UDB 
Linux/UNIX
/Windows

Informix Oracle Microsoft 
SQL Server 

Sybase 

Blob interfaces X X X X

Clob interfaces X X X X

DatabaseMetaData 
getSchema

X X X

setQueryTimeout 1

1. setQueryTimeout is supported on DB2 UDB only on Windows.

X X X X

ParameterMetaData X X X X X

Savepoints X 2

2. Only one savepoint can be released. 

X X X

Updatable result 
sets 

X X X X X X
SequeLink Developer’s Reference



JCA Resource Adapter Class 329
JCA Resource Adapter Class
The ManagedConnectionFactory class for the SequeLink resource 
adapter is:

com.ddtek.resource.sljdbc.SequeLinkManagedConnectionFactory 

See “J2EE Connector Architecture Resource Adapter” on 
page 232 for information about using the JDBC Client as a JCA 
resource adapter.

SQL Support
See Appendix A “SQL Escape Sequences” on page 431 for 
information about the SQL escape sequences supported by the 
JDBC driver.

Binding SQL Statements

A JDBC application can prepare a query that contains dynamic 
parameters. Each parameter in a SQL statement must be 
associated, or bound, to a variable in the application before the 
statement is executed. When the application binds a variable to 
a parameter, it describes that variable and that parameter to the 
driver. Therefore, the application must supply the following 
information: 

■ The data type of the variable that the application wishes to 
map to the dynamic parameter.

■ The SQL data type of the dynamic parameter (the data type 
that the database system assigned to the parameter marker). 
SequeLink Developer’s Reference



330 Chapter 8  Developing JDBC Applications  
The JDBC driver relies on the binding of parameters to know how 
to send information to the database system in its native format. 
The host variable data type and SQL data type are assumed to be 
the same. For example, setInt() indicates to the driver that the 
data type of the host variable and the SQL type of the dynamic 
parameter are both Integer. If the host variable and SQL data 
type are not the same, the application should use setObject() to 
specify the application variable data type and the SQL data type. 
If an application furnishes incorrect parameter binding 
information to the JDBC driver, the results will be unpredictable. 

To ensure interoperability, the JDBC driver uses only the 
parameter binding information provided by the application. 
Although some DBMSs can publish dynamic parameter 
information back to a JDBC driver, others cannot. For example, 
both the SQL Server and Oracle query processors can determine 
that a parameter is an integer. However, the Oracle query 
processor cannot publish this information back to the SequeLink 
for JDBC driver.

NOTES:

■ The SQL data type is determined at prepare time by the 
database and does not change for the life of the statement. 
The SQL data type is not dependent on the data being used 
by the application. For example, it is not valid to bind the SQL 
type to SQL_NUMERIC with a precision of 15 and a scale of 5, 
and then bind it on a later execution to a SQL type of 
SQL_NUMERIC with a precision of 13 and a scale of 3. 

■ You can implement ParameterMetaData only when a 
database system publishes parameter information after 
prepare time. The JDBC driver returns this information when 
the application requests it, but depending on the database, 
performance penalties can be incurred. You can tune this 
feature through the SequeLink data source service attribute 
DataSourceDescribeParam. Refer to the SequeLink 
Administrator’s Guide for information on service attributes.
SequeLink Developer’s Reference



Data Types and Isolation Levels 331
Data Types and Isolation Levels
The data types and isolation levels supported by the JDBC driver 
depend on the data store to which you are connecting. See 
Appendix B “Data Types and Isolation Levels” on page 451 for 
database-specific information about data types and isolation 
levels.

Threading
The JDBC driver is completely thread safe; that is, it will not fail 
when database requests are made on separate threads.

Threading Architecture

A JDBC driver can be based on one of the following 
architectures:

■ Thread impaired. The JDBC driver serializes all JDBC calls. All 
requests are handled one by one, without concurrent 
processing.

■ Thread per connection. The JDBC driver processes requests 
concurrently with statements that do not share the same 
connection; however requests on the same connection are 
serialized. The SequeLink for JDBC driver uses this architecture.

■ Fully threaded. All requests use the threaded model. The 
JDBC driver processes all requests on multiple statements 
concurrently.
SequeLink Developer’s Reference



332 Chapter 8  Developing JDBC Applications  
Cancelling Functions in Multithreaded 
Applications

In a multithreaded application, a thread can use the cancel 
method to cancel a statement that is being executed by another 
thread. Whether the cancel method actually cancels the 
statement depends on the data store being accessed as shown in 
Table 8-2.

■ OK means that cancel can interrupt the running statement.

■ Ignored means that cancel will have no affect on the running 
statement. 

In both cases, the cancel method returns SQL_SUCCESS. If the 
cancel method has been called from a different thread while a 
request is pending, the original statement will return SQL_ERROR 
with the error message Operation cancelled.

Table 8-2.  Using Cancel in Multithreaded JDBC Applications

Data Store SQLCancel

DB2 UDB on z/OS Ignored

DB2 UDB on Windows OK

DB2 UDB on Linux/UNIX Ignored

Informix OK

Microsoft SQL Server OK

Oracle on Windows Ignored

Oracle on UNIX OK

Sybase OK

NOTE: Cancel functionality is not supported when the connection uses 
Secure Socket Layer (SSL) encryption.
SequeLink Developer’s Reference



Using Scrollable Cursors 333
Using Scrollable Cursors
Scrollable cursors can move backward and forward in a result 
set, allowing the application to scroll back and forth through 
retrieved data.

Result Set Types

JDBC defines the following result set types:

■ Forward-only
■ Scroll-insensitive
■ Scroll-sensitive

Forward-only result sets allow you to move forward, but not 
backward, through the data. The application can move only 
forward using the next() method.

Typically, a scroll-insensitive result set ignores changes that are 
made while it is open. It provides a static view of the underlying 
data it contains. The membership, order, and column values of 
rows are fixed when the result set is created.

In contrast, a scroll-sensitive result set provides a dynamic view 
of the underlying data, reflecting changes that are made while it 
is open. The membership and ordering of rows in the result set 
may be fixed, depending on how it is implemented.
SequeLink Developer’s Reference



334 Chapter 8  Developing JDBC Applications  
Support for the scroll-sensitive cursors depends on the data store 
to which you are connecting, as described in Table 8-3.

Concurrency Types

JDBC defines the following concurrency types for a result set:

■ Read-only
■ Updatable

Table 8-3.  Support for Scroll-Sensitive Cursors (JDBC)

Database Conditions for Support

DB2 UDB The DB2 tables must contain an 
auto-unique column. The name and other 
properties of the auto-unique column 
must be configured in the data source of 
the SequeLink Server.

Informix None (inherently supported).

Microsoft SQL Server The table must contain an identity 
column.

JDBC Socket The backend database must support an 
auto-unique column. The name and other 
properties of the auto-unique column 
must be configured in the data source of 
the SequeLink Server.

ODBC Socket The backend database must support an 
auto-unique column. The name and other 
properties of the auto-unique column 
must be configured in the data source of 
the SequeLink Server.

Oracle None (inherently supported).

Sybase The table must contain an identity 
column.
SequeLink Developer’s Reference



Using Scrollable Cursors 335
A read-only result set does not allow its contents to be updated. 
Read-only result sets can increase the overall level of 
concurrency between transactions, because multiple read-only 
locks can be held on a data item simultaneously.

An updatable result set allows its contents to be updated and 
may use database write locks to mediate access to the same data 
item by different transactions. Because only a single write lock 
may be held at one time on a data item, updatable result sets 
can reduce concurrency.

An optimistic concurrency control scheme may be appropriate if 
you can accurately predict that conflicting access to data will 
seldom occur. Typically, optimistic concurrency control 
implementations compare rows by a value or by a version 
number to determine if an update conflict has occurred.

Using Scrollable Cursors
■ The JDBC driver supports forward-only and scroll-insensitive 

result sets against all data stores.

■ Scroll-sensitive result sets on stored procedures or explicit 
batches are not supported.

■ Scroll-sensitive result sets are not supported when the Select 
statement contains any of the following SQL language 
constructions:

• JOIN
• Aggregate functions
• GROUP BY

■ The JDBC driver supports updatable result sets.

NOTE: When the JDBC driver cannot support the requested 
result set type or concurrency, it will automatically downgrade it 
and generate one or multiple SQLWarnings with detailed 
information.
SequeLink Developer’s Reference



336 Chapter 8  Developing JDBC Applications  
Specifying Application IDs
Application IDs are alphanumeric strings passed by a SequeLink 
Client that identify the client application to a SequeLink service 
that has been configured to accept connections only from specific 
application IDs.

After establishing a connection with the JDBC driver, immediately 
invoke setApplicationId. The setApplicationId method is defined 
on the interface com.ddtek.jdbc.extensions.SlExtensionInterface, 
and uses the following method prototype:

public void setApplicationId(String s) throws SQLException

You can set the application ID as shown in the following example:

import java.sql.*;
import com.ddtek.jdbc.extensions.SlExtensionInterface;

...
Connection con = DriverManager.getConnection(...);

String appId = "myAppID"; 
if (con instanceof SlExtensionInterface)
   {
   SlExtensionInterface slCon = (SlExtensionInterface)con;
   slCon.setApplicationId(myAppID);
   }

where myAppID is the application ID.
SequeLink Developer’s Reference



Parameter Metadata Support 337
For more information about configuring SequeLink services to 
accept connections only from specific application IDs, refer to 
the SequeLink Administrator’s Guide.

Parameter Metadata Support
The JDBC driver provides parameter metadata support for 
databases that provide native support for parameter metadata. 
For databases that do not provide native parameter metadata 
support, such as Oracle or Informix, the JDBC driver supports 
parameter metadata for valid ANSI SQL SELECT statements. 

INSERT and UPDATE Statements

The JDBC driver supports returning parameter metadata for all 
types of SQL statements for databases that provide native 
support for parameter metadata. 

For databases that do not provide native parameter metadata 
support, the JDBC driver supports returning parameter metadata 
for the following forms of Insert and Update statements:

■ INSERT INTO foo VALUES (?, ?, ?) 

■ INSERT INTO foo (col1, col2, col3) VALUES (?, ?, ?) 

■ UPDATE foo SET col1=?, col2=?, col3=? WHERE col1 
operator ? [{AND | OR} col2 operator ?]

where operator is any of the following SQL operators: =, <, >, 
<=, >=, and <>.
SequeLink Developer’s Reference



338 Chapter 8  Developing JDBC Applications  
Select Statements

The JDBC driver supports returning parameter metadata for 
Select statements that contain parameters in ANSI SQL 92 
entry-level predicates, for example, such as COMPARISON, 
BETWEEN, IN, LIKE, and EXISTS predicate constructs. Refer to the 
ANSI SQL reference for detailed syntax.

Parameter metadata can be returned for a Select statement if 
one of the following conditions is true:

■ The statement contains a predicate value expression that can 
be targeted against the source tables in the associated FROM           
clause. For example: 

SELECT * FROM foo WHERE bar > ?

In this case, the value expression "bar" can be targeted           
against the table "foo" to determine the appropriate 
metadata for the parameter.

■ The statement contains a predicate value expression part that 
is a nested query. The nested query's metadata must describe 
a single column. For example: 

SELECT * FROM foo WHERE (SELECT x FROM y 
   WHERE z = 1) < ?

The following Select statements show further examples for which 
parameter metadata can be returned:

SELECT col1, col2 FROM foo WHERE col1 = ? and col2 > ?

SELECT ... WHERE colname = (SELECT col2 FROM t2  
   WHERE col3 = ?)

SELECT ... WHERE colname LIKE ?

SELECT ... WHERE colname BETWEEN ? and ?

SELECT ... WHERE colname IN (?, ?, ?)

SELECT ... WHERE EXISTS(SELECT ... FROM T2 WHERE col1 < ?)
SequeLink Developer’s Reference



ResultSet Metadata Support 339
ANSI SQL 92 entry-level predicates in a WHERE clause containing 
GROUP BY, HAVING, or ORDER BY statements are supported. For 
example:

SELECT * FROM t1 WHERE col = ? ORDER BY 1

Joins are supported. For example: 

SELECT * FROM t1,t2 WHERE t1.col1 = ?

Fully qualified names and aliases are supported. For example: 

SELECT a, b, c, d FROM T1 AS A, T2 AS B WHERE A.a = ? 
   and B.b = ?"

ResultSet Metadata Support
If your application requires table name information, the JDBC 
driver can return table name information in ResultSet metadata 
for Select statements. By setting the ResultSetMetaDataOptions 
property to 1, the JDBC driver performs additional processing to 
determine the correct table name for each column in the result 
set when the ResultSetMetaData.getTableName() method is 
called. Otherwise, the getTableName() method may return an 
empty string for each column in the result set.

The table name information that is returned by the JDBC driver 
depends on whether the column in a result set maps to a column 
in a table in the database. For each column in a result set that 
maps to a column in a table in the database, the JDBC driver 
returns the table name associated with that column. For columns 
in a result set that do not map to a column in a table (for 
example, aggregates and literals), the JDBC driver returns an 
empty string.

The Select statements for which ResultSet metadata is returned        
may contain aliases, joins, and fully qualified names. The        
following queries are examples of Select statements for which        
SequeLink Developer’s Reference



340 Chapter 8  Developing JDBC Applications  
the ResultSetMetaData.getTableName() method returns the 
correct table name for columns in the Select list:

SELECT id, name FROM Employee

SELECT E.id, E.name FROM Employee E 

SELECT E.id, E.name AS EmployeeName FROM Employee E

SELECT E.id, E.name, I.location, I.phone FROM Employee E, 
   EmployeeInfo I WHERE E.id = I.id

SELECT id, name, location, phone FROM Employee,
   EmployeeInfo WHERE id = empId

SELECT Employee.id, Employee.name, EmployeeInfo.location, 
   EmployeeInfo.phone FROM Employee, EmployeeInfo .    
WHERE Employee.id = EmployeeInfo.id

The table name returned by the driver for generated columns is 
an empty string. The following query is an example of a Select 
statement that returns a result set that contains a generated 
column (the column named "upper").

SELECT E.id, E.name as EmployeeName, {fn UCASE(E.name)} 
   AS upper FROM Employee E

The JDBC driver also can return schema name and catalog name 
information when the ResultSetMetaData.getSchemaName() and 
ResultSetMetaData.getCatalogName() methods are called if the 
driver can determine that information. For example, for the 
following statement, the JDBC driver returns "test" for the 
catalog name, "test1" for the schema name, and "foo" for the 
table name:

SELECT * FROM test.test1.foo 

The additional processing required to return table name, schema 
name, and catalog name information is only performed if the 
ResultSetMetaData.getTableName(), 
ResultSetMetaData.getSchemaName(), or 
ResultSetMetaData.getCatalogName() methods are called. 
SequeLink Developer’s Reference



Unicode Support 341
Unicode Support
Multi-lingual applications can be developed on any operating 
system platform with JDBC using the SequeLink for JDBC driver to 
access both Unicode and non-Unicode enabled databases. 
Internally, Java applications use UTF-16 Unicode encoding for 
string data. When fetching data, the JDBC driver automatically 
performs the conversion from the character encoding used by 
the database to UTF-16. 

Similarly, when inserting or updating data in the database, the 
drivers automatically convert UTF-16 encoding to the character 
encoding used by the database.

The JDBC API provides mechanisms for retrieving and storing 
character data encoded as Unicode (UTF-16) or ASCII. 
Additionally, the Java string object contains methods for 
converting UTF-16 encoding of string data to or from many 
popular character encodings.

For information on configuring your server for full Unicode 
support, refer to the SequeLink Administrator’s Guide.

Rowset Support
The JDBC driver supports any JSR 114 implementation of the 
RowSet interface, including:

■ CachedRowSets
■ FilteredRowSets
■ WebRowSets
■ JoinRowSets
■ JDBCRowSets

J2SE 1.4 or higher is required to use rowsets with the driver.
SequeLink Developer’s Reference



342 Chapter 8  Developing JDBC Applications  
See http://www.jcp.org/en/jsr/detail?id=114 for more information 
about JSR 114.

Error Handling
The JDBC driver reports errors to the calling application by 
returning SQLExceptions. Errors can be generated by the 
following components:

■ SequeLink for JDBC driver
■ SequeLink Server
■ Database

Driver Errors 

An error generated by the JDBC driver has the following format:

[DataDirect] [SequeLink JDBC Driver] message

For example:

[DataDirect] [SequeLink JDBC Driver] Timeout expired.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference. 
Sometimes, you may need to check the last JDBC call your 
application made and refer to the JDBC specification for 
recommended action.
SequeLink Developer’s Reference

http://www.jcp.org/en/jsr/detail?id=114


Error Handling 343
SequeLink® Server Errors 

An error generated by SequeLink Server has the following 
format:

[DataDirect] [SequeLink JDBC Driver] [SequeLink Server] 
message

For example:

[DataDirect] [SequeLink JDBC Driver] [SequeLink Server] 
Only Select statements are allowed in this read-only 
connection.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference.

Database Errors 

An error generated by the database has the following format:

[DataDirect] [SequeLink JDBC Driver] [...] message

For example:

[DataDirect] [SequeLink JDBC Driver] [Oracle] 
ORA-00942:table or view does not exist.

Use the native error code to look up details about the possible 
cause of the error. For these details, refer to your database 
documentation.
SequeLink Developer’s Reference



344 Chapter 8  Developing JDBC Applications  
Fine-Tuning JDBC Application Performance
This section provides some tips for fine-tuning the performance 
of your JDBC applications.

Reducing Download Time

Generally, the time that it takes for applets to download is 
determined by the following factors:

■ Number of classes that are loaded. Each class that is 
downloaded results in an HTTP request to your Web server. 
The more requests and transfers that are made, the slower 
the download.

■ Size of the byte code that is loaded. The more bytes that are 
transferred, the slower the download.

JDK 1.2-compatible and higher Java Virtual Machines support JAR 
files, which reduces the number of HTTP requests because all the 
class files are packaged together in the JAR file. The JAR format 
also allows you to compress the packaged files, which further 
optimizes the download.

To reduce download time by using JAR files:

1 Package all classes of your applet into a JAR file.

2 Copy the JAR file into the directory indicated by the 
codebase tag.

3 Specify the JAR file in the archive tag. 
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 345
For example:

<html>
<applet
width=100 height=100
code=MyApplet
codebase=.
archive=myapplet.jar>
<param name=ConfigFile value=Config.txt>
</applet>

The SequeLink for JDBC driver is packaged into the following JAR 
files:

■ sljc.jar contains all classes of the SequeLink for JDBC driver.

■ slssl.jar contains all classes of the SequeLink for JDBC driver 
implementation of SSL. This file is only required if you will be 
using SSL encryption.

To use the JDBC driver from within your applet, specify these JAR 
files in the archive tag as shown: 

<html>
<applet
width=100 height=100
code=MyApplet
codebase=.
archive=myapplet.jar,sljc.jar,slssl.jar>
<param name=ConfigFile value=Config.txt>
</applet>
SequeLink Developer’s Reference



346 Chapter 8  Developing JDBC Applications  
Fetching BigDecimal Objects

JDBC 1.22 defines getBigDecimal() with a scale parameter. When 
the JDBC driver fetches a BigDecimal object from a database, it 
rescales it using the scale specified by the application. This 
additional processing can downgrade system performance, 
particularly when large numbers of BigDecimal objects are 
fetched by your application.

To eliminate this additional rescaling, JDBC 2.0 defines an 
overloaded version of getBigDecimal, without the scale 
parameter. This method allows the JDBC driver to return the 
BigDecimal object with the original precision.

Using Database Metadata Methods

Because database metadata methods that generate Resultset 
objects are slow compared to other JDBC methods, their frequent 
use can impair system performance. The guidelines in this section 
will help you to optimize system performance when selecting and 
using database metadata.

Minimizing the Use of Database Metadata 
Methods

Compared to other JDBC methods, database metadata methods 
that generate Resultset objects are relatively slow. Applications 
should cache information returned from result sets that generate 
database metadata methods so that multiple executions are not 
needed.

While almost no JDBC application can be written without 
database metadata methods, you can improve system 
performance by minimizing their use. To return all result column 
information mandated by the JDBC specification, a JDBC driver 
may have to perform complex queries or multiple queries to 
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 347
return the necessary result set for a single call to a database 
metadata method. These particular elements of the SQL 
language are performance expensive. 

Applications should cache information from database metadata 
methods. For example, call getTypeInfo once in the application 
and cache away the elements of the result set that your 
application depends on. It is unlikely that any application uses all 
elements of the result set generated by a database metadata 
method, so the cache of information should not be difficult to 
maintain.

Avoiding Search Patterns

Using null arguments or search patterns in database metadata 
methods results in generating time-consuming queries. In 
addition, network traffic potentially increases due to unwanted 
results. Always supply as many non-null arguments to result sets 
that generate database metadata methods as possible.

Because database metadata methods are slow, applications 
should invoke them as efficiently as possible. Many applications 
pass the fewest non-null arguments necessary for the function to 
return success.

For example:

ResultSet WSrs = WSc.getTables (null, null, "WSTable", null);

should be:

ResultSet WSrs = WSc.getTables ("cat1", "johng", "WSTable", "TABLE");

Sometimes, little information is known about the object for 
which you are requesting information. Any information that the 
application can send the driver when calling database metadata 
methods can result in improved performance and reliability. 
SequeLink Developer’s Reference



348 Chapter 8  Developing JDBC Applications  
Using a Dummy Query to Determine Table 
Characteristics

Avoid using getColumns to determine characteristics about a 
table. Instead, use a dummy query with getMetadata.

Consider an application that allows the user to choose columns. 
Should the application use getColumns to return information 
about the columns to the user or instead prepare a dummy query 
and call getMetadata?

Case 1: GetColumns Method

ResultSet WSrc = WSc.getColumns (... "UnknownTable" ...);
// This call to getColumns will generate a query to 
// the system catalogs... possibly a join
// which must be prepared, executed, and produce
// a result set
. . .    
WSrc.next();
string Cname = getString(4);
. . .    
// user must retrieve N rows from the server 
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: GetMetadata Method

// prepare dummy query 
PreparedStatement WSps = WSc.prepareStatement 
    (... "SELECT * from UnknownTable WHERE 1 = 0" ...);
// query is never executed on the server - 
// only prepared
ResultSetMetaData WSsmd=wsps.getMetaData();
int numcols = WSrsmd.getColumnCount();
...
int ctype = WSrsmd.getColumnType(n)
...
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 349
// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be assumed from the getColumns example.

In both cases, a query is sent to the server, but in Case 1 the 
query must be evaluated and form a result set that must be sent 
to the client. Clearly, Case 2 is the better performing model. 

To somewhat complicate this discussion, let us consider a DBMS 
server that does not natively support preparing a SQL statement. 
The performance of Case 1 does not change but Case 2 increases 
minutely because the dummy query must be evaluated instead 
of only prepared. Because the Where clause of the query always 
evaluates to FALSE, the query generates no result rows and 
should execute without accessing table data. For this situation, 
Case 2 still outperforms Case 1.

Retrieving Data

This section provides general guidelines for retrieving data with 
JDBC applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data 
because retrieving long data across a network is slow and 
resource-intensive. 

Most users don’t want to see long data. If the user does need to 
see these result items, the application can query the database 
again, specifying only the long columns in the select list. This 
method allows the average user to retrieve result sets without 
having to pay a high performance penalty for network traffic.

Although the best method is to exclude long data from the 
select list, some applications do not formulate the select list 
before sending the query to the JDBC driver (for example, some 
SequeLink Developer’s Reference



350 Chapter 8  Developing JDBC Applications  
applications SELECT * FROM table name ...). If the select list 
contains long data, the driver must retrieve that data at fetch 
time, even if the application does not get the long data in the 
result set. When possible, the application developer should use a 
method that does not retrieve all columns of the table.

Additionally, although the getClob and getBlob methods allow 
the application to control how long data is retrieved in the 
application, the designer must realize that in many cases, the 
JDBC driver emulates these methods due to the lack of true 
locator support in the DBMS. In such cases, the driver must 
retrieve all of the long data across the network before exposing 
the getClob and getBlob methods.

Sometimes long data must be retrieved. When this is the case, 
remember that most users do not want to see 100 KB, or more, of 
text on the screen. 

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can 
reduce the size of data being retrieved to a manageable limit by 
calling setMaxRows, setMaxFieldSize, and the driver-specific 
SetFetchSize. Another method of reducing the size of the data 
being retrieved is to decrease the column size. If the driver allows 
you to define the packet size, use the smallest packet size that 
will meet your needs.

In addition, be careful to return only the rows you need. If you 
return five columns when you only need two columns, 
performance is decreased, especially if the unnecessary rows 
include long data.
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 351
Choosing the Right Data Type

Retrieving and sending certain data types can be expensive. 
When you design a schema, select the data type that can be 
processed most efficiently. For example, integer data is 
processed faster than floating-point data. Floating-point data is 
defined according to internal database-specific formats, usually 
in a compressed format. The data must be decompressed and 
converted into a different format so that it can be processed by 
the wire protocol.

Processing time is shortest for character strings, followed by 
integers, which usually require some conversion or byte 
ordering. Processing floating-point data and timestamps is at 
least twice as slow as integers.

Selecting JDBC Objects and Methods 

The guidelines in this section will help you to optimize system 
performance when selecting and using JDBC objects and 
methods.

Using Parameter Markers as Arguments to 
Stored Procedures

When calling stored procedures, always use parameter markers 
for the argument markers instead of using literal arguments. 
JDBC drivers can call stored procedures on the database server 
either by executing the procedure as any other SQL query, or by 
optimizing the execution by invoking a Remote Procedure Call 
(RPC) directly into the database server. Executing the stored 
procedure as a SQL query results in the database server parsing 
the statement, validating the argument types, and converting 
the arguments into the correct data types. Remember that SQL is 
always sent to the database server as a character string, for 
example, "{call getCustName (12345)}". In this case, even 
SequeLink Developer’s Reference



352 Chapter 8  Developing JDBC Applications  
though the application programmer might assume that the only 
argument to getCustName is an integer, the argument is actually 
passed inside a character string to the server. The database server 
would parse the SQL query, isolate the single argument value 
12345, then convert the string ‘12345’ into an integer value. 

By invoking an RPC inside the database server, the overhead of 
using a SQL character string is avoided. Instead, the procedure is 
called only by name with the argument values already encoded 
into their native data types.

Case 1 

Stored Procedure cannot be optimized to use a server-side RPC. 
The database server must parse the statement, validate the 
argument types, and convert the arguments into the correct data 
types.The database server must parse the statement, validate the 
argument types, and convert the arguments into the correct data 
types.

CallableStatement cstmt = conn.prepareCall ("call getCustName (12345)");
ResultSet rs = cstmt.executeQuery ();

Case 2

Stored Procedure can be optimized to use a server-side RPC. 
Because the application calls the procedure by name and the 
argument values are already encoded, the load on the database 
server is less.

CallableStatement cstmt – conn.prepareCall ("Call getCustName (?)");
cstmt.setLong (1,12345);
ResultSet rs = cstmt.executeQuery();
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 353
Using the Statement Object instead of the 
PreparedStatement Object

JDBC drivers are optimized based on the perceived use of the 
functions that are being executed. Choose between the 
PreparedStatement object and the Statement object depending 
on the planned use. The Statement object is optimized for a 
single execution of a SQL statement. In contrast, the 
PreparedStatement object is optimized for SQL statements that 
will be executed two or more times.

The overhead for the initial execution of a PreparedStatement 
object is high. The advantage comes with subsequent executions 
of the SQL statement. 

Choosing the Right Cursor

Choosing the appropriate type of cursor allows maximum 
application flexibility. This section summarizes the performance 
issues of three types of cursors.

A forward-only cursor provides excellent performance for 
sequential reads of all of the rows in a table. However, it cannot 
be used when the rows to be returned are not sequential.

Insensitive cursors used by JDBC drivers are ideal for applications 
that require high levels of concurrency on the database server 
and require the ability to scroll forwards and backwards through 
result sets. The first request to an insensitive cursor fetches all of 
the rows and stores them on the client. Thus, the first request is 
very slow, especially when long data is retrieved. Subsequent 
requests do not require any network traffic and are processed 
quickly. Because the first request is processed slowly, insensitive 
cursors should not be used for a single request of one row. 
Designers should also avoid using insensitive cursors when long 
data is returned, because memory can be exhausted. Some 
insensitive cursor implementations cache the data in a 
SequeLink Developer’s Reference



354 Chapter 8  Developing JDBC Applications  
temporary table on the database server and avoid the 
performance issue.

Sensitive cursors, sometimes called keyset-driven cursors, use 
identifiers, such as a ROWID, that already exist in your database. 
When you scroll through the result set, the data for the 
identifiers is retrieved. Because each request generates network 
traffic, performance can be very slow. However, returning 
nonsequential rows does not further affect performance. 
Sensitive cursors are the preferred scrollable cursor model for 
dynamic situations, when the application cannot afford to buffer 
the data from an insensitive cursor. 

Using get Methods Effectively

JDBC provides a variety of methods to retrieve data from a result 
set, such as getInt, getString, and getObject. The getObject 
method is the most generic and provides the worst performance 
when the non-default mappings are specified. This is because the 
JDBC driver must do extra processing to determine the type of 
the value being retrieved and generate the appropriate 
mapping. Always use the specific method for the data type.

To further improve performance, provide the column number of 
the column being retrieved, for example, getString(1), 
getLong(2), and getInt(3), instead of the column name. If the 
column names are not specified, network traffic is unaffected, 
but costly conversions and lookups increase. For example, 
suppose you use:

getString("foo")...

The JDBC driver may have to convert foo to uppercase (if 
necessary), and then compare foo with all the columns in the 
column list. That is costly. If, instead, the driver was able to go 
directly to result column 23, then a lot of processing would be 
saved. 
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 355
For example, suppose you have a result set that has 15 columns 
and 100 rows, and the column names are not included in the 
result set. You are interested in three columns, EMPLOYEENAME 
(a string), EMPLOYEENUMBER (a long integer), and SALARY (an 
integer). If you specify getString("EmployeeName"), 
getLong("EmployeeNumber"), and getInt("Salary"), each 
column name must be converted to uppercase, and lookups 
would increase considerably. Performance would improve 
significantly if you specify getString(1), getLong(2), and 
getInt(15). 

Designing JDBC Applications

The guidelines in this section will help you to optimize system 
performance when designing JDBC applications.

Managing Connections

Connection management is important to application 
performance. Optimize your application by connecting once and 
using multiple statement objects, instead of performing multiple 
connections. Avoid connecting to a data source after 
establishing an initial connection.

Although gathering driver information at connect time is a good 
practice, it is often more efficient to gather it in one step rather 
than two steps. For example, some applications establish a 
connection and then call a method in a separate component that 
reattaches and gathers information about the driver. 
Applications that are designed as separate entities should pass 
the established connection object to the data collection routine 
instead of establishing a second connection. 

Another bad practice is to connect and disconnect several times 
throughout your application to perform SQL statements. 
Connection objects can have multiple statement objects 
SequeLink Developer’s Reference



356 Chapter 8  Developing JDBC Applications  
associated with them. Statement objects, which are defined to be 
memory storage for information about SQL statements, can 
manage multiple SQL statements.

You can improve performance significantly with connection 
pooling, especially for applications that connect over a network 
or through the World Wide Web. Connection pooling lets you 
reuse connections. Closing connections does not close the 
physical connection to the database. When an application 
requests a connection, an active connection is reused, thus 
avoiding the network input/output needed to create a new 
connection.

Connection and statement handling should be addressed before 
implementation. Spending time and thoughtfully handling 
connection management improves application performance and 
maintainability.

Managing Commits in Transactions

Committing transactions is extremely disk I/O intensive and slow. 
Always turn off autocommit by using the following setting: 
WSConnection.setAutoCommit(false). 

What does a commit actually involve? The database server must 
flush back to disk every data page that contains updated or new 
data. This is not a sequential write but a searched write to replace 
existing data in the table. By default, Autocommit is on when 
connecting to a data source, and Autocommit mode usually 
impairs performance because of the significant amount of disk 
input/output needed to commit every operation. 

Furthermore, some database servers do not provide an 
Autocommit mode. For this type of server, the JDBC driver must 
explicitly issue a COMMIT statement and a BEGIN TRANSACTION 
statement for every operation sent to the server. In addition to 
the large amount of disk input/output required to support 
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 357
Autocommit mode, a performance penalty is paid for up to 
three network requests for every statement issued by an 
application. 

Although using transactions can help application performance, 
do not take this tip too far. Leaving transactions active can 
reduce throughput by holding locks on rows for long times, 
preventing other users from accessing the rows. Commit 
transactions in intervals that allow maximum concurrency.

Choosing the Right Transaction Model

Many systems support distributed transactions; that is, 
transactions that span multiple connections. Distributed 
transactions are at least four times slower than normal 
transactions due to the logging and network input/output 
necessary to communicate between all the components involved 
in the distributed transaction. Unless distributed transactions are 
required, avoid using them. Instead, use local transactions 
whenever possible.

For the best system performance, design the application to run 
under a single Connection object. 

Updating Data

This section provides general guidelines to help you to optimize 
system performance when updating data in databases.

Using updateXXX Methods

Although programmatic updates do not apply to all types of 
applications, developers should attempt to use programmatic 
updates and deletes. Using the updateXXX methods of the 
ResultSet object allows the developer to update data without 
building a complex SQL statement. Instead, the developer simply 
SequeLink Developer’s Reference



358 Chapter 8  Developing JDBC Applications  
supplies the column in the result set that is to be updated and the 
data that is to be changed. Then, before moving the cursor from 
the row in the result set, the updateRow method must be called 
to update the database as well. 

In the following code fragment, the value of the Age column of 
the Resultset object rs is retrieved using the method getInt, and 
the method updateInt is used to update the column with an int 
value of 25. The method updateRow is called to update the row 
in the database that contains the modified value.

int n = rs.getInt("Age"); 
// n contains value of Age column in the resultset rs
. . .
rs.updateInt("Age", 25); 
rs.updateRow();

In addition to making the application more easily maintainable, 
programmatic updates usually result in improved performance. 
Because the database server is already positioned on the row for 
the Select statement in process, performance-expensive 
operations to locate the row to be changed are not needed. If 
the row must be located, the server usually has an internal 
pointer to the row available (for example, ROWID). 

Using getBestRowIdentifier()

Use getBestRowIdentifier() to determine the optimal set of 
columns to use in the Where clause for updating data. 
Pseudo-columns often provide the fastest access to the data, and 
these columns can only be determined by using 
getBestRowIdentifier().

Some applications cannot be designed to take advantage of 
positional updates and deletes. Some applications might 
formulate the Where clause by using all searchable result 
columns by calling getPrimaryKeys(), or by calling getIndexInfo() 
to find columns that might be part of a unique index. These 
methods usually work, but might result in fairly complex queries.
SequeLink Developer’s Reference



Fine-Tuning JDBC Application Performance 359
Consider the following example:

ResultSet WSrs = WSs.executeQuery 
     ("SELECT first_name, last_name, ssn, address, city, state, zip 
        FROM emp");
// fetchdata
...
WSs.executeUpdate ("UPDATE EMP SET ADDRESS = ?
     WHERE first_name = ? and last_name = ? and ssn = ? 
     and address = ? and city = ? and state = ? 
     and zip = ?");
// fairly complex query

Applications should call getBestRowIdentifier() to retrieve the 
optimal set of columns (possibly a pseudo-column) that identifies 
a specific record. Many databases support special columns that 
are not explicitly defined by the user in the table definition but 
are hidden columns of every table (for example, ROWID and 
TID). These pseudo-columns generally provide the fastest access 
to the data because they typically are pointers to the exact 
location of the record. Because pseudo-columns are not part of 
the explicit table definition, they are not returned from 
getColumns. To determine if pseudo-columns exist, call 
getBestRowIdentifier().

Consider the previous example again:

...
ResultSet WSrowid = getBestRowIdentifier() 
   (.... "emp", ...);
// Suppose this returned "ROWID"
...
ResultSet WSrs = WSs.executeQuery("SELECT first_name, last_name,
    ssn, address, city, state, zip, ROWID FROM emp");
// fetch data and probably "hide" ROWID from the user
...
WSs.executeUpdate ("UPDATE emp SET address = ? WHERE ROWID = ?");
// fastest access to the data!
SequeLink Developer’s Reference



360 Chapter 8  Developing JDBC Applications  
If your data source does not contain special pseudo-columns, 
then the result set of getBestRowIdentifier() consists of the 
columns of the most optimal unique index on the specified table 
(if a unique index exists). Therefore, your application does not 
need to call getIndexInfo to find the smallest unique index.
SequeLink Developer’s Reference



361
Part 4: Developing .NET 
Applications

This part contains the following chapters:

■ Chapter 9 “Using the .NET Client” on page 363 provides 
information about using .NET applications with the 
SequeLink Client for .NET.

■ Chapter 10 “Developing .NET Applications” on page 389 
provides information about developing .NET applications for 
SequeLink environments.
SequeLink Developer’s Reference



362   Part 4: Developing .NET Applications  
SequeLink Developer’s Reference



363
9 Using the .NET Client 

This chapter provides information on using the SequeLink Client 
for .NET (the .NET Client).

About the .NET Client
The .NET Client provides .NET access through any .NET-enabled 
application or application server. It delivers high-performance 
point-to-point and n-tier access to industry-leading data stores 
across the Internet and intranets. The .NET Client is optimized 
for the .NET environment, allowing you to incorporate .NET 
technology and extend the functionality and performance of 
your existing system. The .NET Client also supports tracing.

The machine must have the .NET Framework Version 1.0 or 1.1 
installed.

The .NET Client is compliant with the Microsoft .NET Framework 
Version 1.0 and 1.1 Software Development Kit (SDK). 
SequeLink Developer’s Reference



364 Chapter 9  Using the .NET Client  
Using Connection Pooling
Connection pooling allows you to reuse connections rather than 
create a new one every time the data provider needs to establish 
a connection to the underlying database. The data provider 
automatically enables connection pooling for your .NET client 
application. 

You can control connection pooling behavior by using connection 
string options (see “Specifying Connection Options” on 
page 369). For example, you can define the number of 
connection pools, the number of connections in a pool, and the 
lifetime of pooled connections.

Connection pooling in ADO.NET is not provided by the .NET 
Framework. It must be implemented in the .NET data provider 
itself.

Creating a Connection Pool

Each connection pool is associated with a specific connection 
string. By default, the connection pool is created when the first 
connection with a unique connection string connects to the 
database. The pool is populated with connections up to the 
minimum pool size. Additional connections can be added until 
the pool reaches the maximum pool size.

The pool remains active as long as any connections remain open, 
either in the pool or used by an application with a reference to a 
Connection object that has an open connection.

If a new connection is opened and the connection string does not 
exactly match an existing pool, a new pool must be created. By 
using the same connection string, you can enhance the 
performance and scalability of your application.
SequeLink Developer’s Reference



Using Connection Pooling 365
In the following C# code fragment, three new 
SequeLinkConnection objects are created, but only two 
connection pools are required to manage them. Note that the 
first and second connection strings differ only by the value 
assigned for User ID and Password, and by the value of the Min 
Pool Size option.

SequeLinkConnection conn1 = new SequeLinkConnection();
conn.ConnectionString = "Host=Accounting;
                    User ID=john;password=beach;
                    Database=test;Min Pool Size=50";
conn1.Open();
// Pool A is created and filled with connections to
// the minimum pool size. 

SequeLinkConnection conn2 = new SequeLinkConnection();
conn.ConnectionString = "Host=Accounting;
                     User ID=mary;password=jtb28cnc
                     Database=test;Min Pool Size=100";
conn2.Open();
// Pool B is created because the connection strings differ.

SequeLinkConnection conn3 = new SequeLinkConnection();
conn.ConnectionString = "Host=Accounting;
                    User ID=john;password=beach;
                    Database=test;Min Pool Size=50";
conn3.Open();
// Conn3 is assigned an existing connection that was 
// created in Pool A when the pool was created for Conn1

Adding Connections to a Pool

A connection pool is created in the process of creating each 
unique connection string that an application uses. When a pool 
is created, it is populated with enough connections to satisfy the 
minimum pool size requirement, set by the Min Pool Size 
connection string option. If an application is using more 
connections than Min Pool Size, the data provider allocates 
SequeLink Developer’s Reference



366 Chapter 9  Using the .NET Client  
additional connections to the pool up to the value of the Max 
Pool Size connection string option, which sets the maximum 
number of connections in the pool.

When a SequeLinkConnection object is requested by the 
application calling the Connection.Open(…) method, the 
connection is obtained from the pool, if a usable connection is 
available. A usable connection is defined as a connection that is 
not currently in use by another valid SequeLinkConnection 
object, has a matching distributed transaction context (if 
applicable), and has a valid link to the server.

If the maximum pool size has been reached and no usable 
connection is available, the request is queued in the data 
provider. The data provider waits for the value of the Connection 
Timeout connection string option for a usable connection to 
return to the application. If this time period expires and no 
connection has become available, then the data provider returns 
an error to the application.

IMPORTANT: Closing the connection using the Close() or Dispose() 
method of the Connection object adds or returns the connection 
to the pool. When the application uses the Close method, the 
connection string settings remain as they were before the Open 
was called. If you use the Dispose method to close the 
connection, the connection string settings are cleared, and the 
default settings are restored.

Removing Connections from a Pool

A connection is removed from a connection pool when it either 
exceeds its lifetime as determined by the Connection Lifetime 
connection string option, or when a new connection is initiated 
by the application (SequeLinkConnection.Open() is called) that 
has a matching connection string. 

Before returning a connection from the connection pool to an 
application, the Pool Manager checks to see if the connection has 
SequeLink Developer’s Reference



Using Connection Pooling 367
been closed at the server. If the connection is no longer valid, the 
Pool Manager discards it and returns another connection from 
the pool, if one is available and valid.

NOTE: By default, if discarding an invalid connection causes the 
number of connections to drop below the number specified in 
the Min Pool Size option, a new connection is not created until 
an application needs one.

Handling Dead Connection in a Pool

What happens when an idle connection loses its physical 
connection to the database? For example, suppose the database 
server is rebooted or the network experiences a temporary 
interruption. An application that attempts to connect using an 
existing Connection object from a pool could receive errors 
because the physical connection to the database has been lost.

The .NET data provider handles this situation transparently to 
the user. The application does not receive any errors on the 
Connection.Open() attempt because the data provider simply 
returns a connection from a connection pool. The first time the 
Connection object is used to execute a SQL statement (for 
example, through one of the DataReader execution methods or 
the DataAdapter.Fill method), the data provider detects that the 
physical connection to the server has been lost and attempts to 
reconnect to the server before executing the SQL statement. If 
the data provider can reconnect to the server, the result of the 
SQL execution is returned to the application; no errors are 
returned to the application. The data provider uses the 
connection failover options, if enabled, when attempting this 
seamless reconnection. See “Using Connection Failover” on 
page 375 for information about configuring the data provider to 
connect to a backup server when the primary server is not 
available.
SequeLink Developer’s Reference



368 Chapter 9  Using the .NET Client  
NOTE: Because the .NET Client can attempt to reconnect to the 
database server when executing SQL statements, connection 
errors can be returned to the application when a statement is 
executed. If the .NET Client cannot reconnect to the server (for 
example, because the server is still down), the execution method 
throws an error indicating that the reconnect attempt failed, 
along with specifics about the reason the connection failed.

DataDirect's method of handling dead connections in connection 
pools allows for the maximum performance out of the 
connection pooling mechanism. Some data providers periodically 
ping the server with a dummy SQL statement while the 
connections sit idle. Other data providers ping the server when 
the application requests the use of the connection from the 
connection pool. Both of these approaches add round trips to the 
database server and ultimately slow down the application during 
normal operation of the application is occurring.

Handling Distributed Transactions in a 
Pool

The Pool Manager groups the connections according to the 
requirement for transactions. If the requesting thread requires a 
specific transaction context, it must be matched to a connection 
with the same transaction context, for example, a connection 
that has been enlisted in distributed transactions.

Because closed connections are returned to the appropriate 
connection pool, you can close a connection even though a 
distributed transaction is pending. This means that you can still 
commit or roll back the distributed transaction until the 
connection is closed at the server.

See “Using Distributed Transactions” on page 381 for more 
information about how the data provider processes distributed 
transactions
SequeLink Developer’s Reference



Specifying Connection Options 369
Tracking Connection Pool Performance

All DataDirect ADO.NET data providers install a set of PerfMon 
counters that let you tune and debug applications that use the 
data provider. See “PerfMon Support” on page 410 for 
information about using the PerfMon counters.

Specifying Connection Options
You can modify a connection by specifying connection string 
options. See “.NET Public Objects/Interfaces Supported” on 
page 396 for information about specifying options through the 
Client’s SequeLinkConnection object. 

The basic format of a connection string includes a series of 
keyword/value pairs separated by semicolons. The following 
example shows the keywords and values for a simple connection 
string to connect to the host hal:

"Host=hal;Port=19998;User Id=test01;Password=test01;Database=test;"

Use the following guidelines when specifying a connection 
string:

■ The spaces in the connection string option names are 
required.

■ All connection string option names are case-insensitive. For 
example, Password is the same as password. However, the 
values of options such as User ID and Password may be 
case-sensitive.

■ Special characters can be used in the value of the connection 
string option. To escape special characters, surround the 
value in double quotes.
SequeLink Developer’s Reference



370 Chapter 9  Using the .NET Client  
Table 9-1 gives the names for each connection string option, as 
well as a description. The defaults listed are initial defaults that 
apply when no value is specified in the connection string.

Table 9-1.  .NET Connection String Options 

Option Description

Alternate Servers Specifies a list of alternate database servers to which the data provider 
will try to connect if the primary SequeLink server is unavailable. 
Specifying a value for this connection string option enables connection 
failover for the data provider. 

The value you specify must be in the form of a string that defines the 
physical location of each alternate server. You must specify the server 
name or the IP address and port number of each alternate SequeLink 
server. All of the other required connection information for each 
alternate server is the same as what is defined for the primary server 
connection. Currently, the only optional connection string option that 
can be set for the alternate server is Server Data Source. The string has 
the format: 

"Host=servername1;Port=port1[;ServerDataSource=serverdsname]"

For example, the following connection string defines two alternate 
SequeLink servers for connection failover: 

"Host=server1;port=19996;ServerDataSource=SDSN1:User ID=test;Password=
secret;Alternate Servers=(Host=server2:Port=19996:ServerData Source=
SDSN2,Host=server3:Port=19996:ServerDataSource=SDSN3)"

See “Using Connection Failover” on page 375 for a discussion of 
connection failover and for information about other connection string 
options that you can set for this feature.

Connection 
Lifetime

Specifies the number of seconds to keep connections in a connection 
pool. The pool manager periodically checks all pools, and closes and 
removes any connection that exceeds its lifetime. The Min Pool Size 
connection string option can cause some connections to ignore this 
value.

Valid values are 0 to 65335.

When set to 0 (the initial default), the lifetime is never limited by time. 
SequeLink Developer’s Reference



Specifying Connection Options 371
Connection Reset Connection Reset={True | False}. Specifies whether a connection that is 
removed from the connection pool for reuse by an application will 
have its state reset to the initial configuration settings of the 
connection. Resetting the state impacts performance of the reused 
connections because the new connection must issue additional 
commands to the server.

When set to false (the initial default), the data provider does not reset 
the state of the connection.

Connection Retry 
Count

Specifies the number of times the data provider tries to connect to the 
primary server, and, if specified, the alternate servers after the initial 
unsuccessful attempt. 

The value can be any integer from 0 to 65535. 

When set to 0 (the initial default), the data provider does not try to 
reconnect after the initial unsuccessful attempt. 

If a connection is not established during the retry attempts, the data 
provider returns an error that is generated by the last server to which it 
attempted to connect.

This option and Connection Retry Delay, which specifies the wait 
interval between attempts, can be used in conjunction with connection 
failover. Refer to the SequeLink Administrator’s Guide for a discussion 
of connection failover and for information about other connection 
string options that you can set for this feature

Table 9-1.  .NET Connection String Options  (cont.)

Option Description
SequeLink Developer’s Reference



372 Chapter 9  Using the .NET Client  
Connection Retry 
Delay

Specifies the number of seconds the data provider waits after the 
initial unsuccessful connection attempt before retrying a connection to 
the primary server, and, if specified, the alternate servers. 

The value can be any integer from 0 to 65535. 

The initial default is 3 (seconds). When set to 0, there is no delay 
between retrying the connection. 

NOTES: 

■ This option has no effect unless the Connection Retry Count 
connection string option is set to an integer value greater than 0. 

■ This option and the Connection Retry Count connection string 
option, which specifies the number of times the data provider 
attempts to connect after the initial attempt, can be used in 
conjunction with connection failover. Refer to the SequeLink 
Administrator’s Guide for a discussion of connection failover and for 
information about other connection string options that you can set 
for this feature.

Database Specifies the name of the database to which you want to connect.

Enlist Enlist={True | False}. Specifies whether the data provider automatically 
attempts to enlist the connection in creating the thread’s current 
transaction context. This connection string option is enabled only when 
the data provider is installed with a Server license and the optional 
MS DTC Support components were selected.

When set to false (the initial default), the data provider does not 
automatically attempt to enlist the connection.

NOTE: Enlisting in distributed transactions requires the data provider 
to call unmanaged code.

Host Specifies either the IP address or the name of the server to which you 
want to connect. For example, if your network supports named servers, 
you can specify a server name such as SequeLinkAppServer. Or, you 
can specify an IP address such as 122.23.15.12. 

The initial default is localhost, which specifies a SequeLink server 
running on the local machine. 

Table 9-1.  .NET Connection String Options  (cont.)

Option Description
SequeLink Developer’s Reference



Specifying Connection Options 373
License Path Specifies the fully-qualified path to the DDTEK.LIC license file. The 
license file is installed by default in the product installation directory, 
for example, C:\install_dir\DDTek.lic.

If you do not provide this option, the data provider looks for the 
license file in the application’s current directory. If the license file is not 
found, the data provider checks for keys placed in the registry during 
the installation process; then, the data provider looks for the license 
key in the installation directory. If the license key is still not found, the 
data provider fails to connect.

The initial default is an empty string. 

Load Balancing Load Balancing={true | false}. Determines whether the data provider 
uses client load balancing in its attempts to connect to primary and 
alternate SequeLink servers. The list of alternate servers is specified by 
the Alternate Servers connection option. 

When set to true, the data provider attempts to connect to the 
database servers in random order. 

When set to false (the initial default), client load balancing is not used 
and the data provider connects to each server based on its sequential 
order (primary server first, then, alternate servers in the order they are 
specified). 

NOTE: This option has no effect unless alternate servers are defined for 
the Alternate Servers connection string option. 

The Load Balancing connection string option is an optional setting that 
you can use in conjunction with connection failover. Refer to the 
SequeLink Administrator’s Guide for more information for a discussion 
of connection failover and for information about other connection 
options that you can set for this feature.

Max Number Of 
Pools

Specifies the maximum number of connection pools that can be in use 
at a time during the life of the process.

The value can be any integer from 1 to 65335.

The initial default is 100.

See “Creating a Connection Pool” on page 364 for more information 
about creating connection pools.

Table 9-1.  .NET Connection String Options  (cont.)

Option Description
SequeLink Developer’s Reference



374 Chapter 9  Using the .NET Client  
Max Pool Size Specifies the maximum number of connections within a single pool. 
When the maximum number is reached, no additional connections can 
be added to the connection pool. 

The value can be any integer from 1 to 65335.

The initial default is 100.

See “Creating a Connection Pool” on page 364 for more information 
about creating connection pools.

Min Pool Size Specifies the minimum number of connections are opened and placed 
in a connection pool when it is created. The connection pool retains 
this number of connections, even when some connections exceed their 
Connection Lifetime value.

The value can be any integer from 0 to 65335.

When set to 0 (the initial default), no additional connections are placed 
in the connection pool when it is created.

See “Removing Connections from a Pool” on page 366 for a discussion 
of connection lifetimes.

MS Pooling MS Pooling={true | false}. Specifies whether the data provider uses the 
legacy DataDirect connection pooling implementation (see “Using 
Connection Failover” on page 375).

When set to false, the data provider uses the legacy connection pool 
model, which is provided only for backward compatibility.

When set to true (the initial default), the data provider does not use 
the legacy connection pool model.

Password Specifies the host or data store password, which may be required 
depending on the server configuration.

Pooling Pooling={True | False}. Specifies whether connections are pooled. 
Connection pooling can significantly enhance the performance and 
scalability of your application.

When set to True (the initial default), connection pooling is enabled.

Port Specifies the TCP/IP port on which the SequeLink Server is listening. 

The initial default is 19996. 

Table 9-1.  .NET Connection String Options  (cont.)

Option Description
SequeLink Developer’s Reference



Using Connection Failover 375
Using Connection Failover
Connection failover allows an application to connect to an 
alternate, or backup, SequeLink Server if the primary SequeLink 
Server is unavailable, for example, because of a hardware failure 
or traffic overload. 

Refer to the SequeLink Administrator’s Guide for more 
information about connection failover.

To configure connection failover to another server, you must 
specify a list of alternate database servers that are tried at 
connection time if the primary server is not accepting 
connections. To do this, use the Alternate Servers connection 
string option. Connection attempts continue until a connection 
is successfully established or until all the databases in the list 
have been tried once (the default).

Optionally, you can specify the following additional connection 
failover features:

■ The number of times the data provider attempts to connect 
after the initial connection attempt. By default, the data 
provider does not retry. To set this feature, use the 
Connection Retry Count connection string option.

ServerDataSource Specifies the server data source to be used by the connection. If not 
specified, the configuration of the default server data source are used. 

User ID Specifies the SequeLink User ID for this connection, which may be 
required depending on the server configuration.

Table 9-1.  .NET Connection String Options  (cont.)

Option Description
SequeLink Developer’s Reference



376 Chapter 9  Using the .NET Client  
■ The wait interval, in seconds, used between attempts to 
connect. The default interval is 3 seconds. To set this feature, 
use the Connection Retry Delay connection string option.

■ Whether the .NET Client will use load balancing in its 
attempts to connect to primary and alternate SequeLink 
Servers. If load balancing is enabled, the .NET Client uses a 
random pattern instead of a sequential pattern in its attempts 
to connect. The default value is not to use load balancing. To 
set this feature, use the Load Balancing connection string 
option.

You use a connection string to direct the .NET Client to use 
connection failover. See “Specifying Connection Options” on 
page 369 for information about using connection strings.

The following C# code fragment includes a connection string that 
configures the .NET Client to use connection failover in 
conjunction with all of its optional features—load balancing, 
connection retry, and connection retry delay:

SequeLinkConnection Conn = new SequeLinkConnection();
Conn = new SequeLinkConnection("Host=server1;port=19996;ServerDataSource=
SDSN1:User ID=test;Password=secret;Alternate Servers=(Host=server2:Port=
19996:ServerDataSource=SDSN2,Host=server3:Port=19996:ServerDataSource=
SDSN3);Connection Retry Count=4;Connection Retry Delay=5;Load Balancing=true;
Connection Timeout=60"

Specifically, this connection string configures the .NET Client to 
use two alternate servers as connection failover servers, to 
attempt to connect four additional times if the initial attempt 
fails, to wait five seconds between attempts, and to try the 
primary and alternate servers in a random order. Each connection 
attempt lasts for 60 seconds.
SequeLink Developer’s Reference



Client Load Balancing 377
Client Load Balancing 
Client load balancing helps distribute new connections in your 
environment so that no one server is overwhelmed with 
connection requests. When both connection failover and client 
load balancing are enabled, the first connection attempt 
establishes the random order in which primary and alternate 
SequeLink Servers are tried. Subsequent connection attempts 
use the same sequence. For example, suppose that client load 
balancing is enabled as shown in Figure 9-1.

Figure 9-1.  Client Load Balancing Example

First, SequeLink Server B is tried (1). Then, SequeLink Server C 
may be tried (2), followed by a connection attempt to SequeLink 
Server A (3); subsequent connection attempts use this same 
sequence. In contrast, if client load balancing was not enabled in 
this scenario, each SequeLink Server would be tried in sequential 
order, primary server first, then alternate servers based on their 
entry order in the alternate servers list.
SequeLink Developer’s Reference



378 Chapter 9  Using the .NET Client  
Using .NET Objects
The .NET Client supports the .NET public objects. See “.NET Public 
Objects/Interfaces Supported” on page 396 for more information.

The .NET Client exposes its objects as sealed objects.

Assemblies
A .NET assembly is a compiled representation of one or more 
classes. Each assembly is self-contained, that is, the assembly 
includes the metadata about the assembly as a whole.

Assemblies can be private or shared. Private assemblies, which are 
used by a limited number of applications, are placed in the 
application folder or one of its subfolders. Even if the client has 
two different applications that call a private assembly named 
formulas, each client application loads the correct assembly.

Shared assemblies, which are available to multiple client 
applications, are placed in the Global Assembly Cache (GAC). 
Each shared assembly is assigned a strong name to handle name 
and version conflicts. 

The assembly name for the .NET data provider is 
ddtek.sequelink.dll. The assembly, which is placed in the Global 
Assembly Cache (GAC) during installation, is strongly named. 
SequeLink Developer’s Reference



Parameter Markers 379
Parameter Markers
Parameter markers, including parameter markers for stored 
procedures, are specified in the .NET data provider by using the 
"?" symbol in SQL statements. 

UPDATE emp SET job = ?, sal = ? WHERE empno = ?

Because parameters are not named, the bindings must occur in 
the order of the parameters in the statement. This means that 
the calls to the Add() method on the ParameterCollection object 
(adding the Parameter objects to the collection) must occur in 
the order of the "?"s in the statement. The name passed to the 
Add() method does not need to match anything in the SQL 
statement.

Parameter Arrays
Parameter array binding is typically used with Insert statements 
to speed up the time needed to fill a table. An application can 
specify rows of parameter values with a single execution of a 
command. The values can then be sent to the database server in 
a single round trip (depending on the native capabilities of the 
backend database). 

The .NET Client supports input parameter arrays for Insert and 
Update statements. The data provider supports output arrays for 
stored procedures. 
SequeLink Developer’s Reference



380 Chapter 9  Using the .NET Client  
Stored Procedures
NOTE: The .NET Client attaches the provider-specific prefix 
"SequeLink" to the names of the public objects, for example, 
SequeLinkConnection or SequeLinkCommand.

To enable stored procedures in the application, do the following:

■ Set the CommandText property in the SequeLinkCommand 
object to the stored procedure name. 

■ Set the CommandType property in the SequeLinkCommand 
object to StoredProcedure.

■ Specify parameter arguments, if needed. The application 
should Add the parameters to the parameter collection of the 
SequeLinkCommand object in the order of the arguments to 
the stored procedure. The application does not need to 
specify the parameter markers in the CommandText property 
of the SequeLinkCommand object. 

To retrieve the return value from a stored procedure, the 
application should add an extra parameter to the parameter 
collection for the SequeLinkCommand object. This parameter’s 
ParameterDirection property should be set to 
ParameterDirection.ReturnValue. The return value parameter can 
be anywhere in the parameter collection because it does not 
correspond to a specific parameter marker in the Text property of 
the SequeLinkCommand object.

If the stored procedure does not produce a return value, 
parameters bound with the ParameterDirection.ReturnValue 
property are ignored.

If the stored procedure returns a ReturnValue from the database 
and the application has not bound a parameter for it, the data 
provider discards the value.
SequeLink Developer’s Reference



Transaction Support 381
Transaction Support
NOTE: The .NET Client attaches the provider-specific prefix 
"SequeLink" to the names of the public objects, for example, 
SequeLinkConnection or SequeLinkCommand.

The .NET Client supports both local and distributed transactions.

Using Local Transactions

The .NET Client uses 100% managed code in supporting local 
transactions. Local transactions are implemented within the .NET 
Framework and use the internal transaction manager of the 
underlying database.

The .NET Client supports savepoints through the Save() and 
Rollback(String) methods of the SequeLinkTransaction object.

If your application connects to only one database and you have 
no requirement to connect to another database, you should use 
local transactions. Local transactions are always faster than 
distributed transactions, which require additional logging and 
network I/O. In addition, local transactions provide the added 
benefit of increased security because the data provider does not 
need to call unmanaged code.

Using Distributed Transactions

The .NET Client supports distributed transactions through the 
Microsoft Distributed Transaction Coordinator (MS DTC). The MS 
DTC is provided through COM+ Services. These components are 
required to call some unmanaged code, which can affect the 
level of security available. If maintaining 100% managed code is 
important in your environment, do not use distributed 
transactions.
SequeLink Developer’s Reference



382 Chapter 9  Using the .NET Client  
The .NET Client supports distributed transactions only when the 
following conditions are met: 

■ The Server version of SequeLink Client for .NET, including the 
optional MS DTC Support components, was installed. 

• DDTek.SequeLink.XA.dll must be in your Path.

• DDTek.DTC.dll must be installed in the GAC.

■ The application is written to Serviced Components. For a 
general discussion of using serviced components, refer to the 
Microsoft .NET Framework SDK documentation.

Applications that do not enlist in MS DTC coordinated 
transactions use only managed code, even if the MS DTC 
components are installed. Unmanaged code is called only if the 
application performs distributed transaction processing. 

To use distributed transactions, you must include specific code in 
the namespace of your application, as shown in the following 
code fragment:

using System
using System.EnterpriseServices;
using DDTek.SequeLink

Distributed transactions are significantly slower than normal 
transactions due to the logging and network I/O necessary to 
communicate between all the components involved in the 
distributed transaction. 

Because the .NET data provider is a managed data provider, you 
can still enjoy some of the benefits of the .NET Framework 
security when you use distributed transactions. The security 
afforded by the data provider, with the security defined in the 
underlying database, provides good protection when you use 
distributed transactions.
SequeLink Developer’s Reference



Connecting to a Database 383
Connecting to a Database
Once the .NET Client is installed, you can connect from your 
application to your database with a connection string. 

The following example illustrates connecting to the underlying 
Sybase database using the .NET Client from an application 
developed in Visual Studio .NET. If you are connecting using a 
different ADO.NET data provider or connecting from the 
command line, the specific details vary.

If you are using Visual Studio .NET:

1 In the Solution Explorer, right-click References; then, click 
Add Reference.

 

SequeLink Developer’s Reference



384 Chapter 9  Using the .NET Client  
2 Select the DataDirect Technologies SequeLink .NET Client in 
the component list. 
SequeLink Developer’s Reference



Connecting to a Database 385
3 Click OK. The Solution Explorer now includes a reference for 
the .NET Client.

4 Check the beginning of your application. If the data 
provider’s namespace is not present, add it, as shown in the 
following code fragments:

C#

// Access SequeLink Server
using System.Data;
using DDTek.SequeLink;

Visual Basic

' Access SequeLink Server
Imports System.Data
Imports DDTek.SequeLink

5 Add the connection information for your server and 
exception handling code, as shown in the following code 
fragments. 

C#

DBConn = new SequeLinkConnection("Host=sydney;
SequeLink Developer’s Reference



386 Chapter 9  Using the .NET Client  
   Port=19998;User ID=test01;Password=test01;
   Database=test");

try
{

DBConn.Open();
Console.WriteLine ("Connection successful!");

}
// Display any exceptions 
catch (SequeLinkException ex)
{

// Connection failed
Console.WriteLine (ex.Message);    
return;

}

Visual Basic

Dim Conn As New SequeLinkConnection("Host=bowhead;
Port=19996;User ID=test01;Password=test01;
Database=test")

Try
  'Open the connection
  Conn.Open()
  MessageBox.Show("Connection successful!")
  
Catch SLex As SequeLinkException
  'Connection failed
  MessageBox.Show(SLex.Message, "SequeLink Exception")

End Try

6 Close the connection.

C#

// Close the connection
DBConn.Close();
SequeLink Developer’s Reference



Connecting to a Database 387
Visual Basic 

'Close the connection
Conn.Close()

  
SequeLink Developer’s Reference



388 Chapter 9  Using the .NET Client  
SequeLink Developer’s Reference



389
10 Developing .NET Applications

This chapter provides information about developing .NET 
applications for the SequeLink environment including:

■ “Namespace” on page 389
■ “Data Types” on page 390
■ “Isolation Levels” on page 395
■ “Threading” on page 395
■ “Event Handling” on page 396
■ “.NET Public Objects/Interfaces Supported” on page 396
■ “Setting .NET Security Permissions” on page 405
■ “Error Handling” on page 406
■ “Diagnostic Support” on page 408
■ “Designing .NET Applications for Performance” on page 412

Developers of data consumer applications must be familiar with 
the Microsoft .NET specification and object-oriented 
programming techniques. 

Namespace
The namespace for the SequeLink .NET data provider is 
DDTek.SequeLink. When connecting to the SequeLink server, you 
use the SequeLinkConnection and SequeLinkCommand objects 
in the DDTek.SequeLink namespace.

The following C# code fragment shows how to include the 
SequeLink data provider’s namespace in your applications:

// Access SequeLink Server
using System.Data;
using DDTek.SequeLink;
SequeLink Developer’s Reference



390 Chapter 10  Developing .NET Applications  
Data Types 

The data types and isolation levels supported by the .NET data 
provider depend on the data store to which you are connecting. 

Table 10-1 lists the data types supported by the .NET data 
provider and how they are mapped to the .NET Framework types. 
You can use the table to infer the data types that will be used 
when a DataSet is filled using a DataAdapter. This table also 
identifies the proper accessors for accessing the data when a 
DataReader object is used directly. 

■ The SequeLink data type column refers to the native type 
name. 

■ The SequeLinkDbType column refers to the SequeLink data 
provider’s type enumeration. Generally, there is a one to one 
mapping between the native type and the SequeLinkDbType. 

■ The .NET Framework Type column refers to the base data 
types available in the framework. 

■ The .NET Framework Typed Accessor column refers to the 
method that must be used to access a column of this type 
when using a DataReader.

Table 10-1.  Mapping of SequeLink Data Types 

SequeLink Service 
Data Type

SequeLinkDbType .NET Framework 
Type 

.NET Framework 
Typed Accessor

BIGINT Bigint Int64 GetInt64( )

BINARY Binary Byte[] GetBytes( )

BIT Bit Boolean GetBoolean( )

BLOB Blob Byte[] GetBytes( )

CHAR Char String GetString( )

GetChars( )
SequeLink Developer’s Reference



Data Types 391
CLOB Clob String GetString( )

GetChars( )

DATE Date DateTime GetDateTime( )

DECIMAL Decimal Decimal GetDecimal( )

DOUBLE Double Double GetDouble( )

FLOAT Double Double GetDouble( )

GRAPHIC Char String GetString( )

GetChars( )

INTEGER Int Int32 GetInt32( )

LONGVARBINARY LongVarBinary Byte[] GetBytes( )

LONGVARCHAR LongVarChar String GetString( )

GetChars( )

NUMBER Decimal Decimal GetDecimal( )

REAL Single Single GetFloat( )

SMALLINT SmallInt Int16 GetInt16( )

TIME Time TimeSpan GetValue( )

TIMESTAMP TimeStamp DateTime GetDateTime( )

TINYINT Byte Byte[] GetByte( )

VARBINARY VarBinary Byte[] GetBytes( )

VARCHAR VarChar String GetString( )

GetChars( )

VARGRAPHIC VarChar String GetString( )

GetChars( )

Table 10-1.  Mapping of SequeLink Data Types  (cont.)

SequeLink Service 
Data Type

SequeLinkDbType .NET Framework 
Type 

.NET Framework 
Typed Accessor
SequeLink Developer’s Reference



392 Chapter 10  Developing .NET Applications  
Mapping Parameter Data Types

The type of the parameter is specific to each data provider. The 
.NET data provider must convert the parameter value to a native 
format before sending it to the server. The best way for an 
application to describe a parameter is to use the data 
provider-specific type enumeration. 

In generic programming circumstances, the data provider-specific 
type may not be available. When no provider-specific DB type has 
been specified, the data type will be inferred from either the 
System.Data.DbType or from the .NET framework type of the 
parameter’s value. 

The .NET data provider uses the following order when inferring 
the data type of a parameter: 

■ The data provider uses the provider-specific data type if it has 
been specified. 

■ The data provider infers the data type from the 
System.Data.DbType if it has been specified, but the 
provider-specific data type has not been specified. 

■ The data provider infers the data type from the .NET 
Framework type if neither the provider-specific data type nor 
the System.Data.DbType have been specified. 

Table 10-2 shows how SequeLink infers its types if only the 
System.Data.DbType is specified.

Table 10-2.  Mapping of the System.Data.DbTypes to 
SequeLinkDbTypes 

System.Data.DbType SequeLinkDbType

AnsiString VarChar 

AnsiStringFixedLength Char 

Binary VarBinary
SequeLink Developer’s Reference



Data Types 393
Boolean Bit

Byte Byte

Currency Decimal

Date Date

DateTime TimeStamp

Decimal Decimal

Double Double

Guid Not supported

Int16 SmallInt

Int32 Int

Int64 BigInt

Object Not supported

Sbyte Byte

Single Single

String VarChar

StringFixedLength Char

Time Time

Uint16 Int

Uint32 Decimal

Uint64 Decimal

VarNumeric Not supported

Table 10-2.  Mapping of the System.Data.DbTypes to 
SequeLinkDbTypes  (cont.)

System.Data.DbType SequeLinkDbType
SequeLink Developer’s Reference



394 Chapter 10  Developing .NET Applications  
Table 10-3 shows the mapping that the data provider uses to 
infer a data type if neither the provider-specific data type or the 
System.Data.DbType are provided.

Table 10-3.  Mapping .NET Framework Data Types to 
SequeLinkDbTypes 

.NET Framework Type SequeLinkDbType

Boolean Bit

Byte Byte

Byte[] Varbinary

Char, Char[] Not supported

DateTime TimeStamp

Decimal Decimal

Double Double

Guid Not supported

Int16 SmallInt

Int32 Int

Int64 BigInt

Object Not supported

Single Single

String VarChar

Timespan Time

Uint16 Int

Uint32 Decimal

Uint64 Decimal
SequeLink Developer’s Reference



Isolation Levels 395
Isolation Levels
The isolation levels supported by the .NET Client depend on the 
data store to which you are connecting. Isolation levels are set 
using the BeginTransaction(IsolationLevel) method of the 
SequeLinkConnection object. 

See Appendix B “Data Types and Isolation Levels” on page 451 
for database-specific information about data types and isolation 
levels.

Threading
The SequeLinkConnection object is thread-safe. Multiple 
SequeLinkCommand objects, each accessed on a separate 
thread, can simultaneously use a single connection. 

Accessing other public and data provider-specific objects 
simultaneously on separate threads is not thread-safe. 
SequeLink Developer’s Reference



396 Chapter 10  Developing .NET Applications  
Event Handling
The event handler receives an argument of type 
SequeLinkInfoMessageEventArgs, which contains data relevant 
to an event. See “SequeLinkInfoMessageEventArgs Object” on 
page 402 for more information.

This event is defined as:

public event SequeLinkInfoMessageEventHandler InfoMessage;

Clients that want to process warnings and informational 
messages sent by the database server should create a 
SequeLinkInfoMessageEventHandler delegate to listen to this 
event.

The following code fragment defines a delegate that represents 
the method that handles the InfoMessage event of a 
SequeLinkConnection object:

[Serializable]
public delegate void SequeLinkInfoMessageEventHandler(
  object sender
  SequeLinkInfoMessageEventArgs e 
);

where sender is the object that generated the event and e is a 
SequeLinkInfoMessageEventArgs object that describes the 
warning.

.NET Public Objects/Interfaces Supported
The .NET data provider supports the .NET public classes, 
interfaces, properties, and methods. The .NET data provider 
attaches the provider-specific prefix "SequeLink" to the names of 
the public objects, for example, SequeLinkConnection or 
SequeLink Developer’s Reference



.NET Public Objects/Interfaces Supported 397
SequeLinkCommand. In addition, the .NET data provider 
supports provider-specific properties and methods.

The .NET data provider supports the public .NET objects, 
properties, and methods described in the following sections. See 
Appendix G “.NET Code Examples” on page 577 for sample code 
that uses these objects.

SequeLinkCommand Object

In addition to the public properties of the Command object, the 
SequeLinkCommand object supports the properties described in 
Table 10-4. The table includes the generic public properties of 
the Command object when provider-specific information 
supplements the standard descriptions.

For information about other properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

Table 10-4.  Properties of the SequeLinkCommand Object 

Property Description

ArrayBindCount Specifies the number of rows of parameters that will be used. The 
application must set this property before executing a command that 
uses parameter array binding. The count must equal the length of each 
of the arrays that is set for each parameter value.

When set to 0 (the initial default), the application does not use 
parameter array binding. 
SequeLink Developer’s Reference



398 Chapter 10  Developing .NET Applications  
SequeLinkCommandBuilder Object

The SequeLinkCommandBuilder object automatically generates 
single-table SQL commands that are used to reconcile changes 
made to a DataSet with the SequeLink server. A 
SequeLinkCommandBuilder object is always associated with a 
SequeLinkDataAdapter object.

Using a CommandBuilder object can have a negative effect on 
performance. Because of concurrency restrictions, the 
CommandBuilder does not generate efficient SQL statements. 
The end-user can often write more efficient update and delete 

ArrayBindStatus Enables the application to inspect the per row status after executing a 
command that uses parameter array binding. The property's type is an 
array of OracleRowStatus. 

Parameter array binding is performed as a single atomic operation. This 
means that if the operation succeeds, every entry will be set to OK; if 
the operation fails, none of the entries will be set to OK. The 
OracleRowStatus enumeration has the following possible values:

■ OK. The operation succeeded. All entries are marked as OK.

■ Failed. The operation failed. The data provider assigns this value to 
all status entries except for the row that caused the failure.

■ SchemaViolation. When an operation fails, the data provider assigns 
this value to the row that caused the failure.

RowSetSize Limits the number of rows returned by any query executed on this 
Command object to the value specified at execute time. The data type 
for the Read-Write property is unsigned long. 

Valid values are 0 to 2147483647. When set to 0, the data provider does 
not limit the number of rows returned. 

The initial default is 0.

Table 10-4.  Properties of the SequeLinkCommand Object  (cont.)

Property Description
SequeLink Developer’s Reference



.NET Public Objects/Interfaces Supported 399
statements than those that the CommandBuilder generates. In 
addition, the CommandBuilder object registers itself as a listener 
for the RowUpdating and RowUpdated events of its 
DataAdapter object. This means that two events must be 
processed for every row that is updated. 

In addition to the public properties of the CommandBuilder 
object, the SequeLinkCommandBuilder object supports the 
following property. For information about other properties and 
methods supported, refer to the data provider’s online help and 
the Microsoft .NET Framework SDK documentation.

SequeLinkConnection Object

In addition to the public properties of the Connection object, the 
SequeLinkConnection object supports the properties described 
in Table 10-6. Some properties return the values specified for the 
corresponding connection string attribute (see “Specifying 
Connection Options” on page 369 for information on the 
connection string attributes).

For information about other properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

Table 10-5.  Properties of the SequeLinkCommandBuilder Object

Property Description

AllowUpdateWithoutKey Allows the use of the SequeLinkCommandBuilder on a table 
that has no primary key or unique index. 

When set to True, a DataAdapter.Update can succeed when a 
single SQL statement updates multiple rows in the underlying 
table. Normally, each Update or Delete statement executed 
on a DataAdapter.Update changes only one row.

The initial default is False.
SequeLink Developer’s Reference



400 Chapter 10  Developing .NET Applications  
NOTE: To avoid dead connections being kept open on the 
database server, you must close or dispose every opened 
Connection object before it goes out of scope. Opened 
connections are not closed automatically when the memory is 
reclaimed by the garbage collector. 

SequeLinkDataAdapter Object

The SequeLinkDataAdapter object uses SequeLinkCommand 
objects to execute SQL commands on the SequeLink Server 
database, to load the DataSet with data, and to reconcile the 
changed data in the DataSet to the database.

The SequeLinkDataAdapter object supports the public properties 
of the DataAdapter object and has no provider-specific 
properties. For information about the properties and methods 

Table 10-6.  Properties of the SequeLinkConnection Object

Property Description

ApplicationId Specifies the application ID that identifies the client application to the 
SequeLink service. This attribute is only required when the SequeLink 
service you are connecting to has been configured to limit access to 
specific applications. For more information about using application IDs 
to limit access to the SequeLink services, refer to the SequeLink 
Administrator’s Guide.

Host Returns the value specified for the Host attribute in the connection 
string.

Port Returns the value specified for the Port attribute in the connection 
string.

ServerDatasource Returns the value specified for the ServerDatasource attribute in the 
connection string.

ServerVersion Returns the name and version of the database that the object is 
connected to.
SequeLink Developer’s Reference



.NET Public Objects/Interfaces Supported 401
supported, refer to the data provider’s online help and the 
Microsoft .NET Framework SDK documentation.

SequeLinkDataReader Object

The SequeLinkDataReader object is a forward-only cursor that 
retrieves read-only records from a database. Performance is 
better than SequeLinkDataAdapter, but the result set cannot be 
modified. 

For information about the properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

NOTE: To avoid statements or cursors being kept open on the 
database server, be sure to close or dispose each 
SequeLinkDataReader object as soon as you are finished reading 
with it. 

SequeLinkError Object

The SequeLinkError object collects information relevant to errors 
and warnings generated by the SequeLink server.

For information about the properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

SequeLinkErrorCollection Object

The SequeLinkErrorCollection object is created by a 
SequeLinkException to contain all the errors generated by the 
SequeLink server.
SequeLink Developer’s Reference



402 Chapter 10  Developing .NET Applications  
The SequeLinkErrorCollection object supports the public 
properties of the ErrorCollection object, and has no 
provider-specific properties. For information about other 
properties and methods supported, refer to the data provider’s 
online help and the Microsoft .NET Framework SDK 
documentation.

SequeLinkException Object

The SequeLinkException object is created and thrown when the 
SequeLink server returns an error. Exceptions generated by the 
data provider itself are returned as standard run time exceptions.

The SequeLinkException object supports the public properties of 
the Exception object, and has no provider-specific properties. The 
properties apply to the last error generated, if multiple errors 
exist. The application should check the Count property of the 
SequeLinkErrorCollection returned in the Errors property of this 
object to determine whether there are multiple errors. 

For information about the properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

SequeLinkInfoMessageEventArgs 
Object

The SequeLinkInfoMessageEventArgs object is passed as an input 
to the SequeLinkInfoMessageEventHandler and contains 
information relevant to a warning generated by the SequeLink 
server. See “Error Handling” on page 406 for an example of using 
InfoMessage delegates to retrieve warning information.

For information about SequeLinkInfoMessageEventArgs, refer to 
the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.
SequeLink Developer’s Reference



.NET Public Objects/Interfaces Supported 403
SequeLinkParameter Object

The SequeLinkParameter object represents a parameter to a 
SequeLinkCommand. In addition to the public properties of the 
Parameter object, the SequeLinkParameter object supports the 
properties described in Table 10-7. 

For information about other properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

SequeLinkTrace Object

The SequeLinkTrace object is created by the application to debug 
problems during development. For your final application, be 
sure to remove references to the SequeLinkTrace object. Setting 
the properties in the SequeLinkTrace object overrides the 

Table 10-7.  Properties of the SequeLinkParameter Object

Property Description

ArrayBindStatus Determines whether any values in an array of 
SequeLinkParameterStatus entries should be bound as null. The 
SequeLinkParameterStatus enumeration contains the entry Null.

SequeLinkDbType Specifies the data types of the SequeLink server.

See “Data Types” on page 390 for more information about SequeLink 
data types.

Value Gets or sets the value of the parameter.

This property is specified as an array of values when array binding is 
enabled (see the ArrayBindCount property of the “SequeLinkCommand 
Object” on page 397). Each array's length must match the value of the 
ArrayBindCount property. When specifying the array's values for binary 
type columns, the data will actually be specified as byte[]. This is an 
array of arrays of bytes. The data provider anticipates a jagged array as 
such when using parameter array binding with parameters.
SequeLink Developer’s Reference



404 Chapter 10  Developing .NET Applications  
settings of the environment variables (see “Specifying 
Connection Options” on page 369).

See “Using Environment Variables” on page 409 for information 
about using environment variables.

The .NET data provider provides the option to create a Trace 
object to help application programmers debug problems during 
development. To maintain security, trace logs show passwords as 
five asterisks (*****). 

The following code fragment creates a Trace object. All 
subsequent calls to the data provider will be traced to that file.

SequeLinkTrace  MyTraceObject = new SequeLinkTrace();
     MyTraceObject.TraceFile="C:\\MyTrace";
     MyTraceObject.EnableTrace = 1;

Table 10-8 provides the properties for the SequeLinkTrace object.

Table 10-8.  Properties of the SequeLinkTrace Object

Property Description

EnableTrace When set to 1 or higher, enables tracing. 

When set to 0 (the initial default), tracing is disabled.

RecreateTrace When set to 1, recreates the trace file each time the application restarts. 

When set to 0 (the initial default), the trace file is appended.

TraceFile When DDTek_Enable_Trace is set to 1 or higher, this option specifies the 
path and name of the trace file. 

The initial default is \SequeLinkTrace.txt. If the file does not exist, the data 
provider creates it. 

NOTE: Setting EnableTrace starts the tracing process. Therefore, you must define the 
property values for the trace file before setting EnableTrace. Once the trace processing 
starts, the values of TraceFile and RecreateTrace cannot be changed.
SequeLink Developer’s Reference



Setting .NET Security Permissions 405
SequeLinkTransaction Object

The SequeLinkTransaction object implements the IDBTransaction 
interface as specified in the .NET Framework. 

Table 10-9 provides the methods used by the 
SequeLinkTransaction object to support savepoints. For 
information about other properties and methods supported, 
refer to the data provider’s online help and the Microsoft .NET 
Framework SDK documentation.

Setting .NET Security Permissions
The .NET data provider implements security through the security 
permissions defined by the .NET Framework.

Code Access Permissions

The .NET data provider requires the FullTrust permission to be 
set in order to load and run. This requirement is due to 
underlying classes in System.Data that demand FullTrust for 
inheritance. All ADO.NET data providers require these classes to 
implement a DataAdapter.

Table 10-9.  Methods of the SequeLinkTransaction Object

Method Description

Save Specifies the savepoint name, and creates a savepoint in the 
transaction that can be used to roll back a portion of the transaction.

Rollback(String) Rolls back the specified transaction to a savepoint from a pending 
state.
SequeLink Developer’s Reference



406 Chapter 10  Developing .NET Applications  
Security Attributes

The .NET data provider is marked with the 
AllowPartiallyTrustedCallers attribute.

Error Handling
The following types of errors can occur when you are using the 
SequeLink Client for .NET:

■ .NET errors
■ SequeLink Client errors
■ SequeLink Server errors
■ Database errors

.NET Errors

The SequeLinkError object collects information relevant to errors 
and warnings generated by the database server. See 
“SequeLinkError Object” on page 401 for more information.

See “Retrieving Warning Information” on page 593 for a code 
example of how to return warning information.

The SequeLinkException object is created and thrown when the 
database server returns an error. Exceptions generated by the 
data provider are returned as standard run time exceptions. See 
“SequeLinkException Object” on page 402 for more information.
SequeLink Developer’s Reference



Error Handling 407
ADO.NET Data Provider Errors

Errors generated by the .NET Client have different formats, 
depending on the cause and source of the problem. Formats 
include:

[SequeLink nnnn] Memory allocation error occurred.

Invalid parameter type.

If a native error code is displayed, you can look up details about 
the possible cause of the error. For a list of all error codes and 
messages, refer to the SequeLink Troubleshooting Guide and 
Reference.

SequeLink® Server Errors

An error generated by SequeLink Server has the following 
format:

DDTek.SequeLink.SequeLinkException:[SequeLink Server] 
message

For example:

DDTek.SequeLink.SequeLinkException:[SequeLink Server] 
Required user name is missing.

Use the native error code to look up details about the possible 
cause of the error. For a list of all error codes and messages, refer 
to the SequeLink Troubleshooting Guide and Reference.
SequeLink Developer’s Reference



408 Chapter 10  Developing .NET Applications  
Database Errors

An error generated by the database has the following format:

DDTek.SequeLink.SequeLinkException:[...] message

For example:

DDTek.SequeLink.SequeLinkException:[Oracle] ORA-00942:table 
or view does not exist.

Use the native error code to look up details about the possible 
cause of the error. For these details, refer to your database 
documentation.

Diagnostic Support
The data provider delivers advanced diagnostic capability:

■ Ability to trace method calls 

■ PerfMon counters that let you tune connection information 
for your application

Tracing Method Calls

Tracing capability can be enabled either through environment 
variables or the provider-specific SequeLinkTrace class. The data 
provider traces the input arguments to all of its public method 
calls, as well as the outputs and returns from those methods 
(anything that a user could potentially call). Each call contains 
trace entries for entering and exiting the method. 

During debugging, sensitive data can be read, even if it is stored 
as a private or internal variable and access is limited to the same 
SequeLink Developer’s Reference



Diagnostic Support 409
assembly. To maintain security, trace logs show passwords as five 
asterisks (*****). 

Note, however, that if the Persist Security Info connection string 
option is set to true, the password will be displayed in clear text. 
See “Using Connection Pooling” on page 364 for more 
information about connection strings.

Using Environment Variables

Using environment variables to enable tracing means that you 
do not have to modify your application. If you change the value 
of an environment variable, you must restart the application for 
the new value to take effect. 

To enable and control tracing, set the following environment 
variables:

Using Static Methods

Some users may find that using static methods on the data 
provider’s Trace class to be a more convenient way to enable 
tracing. The following C# code fragment uses static methods on 
the .NET Trace object to create a SequeLinkTrace class with a 
trace file named MyTrace.txt. The values set override the values 

DDTek_Trace_File Specifies the path and name of the 
trace file. The initial default is 
\SequeLinkTrace.txt. 

DDTek_Recreate_Trace When set to 1, re-creates the trace file 
each time the application restarts. 
When set to 0 (the initial default), the 
trace file is appended.

DDTek_Enable_Trace When set to 1 or higher, enables 
tracing. When set to 0 (the initial 
default), tracing is disabled.
SequeLink Developer’s Reference



410 Chapter 10  Developing .NET Applications  
set in the environmental variables. All subsequent calls to the 
data provider will be traced to MyTrace.txt.

SequeLinkTrace.TraceFile="C:\\MyTrace.txt";
SequeLinkTrace.RecreateTrace = 1;
SequeLinkTrace.EnableTrace = 1;

The trace output has the following format:

<Correlation#> <Timestamp> <CurrentThreadName>  
   <Object Address> <ObjectName.MethodName> ENTER (or EXIT)
      Argument #1 : <Argument#1 Value>
      Argument #2 : <Argument#2 Value>
      ...
      RETURN:  <Method ReturnValue>  // This line only exists for 
EXIT

where:

Correlation# is a unique number that can be used to match up 
ENTER and EXIT entries for the same method call in an 
application.

Value is the hash code of an object appropriate to the individual 
function calls.

PerfMon Support

The Performance Monitor (PerfMon) utility in the Windows 
operating system allows you to record application parameters 
and review the results as a report or graph. You can also use 
Performance Monitor to identify the number and frequency of 
CLR exceptions in your applications. 

The SequeLink for .NET data provider installs a set of PerfMon 
counters that let you tune and debug applications that use the 
data provider. The data provider’s counters are located in the 
Performance Monitor under a category name, for example, 
SequeLink .NET Data Provider. 
SequeLink Developer’s Reference



Diagnostic Support 411
Table 10-10 describes the counters that you can use to tune 
connections for your application.

For information on using PerfMon and performance counters, 
refer to the Microsoft documentation library.

Table 10-10.  PerfMon Counters

Counter Description

Current # of Connection 
Pools

Returns the current number of pools 
associated with the process.

Current # of Pooled 
Connections

Returns the current number of 
connections in all pools associated with 
the process.

Current # of Pooled and 
Non-Pooled Connections

Returns the current number of pooled 
and non-pooled connections.

Peak # of Pooled 
Connections

Returns the highest number of 
connections in all connection pools since 
the process started.

Total # of Failed Connects Returns the total number of attempts to 
open a connection that failed for any 
reason since the process started.

Total # of Failed 
Commands

Returns the total number of command 
executions that failed for any reason 
since the process started.
SequeLink Developer’s Reference



412 Chapter 10  Developing .NET Applications  
Designing .NET Applications for Performance
This section provides some tips for creating .NET applications that 
will perform efficiently.

Developing performance-oriented .NET applications is not easy. 
The .NET data providers do not throw exceptions to say that your 
code is running too slowly.

Selecting .NET Objects and Methods 

The guidelines in this section will help you to optimize system 
performance when selecting and using .NET objects and 
methods.

Choosing Between a DataSet and a DataReader

A critical choice when designing your application is whether to 
use a DataSet or a DataReader. If you need to retrieve many 
records rapidly, use a DataReader. The DataReader object is fast, 
returning a fire hose of read-only data from the server, one 
record at a time. In addition, retrieving results with a DataReader 
requires significantly less memory than creating a DataSet. The 
DataReader does not allow random fetching, nor does it allow 
for updating the data. However, .NET data providers optimize 
their DataReaders for efficiently fetching large amounts of data.

In contrast, the DataSet object is a cache of disconnected data 
stored in memory on the client. In effect, it is a small database in 
itself. Because the DataSet contains all of the data that has been 
retrieved, you have more options in the way you can process the 
data. You can randomly choose records from within the DataSet 
and update, insert, and delete records at will. You can also 
manipulate relational data as XML. This flexibility provides some 
impressive functionality for any application, but comes with a 
SequeLink Developer’s Reference



Designing .NET Applications for Performance 413
high cost in memory consumption. In addition to keeping the 
entire result set in memory, the DataSet maintains both the 
original and the changed data, which leads to even higher 
memory usage. Do not use DataSets with very large result sets 
because the scalability of the application will be drastically 
reduced.

Using Parameter Markers as Arguments to 
Stored Procedures

When calling stored procedures, always use parameter markers 
for the argument markers instead of using literal arguments. 

.NET data providers can call stored procedures on the database 
server either by executing the procedure the same way as any 
other SQL query, or by optimizing the execution by invoking a 
Remote Procedure Call (RPC) directly into the database server. 
When you execute the stored procedure as a SQL query, the 
database server parses the statement, validates the argument 
types, and converts the arguments into the correct data types. 

Remember that SQL is always sent to the database server as a 
character string, for example, "getCustName (12345)". In this 
case, even though the application programmer might assume 
that the only argument to getCustName is an integer, the 
argument is actually passed inside a character string to the 
server. The database server parses the SQL query, consults 
database metadata to determine the parameter contract of the 
procedure, isolates the single argument value 12345, then 
converts the string '12345' into an integer value before finally 
executing the procedure as a SQL language event.

Invoking an RPC inside the database server avoids the overhead 
of using a SQL character string. Instead, a .NET data provider 
constructs a network packet that contains the parameters in 
their native data type formats, and executes the procedure 
remotely.
SequeLink Developer’s Reference



414 Chapter 10  Developing .NET Applications  
To use stored procedures correctly, set the CommandText 
property of the Command object to the name of the stored 
procedure. Then, set the CommandType property of the 
command to StoredProcedure. Finally, pass the arguments to the 
stored procedure using parameter objects. Do not physically code 
the literal arguments into the CommandText. 

Example 1 

SequeLinkCommand DBCmd = new SequeLinkCommand("getCustName", Conn);
SequeLinkDataReader = myDataReader;
myDataReader = DBCmd.ExecuteReader();

In this example, the stored procedure cannot be optimized to use 
a server-side RPC. The database server must treat the SQL request 
as a normal language event which includes parsing the 
statement, validating the argument types, and converting the 
arguments into the correct data types before executing the 
procedure.

Example 2

SequeLinkCommand DBCmd = new SequeLinkCommand("getCustName", Conn);
DBCmd.Parameters.Add("param1",SequeLinkDbType.Int,10,"").Value = 
12345
myDataReader.CommandType = CommandType.StoredProcedure;
myDataReader = DBCmd.ExecuteReader();

In this example, the stored procedure can be optimized to use a 
server-side RPC. Because the application avoids literal arguments 
and calls the procedure by specifying all arguments as 
parameters, the .NET data provider can optimize the execution 
by invoking the stored procedure directly inside the database as 
an RPC. This example avoids SQL language processing on the 
database server and the execution time is greatly improved.
SequeLink Developer’s Reference



Designing .NET Applications for Performance 415
Avoiding the CommandBuilder Object

It is tempting to use a CommandBuilder object because it 
generates SQL statements and can save the developer time when 
coding a new application that uses DataSets. However, this 
shortcut can have a negative effect on performance. Because of 
concurrency restrictions, the Command Builder can generate 
highly inefficient SQL statements. For example, suppose you 
have a table called EMP, an 8-column table with simple 
employee records. A CommandBuilder would generate the 
following update statement:

CommandText: "UPDATE EMP SET EMPNO = ?, ENAME = ?, JOB = ?, MGR = ?, HIREDATE 
= ?, SAL = ?, COMM = ?, DEPT = ? WHERE ( (EMPNO = ?) AND (ENAME = ?) AND (JOB 
= ?) AND ((MGR IS NULL AND ? IS NULL) OR (MGR = ?)) AND (HIREDATE = ?) AND 
(SAL = ?) AND ((COMM IS NULL AND ? IS NULL) OR (COMM = ?)) AND (DEPT = ?) )"

The end-user can often write much more efficient UPDATE and 
DELETE statements than those that the CommandBuilder 
generates. For example, a programmer who knows the 
underlying database schema and that the EMPNO column of the 
EMP table is the primary key for the table, can code the same 
UPDATE statement as follows:

UPDATE EMP SET EMPNO = ?, ENAME = ?, JOB = ?, MGR = ?, 
HIREDATE = ?, SAL = ?, COMM = ?, DEPT = ? WHERE EMPNO = ?

This statement will run much more efficiently on the database 
server than the statement generated by the CommandBuilder.

Another drawback is also implicit in the design of the 
CommandBuilder object. The CommandBuilder must generate 
statements at runtime. Each time a DataAdapter.Update method 
is called, the CommandBuilder must analyze the contents of the 
result set and generate UPDATE, INSERT, and DELETE statements 
for the DataAdapter. When the programmer explicitly specifies 
the UPDATE, INSERT, and DELETE statements for the 
DataAdapter, this extra processing time is avoided.
SequeLink Developer’s Reference



416 Chapter 10  Developing .NET Applications  
Designing .NET Applications

The guidelines in this section will help you to optimize system 
performance when designing .NET applications.

Using Connection Pooling

Connecting to a database is the single slowest operation inside a 
data-centric application. That's why connection management is 
important to application performance. Optimize your application 
by connecting once and using multiple statement objects, instead 
of performing multiple connections. Avoid connecting to a data 
source after establishing an initial connection.

Connection pooling is part of the .NET data provider. Connection 
pooling lets you reuse connections. Closing connections does not 
close the physical connection to the database. When an 
application requests a connection, an active connection is reused, 
thus avoiding the network I/O needed to create a new 
connection.

Pre-allocate connections. Decide which connection strings you 
will need to meet your needs. Remember that each unique 
connection string creates a new connection pool.

host=norman;Port=19996;
User ID=test01;Password=test01;"host=norman;Port=19996;
host=norman;Port=19996;
User ID=test01;Password=test01;

Once created, connection pools are not destroyed until the active 
process ends or the connection lifetime is exceeded. Maintenance 
of inactive or empty pools involves minimal system overhead.

Connection and statement handling should be addressed before 
implementation. Spending time and thoughtfully handling 
connection management improves application performance and 
maintainability.
SequeLink Developer’s Reference



Designing .NET Applications for Performance 417
Opening and Closing Connections

Open connections just before they are needed. Opening them 
earlier than necessary decreases the number of connections 
available to other users and can increase the demand for 
resources.

To keep resources available, explicitly Close the connection as 
soon as it is no longer needed. If you wait for the garbage 
collector to implicitly clean up connections that go out of scope, 
the connections will not be returned to the connection pool 
immediately, tying up resources that are not actually being used.  

Close connections inside a finally block. Code in the finally block 
always runs, even if an exception occurs. This guarantees explicit 
closing of connections. For example:

try 
{

DBConn.Open();
… // Do some other interesting work
}
catch (Exception ex) 
{

// Handle exceptions
}
finally
{

//  Close the connection
if (DBConn != null)

DBConn.Close();
}

If you are using connection pooling, opening and closing 
connections is not an expensive operation. Using the Close() 
method of the data provider's Connection object adds or returns 
the connection to the connection pool. Remember, however, 
that closing a connection automatically closes all DataReader 
objects associated with the connection. 
SequeLink Developer’s Reference



418 Chapter 10  Developing .NET Applications  
Managing Commits in Transactions

Committing transactions is slow due to the result of disk 
input/output and, potentially, network input/output. Always start 
a transaction after connecting; otherwise, you are in autocommit 
mode.

What does a commit actually involve? The database server must 
flush back to disk every data page that contains updated or new 
data. This is usually a sequential write to a journal file, but 
nonetheless, is a disk input/output. By default, Autocommit is on 
when connecting to a data source. Autocommit mode usually 
impairs performance because of the significant amount of disk 
input/output needed to commit every operation. 

Furthermore, some database servers do not provide an 
autocommit mode natively. For this type of server, the .NET data 
provider must explicitly issue a COMMIT statement and a BEGIN 
TRANSACTION for every operation sent to the server. In addition 
to the large amount of disk input/output required to support 
autocommit mode, a performance penalty is paid for up to three 
network requests for every statement issued by an application. 

The following code fragment starts a transaction for SequeLink: 

SequeLinkConnection MyConn = new SequeLinkConnection
                          ("Connection String info");
MyConn.Open()

// Start a transaction
SequeLinkTransaction TransId = MyConn.BeginTransaction();

// Enlist a command in the current transaction
SequeLinkCommand SequeLinkToDS = new SequeLinkCommand();
SequeLinkToDS.Transaction = TransId;
...
// Continue on and do more useful work in the 
// transaction
SequeLink Developer’s Reference



Designing .NET Applications for Performance 419
Although using transactions can help application performance, 
do not take this tip too far. Leaving transactions active can 
reduce throughput by holding locks on rows for long times, 
preventing other users from accessing the rows. Commit 
transactions in intervals that allow maximum concurrency.

Choosing the Right Transaction Model

Many systems support distributed transactions; that is, 
transactions that span multiple connections. Distributed 
transactions are at least four times slower than normal 
transactions due to the logging and network input/out needed 
to communicate between all the components involved in the 
distributed transaction (the .NET data provider, the transaction 
monitor, and the database system). 

Distributed transactions should be used only when transactions 
must span multiple DBMSs or multiple servers. Unless they are 
required, avoid using distributed transactions. Instead, use local 
transactions whenever possible.

Using Commands that Retrieve Little or No 
Data

Commands such as INSERT, UPDATE and DELETE do not return 
data. Use these commands with ExecuteNonQuery method of 
the Command object. Although you can successfully execute 
these commands using the ExecuteReader method, the .NET 
Data Provider will properly optimize the database access for 
INSERT, UPDATE, and DELETE statements only through the 
ExecuteNonQuery method. 

The following example shows how to insert a row into the 
EMPLOYEE table using ExecuteNonQuery:

DBConn.Open();
DBTxn = DBConn.BeginTransaction();
SequeLink Developer’s Reference



420 Chapter 10  Developing .NET Applications  
// Set the Connection property of the Command object
DBCmd.Connection = DBConn;
// Set the text of the Command to the INSERT statement
DBCmd.CommandText = "INSERT into EMPLOYEE VALUES 
(15,'HAYES','ADMIN',6, " +
 "'17-APR-2002',18000,NULL,4)";
// Set the transaction property of the Command object
DBCmd.Transaction = DBTxn;
// Execute the statement with ExecuteNonQuery, because we are not 
// returning results
DBCmd.ExecuteNonQuery();
// Now commit the transaction
DBTxn.Commit();

// Close the connection
DBConn.Close();

Use the ExecuteScalar method of the Command object to return a 
single value, such as a sum or a count, from the database. The 
ExecuteScalar method returns only the value of the first column 
of the first row of the result set. Once again, you could use the 
ExecuteReader method to successfully execute such queries, but 
by using the ExecuteScalar method, you tell the .NET data 
provider to optimize for a result set that consists of a single row 
and a single column. By doing so, the data provider can avoid a 
lot of overhead and improve performance. The following 
example shows how to retrieve the count of a group:

// Retrieve the number of employees who make more than $50000
// from the EMPLOYEE table

// Open connection to Sybase database
SequeLinkConnection  Conn;
Conn = new SequeLinkConnection("host=norman;Port=19996;
User ID=test01;Password=test01;");
Conn.Open();

// Make a command object 
SequeLinkCommand  salCmd = new SequeLinkCommand("SELECT count(sal) FROM" +
   "EMPLOYEES WHERE sal>'50000'",Conn);
SequeLink Developer’s Reference



Designing .NET Applications for Performance 421
try
{
    int count = (int)salCmd.ExecuteScalar();
}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}
//  Close the connection
Conn.Close();

Using Commands Multiple Times

Choosing whether to use the Command.Prepare method can 
have a significant positive (or negative) effect on query 
execution performance. The Command.Prepare method tells the 
underlying data provider to optimize for multiple executions of 
statements that use parameter markers. Note that it is possible 
to Prepare any command regardless of which execution method 
is used (ExecuteReader, ExecuteNonQuery, or ExecuteScalar).

Consider the case where a .NET data provider implements 
Command.Prepare by creating a stored procedure on the server 
that contains the prepared statement. Creating stored 
procedures involves substantial overhead, but the statement can 
be executed multiple times. Although creating stored 
procedures is performance-expensive, execution of that 
statement is minimized because the query is parsed and 
optimization paths are stored at create procedure time. 
Applications that execute the same statement multiples times 
can benefit greatly from calling Command.Prepare and then 
executing that command multiple times.

However, using Command.Prepare for a statement that is 
executed only once results in unnecessary overhead. 
Furthermore, applications that use Command.Prepare for large 
single execution query batches exhibit poor performance. 
SequeLink Developer’s Reference



422 Chapter 10  Developing .NET Applications  
Similarly, applications that either always use Command.Prepare 
or never use Command.Prepare do not perform as well as those 
that use a logical combination of prepared and unprepared 
statements.

Using Native Managed Providers

Bridges into unmanaged code, that is, code outside the .NET 
environment, adversely affect performance. Calling unmanaged 
code from managed code causes the CLR (Common Language 
Runtime) to make additional checks on calls to the unmanaged 
code, which impacts performance.

The .NET CLR is a very efficient and highly tuned environment. By 
using 100% managed code so that your .NET assemblies run 
inside the CLR, you can take advantage of the numerous built-in 
services to enhance the performance of your managed 
application and your staff. The CLR provides automatic memory 
management, so developers don't have to spend time debugging 
memory leaks. Automatic lifetime control of objects includes 
garbage collection, scalability features, and support for 
side-by-side versions. In addition, the .NET Framework security 
enforces security restrictions on managed code that protects the 
code and data from being misused or damaged by other code. An 
administrator can define a security policy to grant or revoke 
permissions on an enterprise, a machine, an assembly, or a user 
level. 

However, many .NET data provider architectures must bridge 
outside the CLR into native code to establish network 
communication with the database server. The overhead and 
processing required to enter this bridge is slow in the current 
version of the CLR.   

Depending on your architecture, you may not realize that the 
underlying .NET data provider is incurring this security risk and 
performance penalty. Be careful when choosing a .NET data 
provider that advertises itself as a 100% or pure managed code 
SequeLink Developer’s Reference



Designing .NET Applications for Performance 423
data provider. If the "Managed Data Provider" requires 
unmanaged database clients or other unmanaged pieces, then it 
is not a 100% managed data access solution. Only a very few 
vendors produce true managed code providers that implement 
their entire stack as a managed component.

Retrieving Data

To retrieve data efficiently, return only the data that you need, 
and choose the most efficient method of doing so. The 
guidelines in this section will help you to optimize system 
performance when retrieving data with .NET applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data 
because retrieving long data across a network is slow and 
resource-intensive. Remember that when you use a DataSet, all 
data is retrieved from the data source, even if you never use it.

Although the best method is to exclude long data from the 
select list, some applications do not formulate the select list 
before sending the query to the .NET data provider (that is, 
some applications use syntax such as SELECT * FROM <table name> 
...). If the select list contains long data, then some data 
providers must retrieve that data at fetch time even if the 
application does not bind the long data in the result set. When 
possible, the designer should attempt to implement a method 
that does not retrieve all columns of the table.

Most users don't want to see long data. If the user does want to 
see these result items, then the application can query the 
database again, specifying only the long columns in the select 
list. This method allows the average user to retrieve the result 
set without having to pay a high performance penalty for 
network traffic.
SequeLink Developer’s Reference



424 Chapter 10  Developing .NET Applications  
Consider a query such as  SELECT * FROM Employees WHERE SSID =
'999-99-2222'. An application might only want to retrieve this 

employee's name and address. But, remember that a .NET data 
provider cannot tell which result columns an application might 
be trying to retrieve when the query is executed. A data provider 
only knows that an application can request any of the result 
columns. When the .NET data provider processes the fetch 
request, it will most likely return at least one, if not more, result 
rows across the network from the database server. In this case, a 
result row will contain all the column values for each row — 
including an employee picture if the Employees table happens to 
contain such a column. Limiting the select list to contain only the 
name and address columns results in decreased network traffic 
and a faster performing query at runtime.

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can 
reduce the size of any data being retrieved to some manageable 
limit by using a database-specific command. For example, an 
Oracle data provider might let you limit the number of bytes of 
data the connection uses to fetch multiple rows. A Sybase data 
provider might let you limit the number of bytes of data that can 
be returned from a single IMAGE column in a result set. For 
example, with Microsoft SQL Server and Sybase ASE, you can issue 
Set TEXTSIZE n on any connection, where n sets the maximum 
number of bytes that will ever be returned to you from any TEXT 
or IMAGE column.

In addition, be careful to return only the rows you need. If you 
return five columns when you only need two columns, 
performance is decreased, especially if the unnecessary rows 
include long data.

Especially when using a DataSet, be sure to use a WHERE clause 
with every SELECT statement to limit the amount of data that will 
be retrieved. Even when you use a WHERE clause, a SELECT 
statement that does not adequately restrict the request could 
SequeLink Developer’s Reference



Designing .NET Applications for Performance 425
return hundreds of rows of data. For example, if you want the 
complete row of data from the EMPLOYEE table for each 
manger hired in recent years, you might be tempted to issue the 
following statement and then, in your application code, filter 
out the rows who are not managers:

SELECT * FROM EMPLOYEE WHERE hiredate > 2000 

However, suppose the EMPLOYEE table contains a PHOTOGRAPH 
column. Retrieving all the extra rows could be extremely 
expensive. Let the database filter them for you and avoid having 
all the extra data that you don't need sent across the network. A 
better request further limits the data returned and improves 
performance: 

SELECT * FROM EMPLOYEE WHERE hiredate > 2003 AND job_title=
'Manager'

Choosing the Right Data Type

Advances in processor technology brought significant 
improvements to the way that operations such as floating-point 
math are handled; however, retrieving and sending certain data 
types are still expensive when the active portion of your 
application will not fit into on-chip cache. When you are 
working with data on a large scale, it is still important to select 
the data type that can be processed most efficiently. 

For example, integer data is processed faster than floating-point 
data. Floating-point data is defined according to internal 
database-specific formats, usually in a compressed format. The 
data must be decompressed and converted into a different 
format so that it can be processed by the wire protocol.

Processing time is shortest for character strings, followed by 
integers, which usually require some conversion or byte 
ordering. Processing floating-point data and timestamps is at 
least twice as slow as integers.
SequeLink Developer’s Reference



426 Chapter 10  Developing .NET Applications  
Updating Data

This section provides general guidelines to help you to optimize 
system performance when updating data in databases.

Synchronizing Changes Back to the Data Source

The following example shows the application flow for updating a 
DataSet using Oracle’s Rowid as the update mechanism:

// Create the DataAdapter and DataSets
SequeLinkCommand DbCmd = new SequeLinkCommand
("SELECT rowid, deptid, deptname FROM department", DBConn);

myDataAdapter = new SequeLinkDataAdapter();
myDataAdapter.SelectCommand = DBCmd;
myDataAdapter.Fill(myDataSet, "Departments"); 

// Build the Update rules
// Specify how to update data in the data set
myDataAdapter.UpdateCommand = new 
SequeLinkCommand("Update department set deptname = ? ", deptid = ? 
" +
    "WHERE rowid =?", DBConn);

// Bind parameters
myDataAdapter.UpdateCommand.Parameters.Add
    ("param1", SequeLinkDbType.VarChar,100,"deptname");
myDataAdapter.UpdateCommand.Parameters.Add("param2", 
    SequeLinkDbType.Number,4,"deptid";
myDataAdapter.UpdateCommand.Parameters.Add("param3", 
    SequeLinkDbType.Number,4,"rowid");

In this example, performance of the queries on the Oracle server 
improves because the WHERE clause includes only the rowid as a 
search condition.
SequeLink Developer’s Reference



For More Information 427
For More Information
Microsoft provides extensive documentation about ADO.NET on 
its World Wide Web site, including the following information:

■ Using .NET Providers to Access Data 
http://msdn2.microsoft.com/en-us/library/s7ee2dwt(vs.71).aspx 

■ Transaction Control: Building Distributed Transactions with 
.NET
http://msdn2.microsoft.com/en-us/library/ms978457.aspx 

■ Writing Serviced Components
http://msdn2.microsoft.com/en-us/library/3x7357ez(vs.71).aspx 

■ Creating and Using DataSets
http://msdn2.microsoft.com/en-us/library/ss7fbaez(vs.71).aspx 

■ XML and the DataSet
http://msdn2.microsoft.com/en-us/library/84sxtbxh(vs.71).aspx 
SequeLink Developer’s Reference

http://msdn2.microsoft.com/en-us/library/s7ee2dwt(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/ss7fbaez(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/84sxtbxh(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/ms978457.aspx
http://msdn2.microsoft.com/en-us/library/3x7357ez(vs.71).aspx


428 Chapter 10  Developing .NET Applications  
SequeLink Developer’s Reference



429
Part 5: Reference
This part contains the following appendixes:

■ Appendix A “SQL Escape Sequences” on page 431 describes 
the scalar functions supported for SequeLink. Your data store 
may not support all these functions.

■ Appendix B “Data Types and Isolation Levels” on page 451 
lists the data types and isolation levels supported for each 
data store supported by SequeLink.

■ Appendix C “JDBC Support” on page 489 provides 
information about JDBC compatibility and developing JDBC 
applications for SequeLink environments.

■ Appendix D “JDBC Connection Pool Manager” on page 541 
describes how your application can use connection pooling 
through the DataDirect Connection Pool Manager.

■ Appendix E “Troubleshooting Using DataDirect Spy™” on 
page 551 provides information to help you troubleshoot 
ODBC applications.

■ Appendix F “Developing ODBC Applications for 
Internationalization” on page 557 provides an overview of 
how to design your applications for internationalization, and 
provides the valid values for the IANAAppCodePage 
connection string attribute.

■ Appendix G “.NET Code Examples” on page 577 includes 
code examples of typical database access tasks in ADO.NET.
SequeLink Developer’s Reference



430   Part 5: Reference  
SequeLink Developer’s Reference



431
A SQL Escape Sequences

Language features, such as outer joins and scalar function calls, 
are commonly implemented by database systems. The syntax for 
these features is often database-specific, even when a standard 
syntax has been defined. ODBC and JDBC define escape 
sequences that contain standard syntaxes for the language 
features in Table A-1.

NOTE: The .NET data provider supports ODBC/JDBC SQL escape 
sequences, except where otherwise noted.

The escape sequence used by JDBC is:

{extension}

The escape sequence is recognized and parsed by the driver or 
data provider, which replaces the escape sequences with data 
store-specific grammar. 

Table A-1.  Language Features

Language Feature
SequeLink 
Client for ODBC

SequeLink 
Client for JDBC

SequeLink 
Client for .NET

Date, time, and timestamp literals X X X

Scalar functions such as numeric, string, 
and date type conversion functions

X X X

LIKE predicate escape characters X X

Outer joins X X X

Procedure call escape sequences X X
SequeLink Developer’s Reference



432 Appendix A  SQL Escape Sequences  
The escape sequence is recognized and parsed by the driver, 
which replaces the escape sequences with data store-specific 
grammar. 

The escape sequence is recognized and parsed by the data 
provider, which replaces the escape sequences with data 
store-specific grammar. 

Date, Time, and Timestamp Escape Sequences
The escape sequence for date, time, and timestamp literals is:

{literal-type 'value'}

where literal-type is one of the following:

Example: 

UPDATE Orders SET OpenDate={d '1995-01-15'} 
WHERE OrderID=1023

Scalar Functions
You can use scalar functions in SQL statements with the following 
syntax:

{fn scalar-function}

literal-type Description Value Format

d Date yyy-mm-dd

t Time hh:mm:ss

ts Timestamp yyyy-mm-dd hh:mm:ss[.f...]
SequeLink Developer’s Reference



Scalar Functions 433
where scalar-function is a scalar function supported by the 
ODBC driver, JDBC driver, and .NET data provider, as shown in 
the following tables. 

scalar-function

Example:

SELECT {fn UCASE(NAME)} FROM EMP

Table A-2.  Scalar Functions Supported on DB2

Data Store
String 
Functions

Numeric 
Functions

Timedate 
Functions

System 
Functions

DB2 UDB on 
z/OS 

CHAR
CONCAT
DIFFERENCE
INSERT
LCASE
LEFT
LENGTH
LOCATE
LOCATE_2
LTRIM
REPEAT
REPLACE
RIGHT
RTRIM
SOUNDEX
SPACE
SUBSTRING
UCASE

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
DEGREES
EXP
FLOOR
LOG
LOG10
MOD
PI
POWER
RADIANS
RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
CURTIME
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
HOUR
MINUTE
MONTH
NOW
SECOND
WEEK
YEAR

DBNAME
IFNULL
USERNAME
SequeLink Developer’s Reference



434 Appendix A  SQL Escape Sequences  
DB2 UDB on 
Linux/UNIX/ 
Windows

ASCII
CHAR
CONCAT
DIFFERENCE
INSERT
LCASE
LEFT
LENGTH
LOCATE
LOCATE_2
LTRIM
REPEAT
REPLACE
RIGHT
RTRIM
SOUNDEX
SPACE
SUBSTRING
UCASE

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
COT
DEGREES
EXP
FLOOR
LOG
LOG10
MOD
PI
POWER
RADIANS
RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
CURTIME
DAYNAME
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
HOUR
MINUTE
MONTH
MONTHNAME
NOW
QUARTER
SECOND
TIMESTAMPADD
TIMESTAMPDIFF
WEEK
YEAR

DATABASE
IFNULL
USERNAME

Table A-2.  Scalar Functions Supported on DB2 (cont.)

Data Store
String 
Functions

Numeric 
Functions

Timedate 
Functions

System 
Functions
SequeLink Developer’s Reference



Scalar Functions 435
Table A-3.  Scalar Functions Supported on Informix

Data Store
String 
Functions

Numeric 
Functions

Timedate 
Functions

System 
Functions

Informix BIT_LENGTH
CHAR_LENGTH
CONCAT
LENGTH
LTRIM
RTRIM
STR_LENGTH

ABS
ACOS
ASIN
ATAN
ATAN2
COS
COT
EXP
FLOOR
LOG
LOG10
MOD
POWER
ROUND
SQRT
TAN
TRUNCATE

CURDATE
CURRENT DATE
CURTIME
DAYOFMONTH
DAYOFWEEK
MONTH
NOW
QUARTER
YEAR

DBNAME
USERNAME
SequeLink Developer’s Reference



436 Appendix A  SQL Escape Sequences  
Table A-4.  Scalar Functions Supported on Microsoft SQL Server

Data Store
String 
Functions

Numeric 
Functions

Timedate 
Functions

System 
Functions

Microsoft 
SQL Server

ASCII
BITLENGTH
CHAR
CONCAT
DIFFERENCE
INSERT
LCASE
LEFT
LENGTH
LOCATE
LOCATE2
LTRIM
OCTET_LENGTH
REPEAT
REPLACE
RIGHT
RTRIM
SOUNDEX
SPACE
SUBSTRING
UCASE

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
COT
DEGREES
EXP
FLOOR
LOG
LOG10
MOD
PI
POWER
RADIANS
RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
CURRENT_TIME
CURRENT_ 
TIMESTAMP
CURTIME
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
DAYNAME
EXTRACT
HOUR
MINUTE
MONTH
MONTHNAME
NOW
QUARTER
SECOND
TIMESTAMPADD
TIMESTAMPDIFF
WEEK
YEAR

DBNAME
IFNULL
USERNAME
SequeLink Developer’s Reference



Scalar Functions 437
 

Table A-5.  Scalar Functions Supported on Oracle

Data Store
String 
Functions

Numeric 
Functions

Timedate 
Functions

System 
Functions

Oracle ASCII
BIT_LENGTH
CHAR
CONCAT
INSERT
LCASE
LEFT
LENGTH
LOCATE
LOCATE2
LTRIM
OCTET_LENGTH
REPEAT
REPLACE
RIGHT
RTRIM
SOUNDEX
SPACE
SUBSTRING
UCASE

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
COT
EXP
FLOOR
LOG
LOG10
MOD
PI
POWER
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
CURRENT_TIME
CURRENT 
TIMESTAMP
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
DAYNAME
HOUR
MINUTE
MONTH
MONTHNAME
NOW
QUARTER
SECOND
TIMESTAMP_ADD
TIMESTAMP_DIFF 
WEEK
YEAR

IFNULL
USER
USERNAME
SequeLink Developer’s Reference



438 Appendix A  SQL Escape Sequences  
Table A-6.  Scalar Functions Supported on Sybase

Data Store
String 
Functions

Numeric 
Functions

Timedate 
Functions

System 
Functions

Sybase ASCII
CHAR
CONCAT
DIFFERENCE
INSERT
LCASE
LEFT
LENGTH
LOCATE
LTRIM
REPEAT
RIGHT
RTRIM
SOUNDEX
SPACE
SUBSTRING
UCASE

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
COT
EXP
FLOOR
LOG
LOG10
MOD
NUM_DEGREES
NUM_RADIANS
PI
POWER
RADIANS
RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
DAYOFMONTH
DAYOFWEEK
DAYOFYEAR
DAYNAME
HOUR
MINUTE
MONTH
MONTHNAME
NOW
QUARTER
SECOND
TIMESTAMPADD
TIMESTAMPDIFF
WEEK
YEAR

DATABASE
DBNAME
IFNULL
USER
USERNAME
SequeLink Developer’s Reference



Scalar Functions 439
String Functions

Table A-7 lists string functions. The following arguments can be 
used with these functions:

■ string_exp can be a column name, a string literal, or the 
result of another scalar function, where the underlying data 
type is SQL_CHAR or SQL_WCHAR, SQL_VARCHAR or 
SQL_WVARCHAR, or SQL_LONGVARCHAR or 
SQL_WLONGVARCHAR.

■ start, length, and count can be the result of another scalar 
function or a literal numeric value, where the underlying 
data type is SQL_TINYINT, SQL_SMALLINT, or SQL_INTEGER.

The string functions are one-based; that is, the first character in 
the string is the character 1. Character string literals must be 
enclosed by single quotation marks.

Table A-7.  Scalar String Functions

Function Returns

ASCII(string_exp) The ASCII code of the leftmost character of 
string_exp as an integer.

BIT_LENGTH(string_exp) The length, in bits, of the string expression.

CHAR(code) The character with the ASCII code specified by 
code. code should be between 0 and 255; 
otherwise, the return value depends on the data 
source.

CHAR_LENGTH(string_exp) The length, in characters, of the string expression, 
when the string expression is a character data type; 
otherwise, the length, in bytes, of the string 
expression (the lowest integer that is not less than 
the number of bits divided by 8). (This function is 
the same as the CHARACTER_LENGTH function.)
SequeLink Developer’s Reference



440 Appendix A  SQL Escape Sequences  
CHARACTER_LENGTH(string_exp) The length, in characters, of the string expression, 
when the string expression is a character data type; 
otherwise, the length, in bytes, of the string 
expression (the lowest integer that is not less than 
the number of bits divided by 8). (This function is 
the same as the CHAR_LENGTH function.)

CONCAT(string_exp1, string_exp2) The string resulting from concatenating 
string_exp2 and string_exp1. The string is system 
dependent.

DIFFERENCE(string_exp1, string_exp2) An integer indicating the difference between the 
values returned by the SOUNDEX function for 
string_exp1 and string_exp2.

INSERT(string_exp1, start, length, 
string_exp2)

A string where length characters have been deleted 
from string_exp1 beginning at start and where 
string_exp2 has been inserted into string_exp 
beginning at start.

LCASE(string_exp) Uppercase characters in string_exp converted to 
lowercase.

LEFT(string_exp,count) The count of characters of string_exp.

LENGTH(string_exp) The number of characters in string_exp, excluding 
trailing blanks and the string termination character.

LOCATE(string_exp1, string_exp2[,start]) The starting position of the first occurrence of 
string_exp1 in string_exp2. If start is not specified, 
the search begins with the first character position 
in string_exp2. If start is specified, the search begins 
with the character position indicated by start. The 
first character position in string_exp2 is indicated 
by 1. If string_exp1 is not found, 0 is returned.

LTRIM(string_exp) The characters of string_exp, with leading blanks 
removed.

OCTET_LENGTH(string_exp) The length, in bytes, of the string expression. The 
result is the lowest integer that is not less than the 
number of bits divided by 8.

Table A-7.  Scalar String Functions (cont.)

Function Returns
SequeLink Developer’s Reference



Scalar Functions 441
POSITION(character_exp IN 
character_exp)

The position of the first character expression in the 
second character expression. The result is a numeric 
with an implementation-defined precision and a 
scale of 0.

REPEAT(string_exp, count) A string composed of string_exp repeated count 
times.

REPLACE(string_exp1, string_exp2, 
string_exp3)

Replaces all occurrences of string_exp2 in 
string_exp1 with string_exp3.

RIGHT(string_exp, count) The rightmost count of characters in string_exp.

RTRIM(string_exp) The characters of string_exp with trailing blanks 
removed.

SOUNDEX(string_exp) A data-source dependent string representing the 
sound of the words in string_exp. 

SPACE(count) A string consisting of count spaces.

SUBSTRING(string_exp, start, length) A string derived from string_exp, beginning at the 
character position start for length characters.

UCASE(string_exp) Lowercase characters in string_exp converted to 
uppercase.

Table A-7.  Scalar String Functions (cont.)

Function Returns
SequeLink Developer’s Reference



442 Appendix A  SQL Escape Sequences  
Numeric Functions

Table A-8 lists numeric functions. The following arguments can 
be used with numeric functions:

■ numeric_exp can be a column name, a numeric literal, or the 
result of another scalar function, where the underlying data 
type is SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, 
SQL_SMALLINT, SQL_INTEGER, SQL_BIGINT, SQL_FLOAT, 
SQL_REAL, or SQL_DOUBLE.

■ float_exp can be a column name, a numeric literal, or the 
result of another scalar function, where the underlying data 
type is SQL_FLOAT.

■ integer_exp can be a column name, a numeric literal, or the 
result of another scalar function, where the underlying data 
type is SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or 
SQL_BIGINT.

Table A-8.  Scalar Numeric Functions

Function Returns

ABS(numeric_exp) Absolute value of numeric_exp.

ACOS(float_exp) Arccosine of float_exp as an angle in radians.

ASIN(float_exp) Arcsine of float_exp as an angle in radians.

ATAN(float_exp) Arctangent of float_exp as an angle in radians.

ATAN2(float_exp1, float_exp2) Arctangent of the x and y coordinates, specified by 
float_exp1 and float_exp2 as an angle in radians.

CEILING(numeric_exp) Smallest integer greater than or equal to 
numeric_exp.

COS(float_exp) Cosine of float_exp as an angle in radians.

COT(float_exp) Cotangent of float_exp as an angle in radians.

DEGREES(numeric_exp) Number if degrees converted from numeric_exp 
radians.

EXP(float_exp) Exponential value of float_exp.
SequeLink Developer’s Reference



Scalar Functions 443
FLOOR(numeric_exp) Largest integer less than or equal to numeric_exp.

LOG(float_exp) Natural log of float_exp.

LOG10(float_exp) Base 10 log of float_exp.

MOD(integer_exp1, integer_exp2) Remainder of integer_exp1 divided by 
integer_exp2.

PI() Constant value of pi as a floating-point number.

POWER(numeric_exp, integer_exp) Value of numeric_exp to the power of integer_exp.

RADIANS(numeric_exp) Number of radians converted from numeric_exp 
degrees.

RAND([integer_exp]) Random floating-point value using integer_exp as 
the optional seed value.

ROUND(numeric_exp, integer_exp) numeric_exp rounded to integer_exp places right 
of the decimal (left of the decimal if integer_exp is 
negative).

SIGN(numeric_exp) Indicator of the sign of numeric_exp.
If numeric_exp < 0, -1 is returned.
If numeric_exp = 0, 0 is returned.
If numeric_exp > 0, 1 is returned.

SIN(float_exp) Sine of float_exp, where float_exp is an angle in 
radians.

SQRT(float_exp) Square root of float_exp.

TAN(float_exp) Tangent of float_exp, where float_exp is an angle 
in radians.

TRUNCATE(numeric_exp, integer_exp) numeric_exp truncated to integer_exp places right 
of the decimal. (If integer_exp is negative, 
truncation is to the left of the decimal.)

Table A-8.  Scalar Numeric Functions (cont.)

Function Returns
SequeLink Developer’s Reference



444 Appendix A  SQL Escape Sequences  
Date and Time Functions

Table A-9 lists date and time functions. The following arguments 
can be used with the date and time functions:

■ date_exp can be a column name, a date or timestamp literal, 
or the result of another scalar function, where the underlying 
data type can be represented as SQL_CHAR, SQL_VARCHAR, 
SQL_DATE, or SQL_TIMESTAMP.

■ time_exp can be a column name, a timestamp or timestamp 
literal, or the result of another scalar function, where the 
underlying data type can be represented as SQL_CHAR, 
SQL_VARCHAR, SQL_TIME, or SQL_TIMESTAMP.

■ timestamp_exp can be a column name; a time, date, or 
timestamp literal; or the result of another scalar function, 
where the underlying data type can be represented as 
SQL_CHAR, SQL_VARCHAR, SQL_TIME, SQL_DATE, or 
SQL_TIMESTAMP.

Table A-9.  Scalar Time and Date Functions

Function Returns

CURDATE() Current date as a date value.

CURRENT_DATE() Current date.

CURRENT_TIME[(time-precision)] Current local time. The time-precision argument 
determines the seconds precision of the returned 
value.

CURRENT_TIMESTAMP[(timestamp- 
precision)]

Current local date and local time as a timestamp 
value. The timestamp-precision argument 
determines the seconds precision of the returned 
timestamp.

CURTIME() Current local time as a time value.

DAYNAME(date_exp) Character string containing a data-source-specific 
name of the day for the day portion of date_exp.
SequeLink Developer’s Reference



Scalar Functions 445
DAYOFMONTH(date_exp) Day of the month in date_exp as an integer value 
(1–31).

DAYOFWEEK(date_exp) Day of the week in date_exp as an integer value 
(1–7).

DAYOFYEAR(date_exp) Day of the year in date_exp as an integer value 
(1–366).

EXTRACT(extract-field FROM 
extract-source)

Extract-field portion of the extract-source. The 
extract-source argument is a datetime or interval 
expression. The extract-field argument can be one 
of the following keywords:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND

The precision scale of the returned value is 0 unless 
SECOND is specified, in which case, the scale is not 
less than the fractional seconds precision of the 
extract-source field.

HOUR(time_exp) Hour in time_exp as an integer value (0–23).

MINUTE(time_exp) Minute in time_exp as an integer value (0–59).

MONTH(date_exp) Month in date_exp as an integer value (1–12). 

MONTHNAME(date_exp) Character string containing the data source–specific 
name of the month. 

NOW() Current date and time as a timestamp value. 

QUARTER(date_exp) Quarter in date_exp as an integer value (1–4). 

SECOND(time_exp) Second in time_exp as an integer value (0–59). 

Table A-9.  Scalar Time and Date Functions (cont.)

Function Returns
SequeLink Developer’s Reference



446 Appendix A  SQL Escape Sequences  
TIMESTAMPADD(interval, integer_exp, 
time_exp)

Timestamp calculated by adding integer_exp 
intervals of type interval to time_exp. interval can 
be one of the following values:

SQL_TSI_FRAC_SECOND
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR

Fractional seconds are expressed in billionths of a 
second.

TIMESTAMPDIFF(interval, time_exp1, 
time_exp2)

Integer number of intervals of type interval by 
which time_exp2 is greater than time_exp1. interval 
has the same value as TIMESTAMPADD. Fractional 
seconds are expressed in billionths of a second.

WEEK(date_exp) Week of the year in date_exp as an integer value 
(1–53).

YEAR(date_exp) Year in date_exp. The range is data-source 
dependent.

Table A-9.  Scalar Time and Date Functions (cont.)

Function Returns
SequeLink Developer’s Reference



Like Predicate Escape Characters 447
System Functions

Table A-10 lists system functions.

Like Predicate Escape Characters
In a LIKE predicate, the percent sign (%) matches zero or more of 
any character and the underscore (_) matches any one character. 
To match an actual percent sign or underscore in a LIKE 
predicate, an escape character must precede the % or _. The 
escape sequence that defines the LIKE predicate escape 
character is:

{escape 'escape-character'}

where escape-character is any character supported by the data 
source.

Example: 

SELECT Name FROM Customers
WHERE Name LIKE '\%AAA%' {escape '\'}

Returns all the customers for which the name starts with “%AAA”.

Table A-10.  Scalar System Functions

Function Returns

DATABASE() Name of the database, corresponding to the 
connection handle (hdbc).

IFNULL(exp,value) value, if exp is null.

USER() Authorization name of the user.
SequeLink Developer’s Reference



448 Appendix A  SQL Escape Sequences  
Outer Join Escape Sequences
ODBC and JDBC support the SQL92 left, right, and full outer join 
syntax. The escape sequence for outer joins is:

JDBC ODBC {oj outer-join}

where outer-join is:

table-reference {LEFT | RIGHT | FULL} OUTER JOIN 
{table-reference | outer-join} ON search-condition

where table-reference is a table name, and search-condition is 
the join condition you want to use for the tables.

Example:

SELECT Customers.CustID, Customers.Name, Orders.OrderID, 
Orders.Status
  FROM {oj Customers LEFT OUTER JOIN 
        Orders ON Customers.CustID=Orders.CustID}
  WHERE Orders.Status='OPEN'

Table A-11 lists the outer join escape sequences supported by 
SequeLink for each data store.

Table A-11.  Outer Join Escape Sequences Supported  

Data Store Outer Join Escape Sequences

DB2 on z/OS Left outer joins
Right outer joins
Full outer joins
Nested outer joins
Inner outer joins

DB2 on Windows and UNIX Left outer joins
Right outer joins
Full outer joins
Nested outer joins
Unordered outer joins
Inner outer joins
SequeLink Developer’s Reference



Procedure Call Escape Sequences 449
Procedure Call Escape Sequences
A procedure is an executable object stored in the data store. 
Generally, it is one or more SQL statements that have been 
precompiled. 

Procedure Call Escape Sequences
A procedure is an executable object stored in the data store. 
Generally, it is one or more SQL statements that have been 
precompiled. 

The ODBC and JDBC drivers use the following escape sequence 
for calling a procedure:

{[?=]call procedure-name[([parameter][,[parameter]]...)]}

where:

procedure-name is the name of a stored procedure. You can call 
stored procedures with or without the schema name 
qualification.

Informix Left outer joins
Unordered outer joins

Microsoft SQL Server Left outer joins
Right outer joins
Full outer joins
Nested outer joins

Table A-11.  Outer Join Escape Sequences Supported (cont.) 

Data Store Outer Join Escape Sequences
SequeLink Developer’s Reference



450 Appendix A  SQL Escape Sequences  
parameter is a stored procedure parameter.

The ODBC JDBC driver uses the following escape sequence for 
calling a procedure:

{[?=]call procedure-name[([parameter][,[parameter]]...)]}

where:

procedure-name is the name of a stored procedure. You can call 
stored procedures with or without the schema name 
qualification.

parameter is a stored procedure parameter.
SequeLink Developer’s Reference



451
B Data Types and Isolation 
Levels

This appendix lists the data types and isolation levels supported 
for each data store supported by SequeLink.

Supported Data Types
Retrieving and sending certain data types can be expensive. 
Advances in processor technology brought significant 
improvements to the way that operations such as floating-point 
math are handled; however, retrieving and sending certain data 
types are still expensive when the active portion of your 
application will not fit into on-chip cache. When you are 
working with data on a large scale, it is still important to select 
the data type that can be processed most efficiently. 

For example, integer data is processed faster than floating-point 
data. Floating-point data is defined according to internal 
database-specific formats, usually in a compressed format. The 
data must be decompressed and converted into a different 
format so that it can be processed by the wire protocol.

Processing time is shortest for character strings, followed by 
integers, which usually require some conversion or byte 
ordering. Processing floating-point data and timestamps is at 
least twice as slow as integers.
SequeLink Developer’s Reference



452 Appendix B  Data Types and Isolation Levels  
DB2 UDB on z/OS

The following table lists the data types that the ODBC driver 
supports for DB2 UDB on z/OS:

Table B-1.  Mapping Data Types for DB2 UDB on z/OS to ODBC 
Data Types 

DB2 UDB Data Type ODBC Data Type (ANSI)

BIGINT SQL_BIGINT

BLOB SQL_LONGVARBINARY

CHAR(size) SQL_CHAR

CHAR(size) FOR BIT DATA SQL_BINARY

CLOB SQL_LONGVARCHAR

DATE SQL_DATE

DBCLOB SQL_WLONGVARCHAR

DECIMAL SQL_DECIMAL

FLOAT SQL_FLOAT

SQL_DOUBLE

INTEGER SQL_INTEGER

LONGVARCHAR SQL_LONGVARCHAR

LONGVARBINARY SQL_LONGVARBINARY

NUMERIC SQL_NUMERIC

REAL SQL_REAL

SMALLINT SQL_SMALLINT

TIME SQL_TIME

TIMESTAMP SQL_TIMESTAMP1

SQL_CHAR2

1. Only present when DataSourceFetchTimestampAsString=False.
2. Only present when DataSourceFetchTimestampAsString=True.

VARCHAR(size) SQL_VARCHAR

VARCHAR(size) FOR BIT DATA SQL_VARBINARY
SequeLink Developer’s Reference



Supported Data Types 453
The following table lists the data types that the ADO data 
provider supports for DB2 UDB for z/OS:
 

Table B-2.  Mapping Data Types for DB2 UDB for z/OS to ADO 
Data Types 

DB2 UDB Data Type OLE DB Data Type

BIGINT DBTYPE_I8

BLOB DBTYPE_BYTES

CHAR(size) DBTYPE_STR

CHAR(size) FOR BIT DATA DBTYPE_BYTES

CLOB DBTYPE_STR

DATE DBTYPE_DBDATE

DECIMAL DBTYPE_DECIMAL

FLOAT DBTYPE_R8

INTEGER DBTYPE_I4

LONG VARCHAR DBTYPE_STR

LONG VARCHAR FOR BIT DATA DBTYPE_BYTES

NUMERIC DBTYPE_NUMERIC

REAL DBTYPE_R4

SMALLINT DBTYPE_I2

TIME DBTYPE_DBTIME

TIMESTAMP DBTYPE_DBTIMESTAMP1

DBTYPE_STR2

VARCHAR(size) DBTYPE_STR

VARCHAR(size) FOR BIT DATA DBTYPE_BYTES

1. Only present when DataSourceFetchTimestampAsString=False.
2. Only present when DataSourceFetchTimestampAsString=True.
SequeLink Developer’s Reference



454 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the JDBC driver 
supports for DB2 UDB for z/OS:
 

Table B-3.  Mapping Data Types for DB2 UDB on z/OS to JDBC 
Data Types

DB2 Data Type JDBC Data Type

BIGINT BIGINT

BLOB BLOB1

LONGVARBINARY2

CHAR(size) CHAR

CHAR(size) FOR BIT DATA BINARY

CLOB CLOB1

LONGVARCHAR2

DATE DATE

DBCLOB CLOB  

DECIMAL DECIMAL

FLOAT FLOAT

DOUBLE

INTEGER INTEGER

LONG VARCHAR LONGVARCHAR1

LONG VARCHAR FOR BIT DATA LONGVARBINARY2

NUMERIC NUMERIC

REAL REAL

SMALLINT SMALLINT

TIME TIME

TIMESTAMP TIMESTAMP3

CHAR4

VARCHAR(size) VARCHAR

VARCHAR(size) FOR BIT DATA VARBINARY

1. Only present when DataSourceReportLobsAsLongvar=False. 
2. Only present when DataSourceReportLobsAsLongvar=True.
3. Only present when DataSourceFetchTimestampAsString=False.
4. Only present when DataSourceFetchTimestampAsString=True.
SequeLink Developer’s Reference



Supported Data Types 455
The following table maps the data types that the .NET data 
provider supports for DB2 UDB for z/OS:
 

Table B-4.  Mapping Data Types for DB2 UDB on z/OS to .NET 
Data Types 

DB2 UDB Data Type ADO.NET Data Type

BIGINT BIGINT

BLOB BLOB

CHAR(size) CHAR

CHAR(size) FOR BIT DATA BINARY

CLOB CLOB

DATE DATE

DBCLOB CLOB  

DECIMAL DECIMAL

FLOAT DOUBLE

INTEGER INT

LONG VARCHAR LVARCHAR

LONG VARCHAR FOR BIT DATA LVARBINARY

NUMERIC DECIMAL

REAL SINGLE

SMALLINT SMALLINT

TIME TIME

TIMESTAMP TIMESTAMP1

VARCHAR2

UNIQUEIDENTIFIER

VARCHAR(size) VARCHAR

VARCHAR(size) FOR BIT DATA VARBINARY

1. Only present when DataSourceFetchTimestampAsString=False.
2. Only present when DataSourceFetchTimestampAsString=True.
SequeLink Developer’s Reference



456 Appendix B  Data Types and Isolation Levels  
DB2 UDB on Linux, UNIX, and Windows 

The following table lists the data types that the ODBC driver 
supports for DB2 UDB on Linux, UNIX, and Windows for the 
default service (ServiceCodePage=Default or OS) and the Unicode 
service (ServiceCodePage=Database): 

Table B-5.  Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to ODBC Data 
Types 

DB2 SQL Data Type ODBC Data Types 
(Non-Unicode Service)

ODBC Data Types 
(Unicode Service)

BIGINT SQL_BIGINT SQL_BIGINT

BLOB1 SQL_LONGVARBINARY SQL_LONGVARBINARY

CHAR(size) SQL_CHAR SQL_CHAR2

SQL_WCHAR 

CHAR(size) FOR BIT DATA SQL_BINARY SQL_BINARY

CLOB1 SQL_LONGVARCHAR SQL_WLONGVARCHAR3

DATE SQL_DATE SQL_DATE

DBCLOB4 Not supported SQL_WLONGVARCHAR

DECIMAL SQL_DECIMAL SQL_DECIMAL

FLOAT SQL_DOUBLE

SQL_FLOAT

SQL_DOUBLE

SQL_FLOAT

GRAPHIC(size)4 Not supported SQL_WCHAR

INTEGER SQL_INTEGER SQL_INTEGER

LONG VARCHAR1 SQL_LONGVARCHAR SQL_LONGVARCHAR2

LONG VARCHAR FOR BIT 
DATA1

SQL_LONGVARBINARY SQL_LONGVARBINARY

LONG VARGRAPHIC4 Not supported SQL_WLONGVARCHAR  

NUMERIC SQL_NUMERIC SQL_NUMERIC

REAL SQL_REAL SQL_REAL

SMALLINT SQL_SMALLINT SQL_SMALLINT

TIME SQL_TIME SQL_TIME
SequeLink Developer’s Reference



Supported Data Types 457
The following table maps the data types that the ADO data 
provider supports for DB2 UDB. The ADO data provider does not 
support Unicode service for DB2 UDB.
 

TIMESTAMP SQL_TIMESTAMP 

SQL_CHAR5

SQL_TIMESTAMP

SQL_CHAR5

VARCHAR(size) SQL_VARCHAR SQL_VARCHAR2 

SQL_WVARCHAR

VARCHAR(size) FOR BIT 
DATA

SQL_VARBINARY SQL_VARBINARY

VARGRAPHIC(size)4 Not supported SQL_WVARCHAR

1. Depends on setting of the DataSourceLobAsLongvar service attribute. When set to False, LOB 
data types will be handled as LOB objects; when set to True, LOB data types are handled as 
Longvar data types.

2. If DataSourceReportChar is enabled, the CHAR, VARCHAR, LONGVARCHAR data types are 
additionally reported as the non-Unicode data types (see previous table)

3. Depending on DataSourceReportLobAsLongVarchar: if set to TRUE: LONGVARCHAR data 
types are reported; if set to FALSE: LOB data types are reported.

4. If DataSourceDB2GraphicSupport is enabled, the GRAPHIC datatypes will be available.
5. DataSourceFetchTimestampAsString specifies whether timestamps are fetched as character 

strings.

Table B-5.  Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to ODBC Data 
Types  (cont.)

DB2 SQL Data Type ODBC Data Types 
(Non-Unicode Service)

ODBC Data Types 
(Unicode Service)

Table B-6.  Mapping Data Types for DB2 UDB on 
Linux/UNIX/Windows to ADO Data Types 

DB2 SQL Data Type OLE DB Data Type 
Non-Unicode Service

BIGINT DBTYPE_I8

BLOB1 DBTYPE_BYTES

CHAR DBTYPE_STR
SequeLink Developer’s Reference



458 Appendix B  Data Types and Isolation Levels  
CHAR() FOR BIT DATA DBTYPE_BYTES

CLOB1 DBTYPE_STR

DATE DBTYPE_DBDATE

DECIMAL DBTYPE_DECIMAL

FLOAT DBTYPE_R8

INTEGER DBTYPE_I4

LONG VARCHAR1 DBTYPE_STR

LONG VARCHAR FOR BIT DATA1 DBTYPE_BYTES

NUMERIC DBTYPE_NUMERIC

REAL DBTYPE_R4

SMALLINT DBTYPE_I2

TIME DBTYPE_DBTIME

TIMESTAMP DBTYPE_DBTIMESTAMP 

DBTYPE_STR2

VARCHAR(size) DBTYPE_STR

VARCHAR(size) FOR BIT DATA DBTYPE_BYTES

1. Depends on setting of the DataSourceLobAsLongvar service attribute. 
When set to False, LOB data types will be handled as LOB objects; 
when set to True, LOB data types are handled as Longvar data types.

2. DataSourceFetchTimestampAsString specifies whether timestamps are 
fetched as character strings.

Table B-6.  Mapping Data Types for DB2 UDB on 
Linux/UNIX/Windows to ADO Data Types  (cont.)

DB2 SQL Data Type OLE DB Data Type 
Non-Unicode Service
SequeLink Developer’s Reference



Supported Data Types 459
The following table lists the SQL data types that the JDBC driver 
supports for DB2 UDB for the default service (ServiceCodePage=
Default or OS) and the Unicode service (ServiceCodePage=
Database): 

Table B-7.  Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to JDBC Data 
Types 

DB2 SQL Data Type JDBC Data Type 
Non-Unicode Service

JDBC Data Type 
Unicode Service

BIGINT BIGINT BIGINT

BLOB BLOB1

LONGVARBINARY1

BLOB2

LONGVARBINARY2

CHAR(size) CHAR CHAR

CHAR(size) FOR BIT DATA BINARY BINARY

CLOB CLOB1

LONGVARCHAR1

CLOB2

LONGVARCHAR2

DATE DATE DATE

DBCLOB CLOB1

LONGVARCHAR1

CLOB2

LONGVARCHAR2

DECIMAL DECIMAL DECIMAL

FLOAT FLOAT

DOUBLE

FLOAT

DOUBLE

GRAPHIC(size) CHAR CHAR3

INTEGER INTEGER INTEGER

LONG VARCHAR LONGVARCHAR1 LONGVARCHAR1

LONG VARCHAR FOR BIT DATA LONGVARBINARY1 LONGVARBINARY1

LONG VARGRAPHIC LONGVARCHAR LONGVARCHAR3

NUMERIC NUMERIC NUMERIC

REAL REAL REAL

SMALLINT SMALLINT SMALLINT

TIME TIME TIME
SequeLink Developer’s Reference



460 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the .NET data 
provider supports for DB2 UDB for the default service 
(ServiceCodePage=Default or OS) and the Unicode service 
(ServiceCodePage=Database).  

 

TIMESTAMP TIMESTAMP

CHAR4

TIMESTAMP

CHAR4

VARCHAR(size) VARCHAR VARCHAR

VARCHAR(size) FOR BIT DATA VARBINARY VARBINARY

VARGRAPHIC(size) VARCHAR VARCHAR5

1. Depends on setting of the DataSourceLobAsLongvar service attribute. When set to False, LOB 
data types will be handled as LOB objects; when set to True, LOB data types are handled as 
Longvar data types.

2. DataSourceFetchTimestampAsString specifies whether timestamps are fetched as character 
strings.

3. If DataSourceReportChar is enabled, the CHAR, VARCHAR, LONGVARCHAR data types are 
additionally reported as the non-Unicode data types (see previous table).

4. If DataSourceDB2GraphicSupport is enabled, the GRAPHIC datatypes will be available.
5. Depending on DataSourceReportLobAsLongVarchar: if set to TRUE, LONGVARCHAR data 

types are reported; if set to FALSE, LOB data types are reported.

Table B-7.  Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to JDBC Data 
Types  (cont.)

DB2 SQL Data Type JDBC Data Type 
Non-Unicode Service

JDBC Data Type 
Unicode Service

Table B-8.  Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to .NET Data 
Types 

DB2 Data Type .NET Data Type 
Non-Unicode Service

.NET Data Type 
Unicode Service

BIGINT Int64 Int64

BLOB byte[] byte[]

CHAR(size) String String

CHAR(size) FOR BIT DATA byte[] byte[]
SequeLink Developer’s Reference



Supported Data Types 461
CLOB String  String  

DATE DateTime DateTime

DBCLOB String  String  

DECIMAL Decimal Decimal

FLOAT Double Double

GRAPHIC(size) String String

INTEGER Int32 Int32

LONG VARCHAR String String

LONG VARCHAR FOR BIT DATA byte[] byte[]

LONG VARGRAPHIC(size) String String

NUMERIC Decimal Decimal

REAL Single Single

ROWID Single Single

SMALLINT Int16 Int16

TIME DateTime DateTime

TIMESTAMP DateTime

String1

DateTime

String1

VARCHAR(size) String String

VARCHAR(size) FOR BIT DATA byte[] byte[]

VARGRAPHIC String String

1. DataSourceFetchTimestampAsString specifies whether timestamps are fetched as character 
strings

Table B-8.  Mapping Data Types for DB2 UDB on Linux/UNIX/Windows to .NET Data 
Types  (cont.)

DB2 Data Type .NET Data Type 
Non-Unicode Service

.NET Data Type 
Unicode Service
SequeLink Developer’s Reference



462 Appendix B  Data Types and Isolation Levels  
Informix

The following table lists the data types that the ODBC driver 
supports for Informix:

Table B-9.  Mapping Informix Data Types to ODBC Data Types

Informix Data Type ODBC Data Type

BLOB SQL_LONGVARBINARY

BOOLEAN SQL_BIT

BYTE SQL_LONGVARBINARY

CHAR SQL_CHAR

CLOB SQL_LONGVARCHAR

DATE SQL__TYPE_DATE

DATETIME HOUR TO 
SECOND

SQL__TYPE_TIME

DATETIME YEAR TO 
FRACTION(5)

SQL__TYPE_TIMESTAMP

DECIMAL SQL_DECIMAL

FLOAT SQL_FLOAT

INTEGER SQL_INTEGER

INT8 SQL_BIGINT

LVARCHAR SQL_LONGVARCHAR

MONEY SQL_DECIMAL

NUMERIC SQL_NUMERIC

SERIAL SQL_INTEGER

SERIAL8 SQL_BIGINT

SMALLFLOAT SQL_REAL

SMALLINT SQL_SMALLINT

TEXT SQL_LONGVARCHAR

VARCHAR SQL_VARCHAR
SequeLink Developer’s Reference



Supported Data Types 463
The following table lists the data types that the ADO data 
provider supports for Informix:
 

Table B-10.  Mapping the Informix Data Types to ADO Data 
Types

Informix Data Type OLE DB Data Type

BLOB DBTYPE_BYTES

BOOLEAN DBTYPE_BOOL

BYTE DBTYPE_BYTES

CHAR DBTYPE_STR

CLOB DBTYPE_STR

DATE DBTYPE_DBDATE

DATETIME HOUR TO 
SECOND

DBTYPE_DBTIME

DATETIME YEAR TO 
FRACTION(5)

DBTYPE_DBTIMESTAMP

DECIMAL DBTYPE_NUMERIC

FLOAT DBTYPE_R8

INTEGER DBTYPE_I4

INT8 DBTYPE_I8

LVARCHAR DBTYPE_STR

MONEY DBTYPE_NUMERIC

NUMERIC DBTYPE_NUMERIC

SERIAL DBTYPE_I4

SERIAL8 DBTYPE_I8

SMALLFLOAT DBTYPE_R4

SMALLINT DBTYPE_I2

TEXT DBTYPE_STR

VARCHAR DBTYPE_STR
SequeLink Developer’s Reference



464 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the JDBC driver 
supports for Informix:
 

Table B-11.  Mapping Informix Data Types to JDBC Data Types

Informix Data Type JDBC Data Type

BLOB1 LONGVARBINARY2

BOOLEAN BIT

BYTE LONGVARBINARY

CHAR CHAR

CLOB1 LONGVARCHAR2

DATE DATE

DATETIME HOUR TO SECOND TIME

DATETIME YEAR TO 
FRACTION(5)

TIMESTAMP

DECIMAL DECIMAL

FLOAT FLOAT

INTEGER INTEGER

INT8 BIGINT

LVARCHAR LONGVARCHAR

MONEY DECIMAL

NUMERIC NUMERIC

SERIAL INTEGER

SERIAL8 BIGINT

SMALLFLOAT REAL

SMALLINT SMALLINT

TEXT LONGVARCHAR

VARCHAR VARCHAR

1. Only present when DataSourceReportLobsAsLongvar=False
2. Only present when DataSourceReportLobsAsLongvar=True
SequeLink Developer’s Reference



Supported Data Types 465
The following table lists the data types that the .NET data 
provider supports for Informix:

Table B-12.  Mapping Informix Data Types to .NET Data Types

Informix Data Type .NET Data Type

BLOB Byte[]

BOOLEAN Boolean

BYTE Byte[]

CHAR String

CLOB Byte[]

DATE DateTime

DATETIME HOUR TO 
SECOND

DateTime

DATETIME YEAR TO 
FRACTION(5)

DateTime

DECIMAL Decimal

FLOAT Double

INTEGER Int32

INT8 Int64

LVARCHAR String

MONEY Decimal

NUMERIC Decimal

SERIAL Int32

SERIAL8 Int64

SMALLFLOAT Float

SMALLINT Int16

TEXT String

VARCHAR String
SequeLink Developer’s Reference



466 Appendix B  Data Types and Isolation Levels  
Microsoft SQL Server

The following table maps the ODBC data types that the ODBC 
driver supports to the Microsoft SQL Server:

Table B-13.  Mapping Data Types for Microsoft SQL Server to 
ODBC Data Types

Microsoft SQL Server 2000, 2005 
Data Type ODBC Data Type

bigint SQL_BIGINT

bigint identity SQL_BIGINT

binary SQL_BINARY

bit SQL_BIT

char SQL_CHAR1

SQL_WCHAR2

datetime SQL_DATETIME3

SQL_CHAR4

decimal SQL_DECIMAL

decimal identity SQL_DECIMAL

float SQL_FLOAT

guid SQL_BINARY

image SQL_LONGVARBINARY

int SQL_INTEGER

int identity SQL_INTEGER

money SQL_DECIMAL

nchar SQL_CHAR1

SQL_WCHAR2

ntext SQL_LONGVARCHAR1

SQL_WLONGVARCHAR2

nvarchar(max) SQL_LONGVARCHAR

numeric SQL_NUMERIC

numeric identity SQL_NUMERIC
SequeLink Developer’s Reference



Supported Data Types 467
nvarchar SQL_VARCHAR1

SQL_WVARCHAR2

real SQL_REAL

smalldatetime SQL_DATETIME3

SQL_CHAR4

smallint SQL_SMALLINT

smallint identity SQL_SMALLINT

smallmoney SQL_DECIMAL

SQLVariant SQL_BINARY

sysname SQL_VARCHAR1

SQL_WVARCHAR2

text SQL_LONGVARCHAR1

SQL_WVARCHAR2

timestamp SQL_BINARY

tinyint SQL_TINYINT

tinyint identity SQL_TINYINT

uniqueidentifier SQL_BINARY

varbinary SQL_VARBINARY

varbinary(max) SQL_LONGVARBINARY

varchar SQL_VARCHAR1

SQL_WVARCHAR2

varchar(max) SQL_LONGVARCHAR1

1. Not present when DataSourceReportChar=False and 
ServiceCodePage=Database

2. Only present whe ServiceCodePage=Database
3. Only present when DataSourceFetchTimestampAsString=False
4. Only present when DataSourceFetchTimestampAsString=True

Table B-13.  Mapping Data Types for Microsoft SQL Server to 
ODBC Data Types (cont.)

Microsoft SQL Server 2000, 2005 
Data Type ODBC Data Type
SequeLink Developer’s Reference



468 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the ADO data 
provider supports for Microsoft SQL Server: 

Table B-14.  Mapping Microsoft SQL Server Data Types to ADO 
Data Types

Microsoft SQL Server 2000, 2005 
Data Type OLE DB Data Type

bigint DBTYPE_I8

bigint identity DBTYPE_I8

binary DBTYPE_BYTES

bit DBTYPE_BOOL

char DBTYPE_STR

datetime DBTYPE_DBTIMESTAMP1

DBTYPE_STR2

decimal DBTYPE_NUMERIC

decimal identity DBTYPE_NUMERIC

float DBTYPE_R8

guid DBTYPE_GUID

image DBTYPE_BYTES

int DBTYPE_I4

int identity DBTYPE_I4

money DBTYPE_NUMERIC

nchar DBTYPE_STR3

nvarchar(max) DBTYPE_STR

ntext DBTYPE_STR3

numeric DBTYPE_NUMERIC

numeric() identity DBTYPE_NUMERIC

nvarchar DBTYPE_STR3

real DBTYPE_R4

smalldatetime DBTYPE_DBTIMESTAMP1

DBTYPE_STR2

Smallint DBTYPE_I2
SequeLink Developer’s Reference



Supported Data Types 469
The following table lists the data types that the JDBC driver 
supports for Microsoft SQL Server:

Smallint identity DBTYPE_I2

Smallmoney DBTYPE_NUMERIC

sqlvariant DBTYPE_BYTES

sysname DBTYPE_STR3

text DBTYPE_STR

timestamp DBTYPE_BYTES

tinyint DBTYPE_UI1

tinyint identity DBTYPE_I1

uniqueidentifier DBTYPE_GUID

varbinary DBTYPE_BYTES

varchar DBTYPE_STR

1. Limited nchar,nvarchar, ntext support only
2. Only present when DataSourceFetchTimestampAsString=False
3. Only present when DataSourceFetchTimestampAsString=True

Table B-14.  Mapping Microsoft SQL Server Data Types to ADO 
Data Types (cont.)

Microsoft SQL Server 2000, 2005 
Data Type OLE DB Data Type

Table B-15.  Mapping Microsoft SQL Server Data Types to JDBC 
Data Types 

Microsoft SQL Server 2000, 2005 
Data Type JDBC Data Type

bigint BIGINT

bigint identity BIGINT

binary BINARY

bit BIT

char CHAR
SequeLink Developer’s Reference



470 Appendix B  Data Types and Isolation Levels  
datetime TIMESTAMP1

CHAR2

decimal DECIMAL

decimal identity DECIMAL

float FLOAT

guid BINARY

image LONGVARBINARY

int INTEGER

int identity INTEGER

money DECIMAL

nchar CHAR3

ntext LONGVARCHAR3

nvarchar(max) LONGVARCHAR3

numeric NUMERIC

numeric identity NUMERIC

nvarchar VARCHAR3

real REAL

smalldatetime TIMESTAMP1

CHAR2

smallint SMALLINT

smallint identity SMALLINT

smallmoney DECIMAL

sqlvariant BINARY

sysname VARCHAR3

text LONGVARCHAR 

timestamp BINARY

tinyint TINYINT

tinyint identity TINYINT

Table B-15.  Mapping Microsoft SQL Server Data Types to JDBC 
Data Types  (cont.)

Microsoft SQL Server 2000, 2005 
Data Type JDBC Data Type
SequeLink Developer’s Reference



Supported Data Types 471
The following table lists the data types that the .NET data 
provider supports for Microsoft SQL Server:

uniqueidentifier BINARY

varbinary VARBINARY

varchar VARCHAR  

1. Only present when DataSourceFetchTimestampAsString=False
2. Only present when DataSourceFetchTimestampAsString=False
3. Full nchar, nvarchar, and ntext support requires ServiceCodePage=

Database

Table B-15.  Mapping Microsoft SQL Server Data Types to JDBC 
Data Types  (cont.)

Microsoft SQL Server 2000, 2005 
Data Type JDBC Data Type

Table B-16.  Mapping Microsoft SQL Server Data Types to .NET 
Framework Types 

Microsoft SQL Server 2000, 2005 
Data Type .NET Framework Type

bigint Int64

bigint identity Int64

binary Byte[]

bit Boolean

char String

Char[]

datetime DateTime

decimal Decimal

decimal identity Decimal

float Double

guid Byte[]

image Byte[]
SequeLink Developer’s Reference



472 Appendix B  Data Types and Isolation Levels  
int Int32

int identity Int32

money Decimal

nchar String

Char[]

ntext String

Char[]

numeric Decimal

numeric() identity Decimal

nvarchar1 String

Char[]

nvarchar(max) String

Char[]

real Single

smalldatetime DateTime

smallint Int16

smallint identity INT

smallmoney Decimal

SQLVariant Bytes[]

sysname Byte[]

text String

Char[]

timestamp Byte[]

tinyint Byte

tinyint identity Byte[]

uniqueidentifier Byte[]

varbinary Byte[]

varbinary(max) Byte[]

Table B-16.  Mapping Microsoft SQL Server Data Types to .NET 
Framework Types  (cont.)

Microsoft SQL Server 2000, 2005 
Data Type .NET Framework Type
SequeLink Developer’s Reference



Supported Data Types 473
Oracle

The following table lists the data types that the ODBC driver 
supports for Oracle:

varchar String

Char[]

varchar(max) String

Char[]

Table B-16.  Mapping Microsoft SQL Server Data Types to .NET 
Framework Types  (cont.)

Microsoft SQL Server 2000, 2005 
Data Type .NET Framework Type

Table B-17.  Mapping the Oracle Data Types to ODBC Data 
Types

Oracle 9i Data 
Type

Oracle10g Data 
Type

ODBC Data Type

BFILE BFILE SQL_LONGVARBINARY

BINARY_FLOAT SQL_REAL

BINARY_DOUBLE SQL_DOUBLE

BLOB BLOB SQL_LONGVARBINARY

CHAR(size) CHAR(size) SQL_CHAR1

SQL_WCHAR2

CLOB CLOB SQL_LONGVARCHAR3

SQL_WLONGVARCHAR2

DATE DATE SQL_TYPE_TIMESTAMP
SequeLink Developer’s Reference



474 Appendix B  Data Types and Isolation Levels  
LONG LONG SQL_LONGVARCHAR1

SQL_WLONGVARCHAR2

LONG RAW LONG RAW SQL_LONGVARBINARY

NCHAR(size) NCHAR(size) SQL_CHAR4

SQL_WCHAR5

NCLOB NCLOB SQL_LONGVARCHAR4

SQL_WLONGVARCHAR5

NUMBER NUMBER SQL_FLOAT

NUMBER(p,s) NUMBER(p,s) SQL_DECIMAL

NVARCHAR2(size) NVARCHAR2(size) SQL_VARCHAR4

SQL_WVARCHAR5

RAW(size) RAW(size) SQL_VARBINARY

ROWID ROWID SQL_VARCHAR

TIMESTAMP TIMESTAMP SQL_TIMESTAMP6

SQL_CHAR7

TIMESTAMP WITH 
LOCAL TIME 
ZONE

TIMESTAMP WITH 
LOCAL TIME ZONE

SQL_TYPE_TIMESTAMP6

SQL_CHAR7

TIMESTAMP WITH 
TIME ZONE

TIMESTAMP WITH 
TIME ZONE

SQL_TYPE_TIMESTAMP6, 8, 9

TIMESTAMP WITH 
TIME ZONE

TIMESTAMP WITH 
TIME ZONE

SQL_CHAR7, 8

VARCHAR2(size) SQL_VARCHAR1

VARCHAR2(size) SQL_WVARCHAR2

1. Not present when DataSourceReportChar=False, ServiceCodePage=
Database and database character set is Unicode

2. Only present when ServiceCodePage=Database and database 
character set is Unicode

3. Not present when ServiceCodePage=Database and database character 
set is Unicode

Table B-17.  Mapping the Oracle Data Types to ODBC Data Types 

(cont.)

Oracle 9i Data 
Type

Oracle10g Data 
Type

ODBC Data Type
SequeLink Developer’s Reference



Supported Data Types 475
The following table lists the data types that the ADO data 
provider supports for Oracle: 

4. Not present when ServiceCodePage=Database and database character 
set is Unicode

5. Only present when ServiceCodePage=Database and national 
character set is Unicode

6. Only present when DataSourceFetchTimestampAsString=False
7. Only present when DataSourceFetchTimestampAsString=True
8. Only present when DataSourceORAMapTSWTZ=True
9. The time zone value is not accessible (or can not be set). Instead, the 

client time zone is used either to pass to Oracle or to convert from the 
stored time zone value.

Table B-18.  Mapping the Data Types for Oracle to ADO Data 
Types 

Oracle 9i, 10g Data Type OLE DB Data Type

BFILE DBTYPE_BYTES

BLOB DBTYPE_BYTES

CHAR(size) DBTYPE_STR

CLOB DBTYPE_STR

DATE DBTYPE_DBTIMESTAMP

LONG DBTYPE_STR

LONG RAW DBTYPE_BYTES

NCHAR(size) DBTYPE_STR1

NCLOB DBTYPE_STR1

NUMBER DBTYPE_R8

NUMBER(p,s) DBTYPE_NUMERIC

NVARCHAR2(size) DBTYPE_STR1

RAW(size) DBTYPE_BYTES

ROWID DBTYPE_STR

TIMESTAMP DBTYPE_DBTIMESTAMP2

DBTYPE_STR3
SequeLink Developer’s Reference



476 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the JDBC driver 
supports for Oracle:

TIMESTAMP WITH LOCAL TIME ZONE DBTYPE_DBTIMESTAMP2

DBTYPE_STR3

TIMESTAMP WITH TIME ZONE DBTYPE_DBTIMESTAMP2, 4, 5

DBTYPE_STR3, 4

VARCHAR2 DBTYPE_STR

1. The Unicode data types Nchar, Nclob, and Nvarchar2 are partially 
supported.

2. Only present when DataSourceFetchTimestampAsString=False
3. Only present when DataSourceFetchTimestampAsString=True
4. Only present when DataSourceORAMapTSWTZ=True
5. The time zone value is not accessible (or can not be set). Instead, the 

client time zone is used either to pass to Oracle or to convert from 
the stored time zone value.

Table B-18.  Mapping the Data Types for Oracle to ADO Data 
Types  (cont.)

Oracle 9i, 10g Data Type OLE DB Data Type

Table B-19.  Mapping the Data Types for Oracle to JDBC Data 
Types 

Oracle9i Data 
Type

Oracle10g Data 
Type

JDBC Data Type

BFILE BFILE LONGVARBINARY

BINARY_FLOAT SQL_REAL

BINARYDOUBLE SQL_DOUBLE

BLOB BLOB BLOB1

LONGVARBINARY2

CHAR(size) CHAR(size) CHAR

CLOB CLOB CLOB1

LONGVARCHAR2
SequeLink Developer’s Reference



Supported Data Types 477
DATE DATE TIMESTAMP

LONG LONG LONGVARCHAR1

LONG RAW LONG RAW LONGVARBINARY1

NCHAR(size) NCHAR(size) CHAR

NCLOB NCLOB CLOB1

LONGVARCHAR2

NUMBER NUMBER FLOAT

NUMBER(p,s) NUMBER(p,s) DECIMAL

NVARCHAR2(size) NVARCHAR2(size) VARCHAR

RAW(size) RAW(size) VARBINARY

ROWID ROWID VARCHAR

VARCHAR2(size) VARCHAR2(size) VARCHAR

TIMESTAMP TIMESTAMP TIMESTAMP3

CHAR4

TIMESTAMP WITH 
LOCAL TIME ZONE

TIMESTAMP WITH 
LOCAL TIME ZONE

TIMESTAMP3

CHAR4

TIMESTAMP WITH 
TIME ZONE

TIMESTAMP WITH 
TIME ZONE

TIMESTAMP3, 5, 6

CHAR4, 5

1. Only present when DataSourceReportLobsAsLongvar=False
2. Only present when DataSourceReportLobsAsLongvar=True
3. Only present when DataSourceFetchTimestampAsString=False
4. Only present when DataSourceFetchTimestampAsString=True
5. Only present when DataSourceORAMapTSWTZ=True
6. The time zone value is not accessible or cannot be set. Instead, the 

client time zone is used to pass to Oracle or to convert from the 
stored time zone value.

Table B-19.  Mapping the Data Types for Oracle to JDBC Data 
Types  (cont.)

Oracle9i Data 
Type

Oracle10g Data 
Type

JDBC Data Type
SequeLink Developer’s Reference



478 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the .NET data 
provider supports for Oracle:

Table B-20.  Mapping Oracle Data Types to .NET Framework 
Types 

Oracle9i Data Type Oracle10g Data 
Type

.NET Framework 
Type

BFILE Byte[]

BINARY_DOUBLE Decimal

BINARY_FLOAT Decimal

BLOB BLOB Byte[]

CHAR(size) CHAR(size) String

Char[]

CLOB CLOB String

DATE DATE DateTime

LONG LONG String

Char[]

LONG RAW LONG RAW Byte[]

NCHAR(size) NCHAR(size) String

Char[]

NCLOB NCLOB String

Char[]

NUMBER NUMBER Decimal

NUMBER(p,s) NUMBER(p,s) Decimal

NVARCHAR2(size) NVARCHAR2(size) String

Char[]

RAW(size) RAW(size) Byte[]

ROWID ROWID String

Char[]

TIMESTAMP TIMESTAMP DateTime

TIMESTAMP WITH 
LOCAL TIME ZONE

TIMESTAMP WITH 
LOCAL TIME ZONE

DateTime
SequeLink Developer’s Reference



Supported Data Types 479
TIMESTAMP WITH 
TIME ZONE

TIMESTAMP WITH 
TIME ZONE

DateTime

VARCHAR2(size) VARCHAR2(size) String

Char[]

Table B-20.  Mapping Oracle Data Types to .NET Framework 
Types  (cont.)

Oracle9i Data Type Oracle10g Data 
Type

.NET Framework 
Type
SequeLink Developer’s Reference



480 Appendix B  Data Types and Isolation Levels  
Sybase

The following table lists the data types that the ODBC driver 
supports for Sybase:
 

Table B-21.  Mapping the Data Types for Sybase to ODBC Data 
Types 

Sybase Data Type ODBC Data Type

BIGINT SQL_BIGINT

BINARY SQL_BINARY

BIT SQL_BIT

CHAR SQL_CHAR1

SQL_WCHAR2

DATETIME SQL_TIMESTAMP3

SQL_CHAR4

DECIMAL SQL_DECIMAL

FLOAT SQL_FLOAT

IMAGE SQL_LONGVARBINARY

INT SQL_INTEGER

MONEY SQL_DECIMAL

NUMERIC SQL_NUMERIC

REAL SQL_REAL

SMALLDATETIME SQL_TIMESTAMP3

SQL_CHAR4

SMALLINT SQL_SMALLINT

SMALLMONEY SQL_DECIMAL

SYSNAME SQL_VARCHAR5

SQL_WVARCHAR2

TEXT SQL_LONGVARCHAR1

SQL_WLONGVARCHAR2

TIMESTAMP SQL_BINARY

TINYINT SQL_TINYINT
SequeLink Developer’s Reference



Supported Data Types 481
The following table lists the data types that the ADO data 
provider supports for Sybase: 
 

UBIGINT SQL_DECIMAL

UNICHAR SQL_WCHAR6

UNIVARCHAR SQL_WVARCHAR6

VARBINARY SQL_VARBINARY

VARCHAR SQL_VARCHAR1

SQL_WVARCHAR2

1. Not present when DataSourceReportChar=False and 
ServiceCodePage=Database

2. Only present when ServiceCodePage=Database
3. Only present when DataSourceFetchTimestampAsString=False
4. Only present when DataSourceFetchTimestampAsString=True
5. Not present when ServiceCodePage=Database
6. Only present when ServiceCodePage=Database and database 

character set is UTF-8

Table B-21.  Mapping the Data Types for Sybase to ODBC Data 
Types  (cont.)

Sybase Data Type ODBC Data Type

Table B-22.  Mapping the Data Types for Sybase to ADO Data 
Types 

Sybase Data Type OLE DB Data Type

BIGINT DBTYPE_I8

BINARY DBTYPE_BYTES

BIT DBTYPE_BOOL

CHAR DBTYPE_STR

DATETIME DBTYPE_DBTIMESTAMP1

DBTYPE_STR2

DECIMAL DBTYPE_NUMERIC

FLOAT DBTYPE_R8
SequeLink Developer’s Reference



482 Appendix B  Data Types and Isolation Levels  
IMAGE DBTYPE_BYTES

INT DBTYPE_I4

MONEY DBTYPE_CY

NUMERIC DBTYPE_R4

REAL DBTYPE_R4

SMALLDATETIME DBTYPE_DBTIMESTAMP1

DBTYPE_STR2

SMALLINT DBTYPE_I2

SMALLMONEY DBTYPE_CY

SYSNAME DBTYPE_STR

TEXT DBTYPE_STR

TIMESTAMP DBTYPE_BYTES

TINYINT DBTYPE_UI1

UBIGINT DBTYPE_I8

VARBINARY DBTYPE_BYTES

VARCHAR DBTYPE_STR

1. Only present when DataSourceFetchTimestampAsString=False
2. Only present when DataSourceFetchTimestampAsString=True

Table B-22.  Mapping the Data Types for Sybase to ADO Data 
Types  (cont.)

Sybase Data Type OLE DB Data Type
SequeLink Developer’s Reference



Supported Data Types 483
The following table lists the data types supported by the JDBC 
driver for Sybase:
 

Table B-23.  Mapping the Data Types for Sybase to JDBC Data 
Types  

Sybase Data Type JDBC Data Type

BIGINT BIGINT

BINARY BINARY

BIT BIT

CHAR CHAR

DATETIME TIMESTAMP1

CHAR2

DECIMAL DECIMAL

FLOAT FLOAT

IMAGE LONGVARBINARY

INT INTEGER

MONEY DECIMAL

NUMERIC NUMERIC

REAL REAL

SMALLDATETIME TIMESTAMP1

CHAR2

SMALLINT SMALLINT

SMALLMONEY DECIMAL

SYSNAME VARCHAR

TEXT LONGVARCHAR

TIMESTAMP BINARY

TINYINT TINYINT

UBIGINT BIGINT

UNICHAR CHAR3
SequeLink Developer’s Reference



484 Appendix B  Data Types and Isolation Levels  
The following table lists the data types that the .NET data 
provider supports for Sybase:
 

UNIVARCHAR VARCHAR3

VARBINARY VARBINARY

VARCHAR VARCHAR

1. Only present when DataSourceFetchTimestampAsString=False
2. Only present when DataSourceFetchTimestampAsString=True
3. Only present when ServiceCodePage=Database and database 

character set is UTF-8

Table B-23.  Mapping the Data Types for Sybase to JDBC Data 
Types   (cont.)

Sybase Data Type JDBC Data Type

Table B-24.  Mapping Data Types for Sybase Data Types to .NET  
Framework Types 

Sybase Data Type .NET Framework Type

BIGINT Byte[]

BINARY Byte[]

BIT Byte[]

CHAR String

Char[]

DATETIME DateTime

DECIMAL Decimal

FLOAT Double

IMAGE Byte[]

INT Int32

MONEY Decimal

NUMERIC Decimal

REAL Single
SequeLink Developer’s Reference



Supported Data Types 485
SMALLDATETIME DateTime

SMALLINT Int16

SMALLMONEY Decimal

SYSNAME String

TEXT String

Char[]

TIMESTAMP Byte[]

TINYINT Byte[]

UBIGINT Int64

UNICHAR Char

UNIVARCHAR String

Char[]

VARBINARY Byte[]

VARCHAR String

Char[]

Table B-24.  Mapping Data Types for Sybase Data Types to .NET  
Framework Types  (cont.)

Sybase Data Type .NET Framework Type
SequeLink Developer’s Reference



486 Appendix B  Data Types and Isolation Levels  
Isolation Levels
This section discusses the isolation levels supported by SequeLink.

Table B-25 lists the isolation levels supported by each data store, 
including their default isolation level.

Table B-25.  Isolation Levels

Database Isolation Levels Default

DB2 UDB on z/OS Read uncommitted

Read committed

Repeatable read

Serializable

Read committed

DB2 UDB on 
Linux/UNIX/Windows 

Read uncommitted

Read committed

Repeatable read

Serializable

Read committed

Informix Read uncommitted

Read committed

Repeatable read

Read committed

Microsoft SQL Server Read uncommitted

Read committed

Read Committed 
with Snapshots1

Read Committed 
with Locks1

Repeatable read

Serializable

Snapshot1

Read committed
SequeLink Developer’s Reference



Isolation Levels 487
Using Snapshot Isolation Level 
(Microsoft SQL Server 2005 Only)

The Snapshot isolation level is available only with Microsoft SQL 
Server 2005. Enabling the SnapshotSerializable connection 
option changes the behavior of the Serializable isolation level to 
use the Snapshot Isolation level. This allows an application to use 
the Snapshot Isolation level with no or minimum code changes. 

To configure Snapshot Isolation for connections, you must have 
your Microsoft SQL Server 2005 database configured for 
Snapshot Isolation and your application must have the 
transaction isolation level set to Serializable.

See the following sections for the connection information 
specific to the SequeLink Client.

Oracle Read committed

Serializable

Read committed

Sybase Read uncommitted

Read committed

Repeatable read

Serializable

Read committed

1. Supported on Microsoft SQL Server only. See “Using Snapshot 
Isolation Level (Microsoft SQL Server 2005 Only)” on page 487 for 
more information.

Table B-25.  Isolation Levels (cont.)

Database Isolation Levels Default
SequeLink Developer’s Reference



488 Appendix B  Data Types and Isolation Levels  
Using The Snapshot Isolation Level with the 
ODBC Driver

If you are writing a new application, you may want to code it to 
set the connection attribute SQL_COPT_SS_TXN_ISOLATION to 
the value SQL_TXN_SS_SNAPSHOT. The application then uses the 
snapshot isolation level without requiring the Use Snapshot 
Transactions connection option.
SequeLink Developer’s Reference



489
C JDBC Support

This appendix provides information about JDBC compatibility 
and developing JDBC applications for SequeLink environments.

JDBC Compatibility
SequeLink supports all JDKs from version 1.4.2 or higher, and the 
corresponding JDBC level.

Supported Functionality
The following tables list functionality supported for each JDBC 
object.

Array Object

Array Object
Methods

Version
Introduced Supported Comments

(all) 2.0 Core No Array objects are neither 
exposed, nor taken as input.
SequeLink Developer’s Reference



490 Appendix C  JDBC Support  
Blob Object

CallableStatement Object

Blob Object 
Methods

Version
Introduced Supported Comments

InputStream getBinaryStream 
()

2.0 Core Yes

byte[] getBytes (long, int) 2.0 Core Yes

long length () 2.0 Core Yes

long position (byte, long) 2.0 Core Yes

long position (Blob, long) 2.0 Core Yes

OutputStream 
setBinaryStream (long)

3.0 Core Yes

int setBytes (long, byte[]) 3.0 Core Yes

int setBytes (long, byte[], int, 
int)

3.0 Core Yes

void truncate (long) 3.0 Core Yes

NOTE: Blob support is emulated using LONGVARBINARY datatypes on SQL Server, Sybase, 
JDBC Socket, and ODBC Socket. Using emulated Blobs incurs a performance and scalability 
penalty.

CallableStatement 
Object 
Methods

Version
Introduced Supported Comments

Array getArray (int) 2.0 Core No Throws “unsupported 
method” exception.

Array getArray (String) 3.0 No Throws “unsupported 
method” exception.
SequeLink Developer’s Reference



Supported Functionality 491
BigDecimal getBigDecimal 
(int) 

2.0 Core Yes 

BigDecimal getBigDecimal 
(int, int) 

1.0 Yes 

BigDecimal getBigDecimal 
(String) 

3.0 No Throws “unsupported 
method” exception.

Blob getBlob (int) 2.0 Core Yes Not supported on servers 
which emulate this 
functionality over 
LONGVARBINARY. 

Blob getBlob (String) 3.0 No Throws “unsupported 
method” exception.

boolean execute () 1.0 Yes 

boolean execute (String) 1.0 No Throws “invalid method call” 
exception.

boolean execute (String, int) 3.0 No Throws “invalid method call” 
exception.

boolean execute (String, int[]) 3.0 No Throws “invalid method call” 
exception.

boolean execute (String, 
String[]) 

3.0 No Throws “invalid method call” 
exception.

boolean getBoolean (int) 1.0 Yes 

boolean getBoolean (String) 3.0 No Throws “unsupported 
method” exception.

boolean getMoreResults () 1.0 Yes 

boolean getMoreResults (int) 3.0 Yes Not supported on Informix.

boolean wasNull () 1.0 Yes 

byte [] getBytes (int) 1.0 Yes 

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



492 Appendix C  JDBC Support  
byte [] getBytes (String) 3.0 No Throws “unsupported 
method” exception.

byte getByte (int) 1.0 Yes 

byte getByte (String) 3.0 No Throws “unsupported 
method” exception.

Clob getClob (int) 2.0 Core Yes Not supported on servers 
which emulate this 
functionality over 
LONGVARCHAR. 

Clob getClob (String) 3.0 No Throws “unsupported 
method” exception.

Connection getConnection () 2.0 Core Yes 

Date getDate (int) 1.0 Yes 

Date getDate (int, Calendar) 2.0 Core Yes 

Date getDate (String) 3.0 No Throws “unsupported 
method” exception.

Date getDate (String, 
Calendar) 

3.0 No Throws “unsupported 
method” exception.

double getDouble (int) 1.0 Yes 

double getDouble (String) 3.0 No Throws “unsupported 
method” exception.

float getFloat (int) 1.0 Yes 

float getFloat (String) 3.0 No Throws “unsupported 
method” exception.

int [] executeBatch () 2.0 Core Yes 

int executeUpdate () 1.0 Yes 

int executeUpdate (String) 1.0 No Throws “invalid method call” 
exception.

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 493
int executeUpdate (String, int) 3.0 No Throws “invalid method call” 
exception.

int executeUpdate (String, 
int[]) 

3.0 No Throws “invalid method call” 
exception.

int executeUpdate (String, 
String[]) 

3.0 No Throws “invalid method call” 
exception.

int getFetchDirection () 2.0 Core Yes 

int getFetchSize () 2.0 Core Yes 

int getInt (int) 1.0 Yes 

int getInt (String) 3.0 No Throws “unsupported 
method” exception.

int getMaxFieldSize () 1.0 Yes 

int getMaxRows () 1.0 Yes 

int getQueryTimeout () 1.0 Yes Returns 0 for DB2 and 
Informix.

int getResultSetConcurrency () 2.0 Core Yes 

int getResultSetHoldability () 3.0 No Throws “unsupported 
method” exception.

int getResultSetType () 2.0 Core Yes 

int getUpdateCount () 1.0 Yes 

long getLong (int) 1.0 Yes 

long getLong (String) 3.0 No Throws “unsupported 
method” exception.

Object getObject (int) 1.0 Yes 

Object getObject (int, Map) 2.0 Core Yes Map ignored. 

Object getObject (String) 3.0 No Throws “unsupported 
method” exception.

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



494 Appendix C  JDBC Support  
Object getObject (String, 
Map) 

3.0 No Throws “unsupported 
method” exception.

ParameterMetaData 
getParameterMetaData()

3.0 Yes Not supported on Oracle or 
Informix Servers.

Ref getRef (int) 2.0 Core No Throws “unsupported 
method” exception.

Ref getRef (String) 3.0 No Throws “unsupported 
method” exception.

ResultSet executeQuery () 1.0 Yes 

ResultSet executeQuery 
(String) 

1.0 No Throws “invalid method call” 
exception.

ResultSet getGeneratedKeys() 3.0 No Throws “unsupported 
method” exception.

ResultSet getResultSet () 1.0 Yes 

ResultSetMetaData 
getMetaData () 

2.0 Core Yes 

short getShort (int) 1.0 Yes 

short getShort (String) 3.0 No Throws “unsupported 
method” exception.

SQLWarning getWarnings () 1.0 Yes 

String getString (int) 1.0 Yes 

String getString (String) 3.0 No Throws “unsupported 
method” exception.

Time getTime (int) 1.0 Yes 

Time getTime (int, Calendar) 2.0 Core Yes 

Time getTime (String) 3.0 No Throws “unsupported 
method” exception.

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 495
Time getTime (String, 
Calendar) 

3.0 No Throws “unsupported 
method” exception.

Timestamp getTimestamp (int) 1.0 Yes 

Timestamp getTimestamp (int, 
Calendar) 

2.0 Core Yes 

Timestamp getTimestamp 
(String) 

3.0 No Throws “unsupported 
method” exception.

Timestamp getTimestamp 
(String, Calendar) 

3.0 No Throws “unsupported 
method” exception.

URL getURL (int) 3.0 No Throws “unsupported 
method” exception.

URL getURL (String) 3.0 No Throws “unsupported 
method” exception.

void addBatch () 2.0 Core Yes 

void addBatch (String) 2.0 Core No Throws “invalid method call” 
exception.

void cancel () 1.0 Yes Cancel can be used to cancel a 
function running 
synchronously on a 
statement, using a different 
thread. Whether Cancel will 
actually cancel the running 
function depends on the data 
store.

void clearBatch () 2.0 Core Yes 

void clearParameters () 1.0 Yes 

void clearWarnings () 1.0 Yes 

void close () 1.0 Yes 

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



496 Appendix C  JDBC Support  
void registerOutParameter 
(int, int) 

1.0 Yes This method should only be 
used against data stores 
supporting output or 
input-output parameters.

void registerOutParameter 
(int, int, int) 

1.0 Yes This method should only be 
used against data stores 
supporting output or 
input-output parameters.

void registerOutParameter 
(int, int, String) 

2.0 Core Yes String/typename ignored. 
This method should only be 
used against data stores 
supporting output or 
input-output parameters.

void registerOutParameter 
(String, int) 

3.0 No Throws “unsupported 
method” exception.

void registerOutParameter 
(String, int, int) 

3.0 No Throws “unsupported 
method” exception.

void registerOutParameter 
(String, int, String) 

3.0 No Throws “unsupported 
method” exception.

void setArray (int, Array) 2.0 Core No Throws “unsupported 
method” exception.

void setAsciiStream (int, 
InputStream, int) 

1.0 Yes 

void setAsciiStream (String, 
InputStream, int) 

3.0 No Throws “unsupported 
method” exception.

void setBigDecimal (int, 
BigDecimal) 

1.0 Yes 

void setBigDecimal (String, 
BigDecimal) 

3.0 No Throws “unsupported 
method” exception.

void setBinaryStream (int, 
InputStream, int) 

1.0 Yes 

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 497
void setBinaryStream (String, 
InputStream, int) 

3.0 No Throws “unsupported 
method” exception.

void setBlob (int, Blob) 2.0 Core Yes 

void setBoolean (int, boolean) 1.0 Yes 

void setBoolean (String, 
boolean) 

3.0 No Throws “unsupported 
method” exception.

void setByte (int, byte) 1.0 Yes 

void setByte (String, byte) 3.0 No Throws “unsupported 
method” exception.

void setBytes (int, byte []) 1.0 Yes 

void setBytes (String, byte []) 3.0 No Throws “unsupported 
method” exception.

void setCharacterStream (int, 
Reader, int) 

2.0 Core Yes 

void setCharacterStream 
(String, Reader, int) 

3.0 No Throws “unsupported 
method” exception.

void setClob (int, Clob) 2.0 Core Yes 

void setCursorName (String) 1.0 No Throws “unsupported 
method” exception.

void setDate (int, Date) 1.0 Yes SQL Server throws "optional 
feature not implemented" 
exception.

void setDate (int, Date, 
Calendar) 

2.0 Core Yes SQL Server throws "optional 
feature not implemented" 
exception.

void setDate (String, Date) 3.0 No Throws “unsupported 
method” exception.

void setDate (String, Date, 
Calendar) 

3.0 No Throws “unsupported 
method” exception.

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



498 Appendix C  JDBC Support  
void setDouble (int, double) 1.0 Yes 

void setDouble (String, 
double) 

3.0 No Throws “unsupported 
method” exception.

void setEscapeProcessing 
(boolean) 

1.0 Yes 

void setFetchDirection (int) 2.0 Core Yes SequeLink supports this 
method, but will ignore this 
hint provided by the 
application.

void setFetchSize (int) 2.0 Core Yes SequeLink supports this 
method, but will ignore this 
hint provided by the 
application.

void setFloat (int, float) 1.0 Yes 

void setFloat (String, float) 3.0 No Throws “unsupported 
method” exception.

void setInt (int, int) 1.0 Yes 

void setInt (String, int) 3.0 No Throws “unsupported 
method” exception.

void setLong (int, long) 1.0 Yes SQL Server throws "optional 
feature not implemented" 
exception. However, you can 
use the workaround 
MSSMapLongToDecimal, 
which maps setLong to 
DECIMAL instead of BIGINT.

void setLong (String, long) 3.0 No Throws “unsupported 
method” exception.

void setMaxFieldSize (int) 1.0 Yes 

void setMaxRows (int) 1.0 Yes 

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 499
void setNull (int, int) 1.0 Yes 

void setNull (int, int, String) 2.0 Core Yes SequeLink does not support 
the Advanced Data Type 
functionality. This method is 
always mapped to setNull (i, 
sqlType).

void setNull (String, int) 3.0 No Throws “unsupported 
method” exception.

void setNull (String, int, 
String) 

3.0 No Throws “unsupported 
method” exception.

void setObject (int, Object) 1.0 Yes 

void setObject (int, Object, 
int) 

1.0 Yes 

void setObject (int, Object, int, 
int) 

1.0 Yes 

void setObject (String, Object) 3.0 No Throws “unsupported 
method” exception.

void setObject (String, Object, 
int) 

3.0 No Throws “unsupported 
method” exception.

void setObject (String, Object, 
int, int) 

3.0 No Throws “unsupported 
method” exception.

void setQueryTimeout (int) 1.0 Yes Not supported on DB2 z/OS 
servers. Support for the JDBC 
and ODBC Socket Servers is 
dependent on the driver it 
loads.

void setRef (int, Ref) 2.0 Core No Throws “unsupported 
method” exception.

void setShort (int, short) 1.0 Yes 

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



500 Appendix C  JDBC Support  
void setShort (String, short) 3.0 No Throws “unsupported 
method” exception.

void setString (int, String) 1.0 Yes 

void setString (String, String) 3.0 No Throws “unsupported 
method” exception.

void setTime (int, Time) 1.0 Yes SQLServer throws "optional 
feature not implemented" 
exception.

void setTime (int, Time, 
Calendar) 

2.0 Core Yes SQLServer throws "optional 
feature not implemented" 
exception.

void setTime (String, Time) 3.0 No Throws “unsupported 
method” exception.

void setTime (String, Time, 
Calendar) 

3.0 No Throws “unsupported 
method” exception.

void setTimestamp (int, 
Timestamp) 

1.0 Yes 

void setTimestamp (int, 
Timestamp, Calendar) 

2.0 Core Yes 

void setTimestamp (String, 
Timestamp) 

3.0 No Throws “unsupported 
method” exception.

void setTimestamp (String, 
Timestamp, Calendar) 

3.0 No Throws “unsupported 
method” exception.

void setUnicodeStream (int, 
InputStream, int) 

1.0 Yes Supported by SequeLink. This 
method has been deprecated 
in the JDBC 2.0 specification.

void setURL (int, URL) 3.0 No Throws “unsupported 
method” exception.

void setURL (String, URL) 3.0 No Throws “unsupported 
method” exception.

CallableStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 501
Clob Object

Connection Object

Clob Object
Methods

Version
Introduced Supported Comments

InputStream getAsciiStream () 2.0 Core Yes

Reader getCharacterStream () 2.0 Core Yes

String getSubString (long, int) 2.0 Core Yes

long length () 2.0 Core Yes

long position (Clob, long) 2.0 Core Yes

long position (String, long) 2.0 Core Yes

OutputStream setAsciiStream 
(long)

3.0 Core Yes

Writer setCharacterStream 
(long)

3.0 Core Yes

int setString (long, String) 3.0 Core Yes

int setString (long, String, int, 
int)

3.0 Core Yes

void truncate (long) 3.0 Core Yes

NOTE: Clob support is emulated using LONGVARCHAR datatypes on SQL Server, Sybase, 
JDBC Socket, and ODBC Socket. Using emulated Clobs incurs a performance and scalability 
penalty.

Connection Object 
Methods

Version
Introduced Supported Comments

void clearWarnings () 1.0 Yes
SequeLink Developer’s Reference



502 Appendix C  JDBC Support  
void close () 1.0 Yes When a connection is closed 
while there is an active 
transaction, that transaction 
is rolled-back.

void commit () 1.0 Yes 

SQLWarning getWarnings () 1.0 Yes 

Statement createStatement () 1.0 Yes 

Statement createStatement 
(int, int) 

2.0 Core Yes The supported values for 
resultSetConcurrency depend 
on the data store you are 
connected to.

Statement createStatement 
(int, int, int) 

3.0 No SequeLink only supports fixed 
Holdability values per RDBMS 

boolean getAutoCommit () 1.0 Yes 

String getCatalog () 1.0 Yes Support is database-specific.

int getHoldability () 3.0 Yes SequeLink only supports fixed 
Holdability values per RDBMS 

DatabaseMetaData 
getMetaData () 

1.0 Yes 

int getTransactionIsolation () 1.0 Yes 

Map getTypeMap () 2.0 Core Yes Always returns empty 
java.util.HashMap.

SQLWarning getWarnings () 1.0 Yes 

boolean isClosed () 1.0 Yes 

boolean isReadOnly () 1.0 Yes 

String nativeSQL (String) 1.0 Yes Always returns same String as 
passed in. 

CallableStatement 
prepareCall (String) 

1.0 Yes 

Connection Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 503
CallableStatement 
prepareCall (String, int, int) 

2.0 Core Yes The supported values for 
resultSetConcurrency depend 
on the data store you are 
connected to.

CallableStatement 
prepareCall (String, int, int, 
int) 

3.0 No SequeLink only supports fixed 
Holdability values per RDBMS 

PreparedStatement 
prepareStatement (String) 

1.0 Yes 

PreparedStatement 
prepareStatement (String, int) 

3.0 No Throws “unsupported 
method” exception.

PreparedStatement 
prepareStatement (String, 
int[]) 

3.0 No Throws “unsupported 
method” exception.

PreparedStatement 
prepareStatement (String, int, 
int) 

2.0 Core Yes The supported values for 
resultSetType and 
resultSetConcurrency depend 
on the data store you are 
connected to.

PreparedStatement 
prepareStatement (String, int, 
int, int) 

3.0 No SequeLink only supports fixed 
Holdability values per RDBMS 

PreparedStatement 
prepareStatement (String, 
String []) 

3.0 No Throws “unsupported 
method” exception.

void releaseSavepoint 
(Savepoint) 

3.0 Yes 

void rollback () 1.0 Yes 

void rollback (Savepoint) 3.0 Yes 

void setAutoCommit 
(boolean) 

1.0 Yes 

Connection Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



504 Appendix C  JDBC Support  
ConnectionPoolDataSource Object

void setCatalog (String) 1.0 Yes Switching of catalogs is 
supported if the SequeLink 
Server supports it.

void setHoldability (int) 3.0 No SequeLink only supports fixed 
Holdability values per RDBMS.

void setReadOnly (boolean) 1.0 Yes 

void setSavepoint () 3.0 Yes Not supported with Informix 
servers.

void setSavepoint (String) 3.0 Yes Not supported with Informix 
servers.

void setTransactionIsolation 
(int) 

1.0 Yes 

void setTypeMap (Map) 2.0 Core Yes Ignored.

Connection Object  (cont.)

Methods

Version
Introduced Supported Comments

ConnectionPoolData
Source Object 
Methods

Version
Introduced Supported Comments

PrintWriter getLogWriter () 2.0 
Optional

Yes  

int getLoginTimeout () 2.0 
Optional

Yes  

PooledConnection 
getPooledConnection () 

2.0 
Optional

Yes  

PooledConnection 
getPooledConnection (String, 
String) 

2.0 
Optional

Yes  
SequeLink Developer’s Reference



Supported Functionality 505
DatabaseMetaData Object

void setLogWriter 
(PrintWriter) 

2.0 
Optional

Yes  

void setLoginTimeout (int) 2.0 
Optional

Yes  

ConnectionPoolData
Source Object  (cont.)

Methods

Version
Introduced Supported Comments

DatabaseMetaData Object 
Methods

Version
Introduced Supported Comments

boolean allProceduresAreCallable () 1.0 Yes 

boolean allTablesAreSelectable () 1.0 Yes 

boolean dataDefinitionCausesTransaction
Commit () 

1.0 Yes 

boolean 
dataDefinitionIgnoredInTransactions () 

1.0 Yes 

boolean deletesAreDetected (int) 2.0 Core Yes 

boolean doesMaxRowSizeIncludeBlobs () 1.0 Yes Not supported 
with DB2, 
SQL Server, and 
Sybase servers.

ResultSet getAttributes (String, String) 3.0 No Always returns 
empty result set.

ResultSet getBestRowIdentifier (String, 
String, String, int, boolean) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it.
SequeLink Developer’s Reference



506 Appendix C  JDBC Support  
ResultSet getCatalogs () 1.0 Yes This method is 
supported if the 
SequeLink Server 
supports it.

String getCatalogSeparator () 1.0 Yes  

String getCatalogTerm () 1.0 Yes  

ResultSet getColumnPrivileges (String, 
String, String, String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it.

ResultSet getColumns (String, String, String, 
String) 

1.0 Yes  

ResultSet getColumns (String, String, String, 
String) 

3.0 
Extension

Yes The extended 
resultset columns 
will all contain 
null as values. 

Connection getConnection () 2.0 Core Yes  

ResultSet getCrossReference (String, String, 
String, String, String, String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it. 

int getDatabaseMajorVersion () 3.0 Yes 

int getDatabaseMinorVersion () 3.0 Yes 

String getDatabaseProductName () 1.0 Yes  

String getDatabaseProductVersion () 1.0 Yes  

int getDefaultTransactionIsolation () 1.0 Yes  

int getDriverMajorVersion () 1.0 Yes  

int getDriverMinorVersion () 1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 507
String getDriverName () 1.0 Yes  

String getDriverVersion () 1.0 Yes  

ResultSet getExportedKeys (String, String, 
String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it. 

String getExtraNameCharacters () 1.0 Yes  

String getIdentifierQuoteString () 1.0 Yes  

ResultSet getImportedKeys (String, String, 
String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it. 

ResultSet getIndexInfo (String, String, 
String, boolean, boolean) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it. 

int getJDBCMajorVersion () 3.0 Yes 

int getJDBCMinorVersion () 3.0 Yes 

int getMaxBinaryLiteralLength () 1.0 Yes  

int getMaxCatalogNameLength () 1.0 Yes  

int getMaxCharLiteralLength () 1.0 Yes  

int getMaxColumnNameLength () 1.0 Yes  

int getMaxColumnsInGroupBy () 1.0 Yes  

int getMaxColumnsInIndex () 1.0 Yes  

int getMaxColumnsInOrderBy () 1.0 Yes  

int getMaxColumnsInSelect () 1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



508 Appendix C  JDBC Support  
int getMaxColumnsInTable () 1.0 Yes  

int getMaxConnections () 1.0 Yes  

int getMaxCursorNameLength () 1.0 Yes  

int getMaxIndexLength () 1.0 Yes  

int getMaxProcedureNameLength () 1.0 Yes  

int getMaxRowSize () 1.0 Yes  

int getMaxSchemaNameLength () 1.0 Yes  

int getMaxStatementLength () 1.0 Yes  

int getMaxStatements () 1.0 Yes  

int getMaxTableNameLength () 1.0 Yes  

int getMaxTablesInSelect () 1.0 Yes  

int getMaxUserNameLength () 1.0 Yes  

String getNumericFunctions () 1.0 Yes  

ResultSet getPrimaryKeys (String, String, 
String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it. 

ResultSet getProcedureColumns (String, 
String, String, String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it. 

String getProcedureTerm () 1.0 Yes  

ResultSet getProcedures (String, String, 
String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it.

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 509
int getResultSetHoldability () 3.0 Yes 

ResultSet getSchemas () 1.0 Yes  The JDBC driver 
supports this 
method if the 
data store has 
support for it.

ResultSet getSchemas () 3.0 
Extension 

Yes The JDBC driver 
supports this 
method if the 
data store has 
support for it.

String getSchemaTerm () 1.0 Yes  

String getSearchStringEscape () 1.0 Yes  

String getStringFunctions () 1.0 Yes  

String getSQLKeywords () 1.0 Yes  

int getSQLStateType () 3.0 Yes  

String getSystemFunctions () 1.0 Yes  

ResultSet getSuperTables (String, String, 
String) 

3.0 No Always returns 
empty ResultSet.

ResultSet getSuperTypes (String, String, 
String) 

3.0 No Always returns 
empty ResultSet.

ResultSet getTablePrivileges (String, String, 
String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store 
supports it.

ResultSet getTableTypes () 1.0 Yes  

ResultSet getTables (String, String, String, 
String []) 

1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



510 Appendix C  JDBC Support  
ResultSet getTables (String, String, String, 
String []) 

3.0 
Extension 

Yes The extended 
resultset columns 
will all contain 
null as values.

String getTimeDateFunctions () 1.0 Yes   

ResultSet getTypeInfo () 1.0 Yes  

ResultSet getUDTs (String, String, String, 
int []) 

2.0 Core No SequeLink does 
not support the 
Advanced Data 
Type 
functionality and 
always returns an 
empty result set.

ResultSet getUDTs (String, String, String, 
int []) 

3.0 
Extension 

No SequeLink does 
not support the 
Advanced Data 
Type 
functionality and 
always returns an 
empty result set.

String getURL () 1.0 Yes   

String getUserName () 1.0 Yes   

ResultSet getVersionColumns (String, 
String, String) 

1.0 Yes The JDBC driver 
supports this 
method if the 
data store 
supports it.

boolean insertsAreDetected (int) 2.0 Core Yes  

boolean isCatalogAtStart () 1.0 Yes  

boolean isReadOnly () 1.0 Yes  

boolean locatorsUpdateCopy () 3.0 Yes  

boolean nullPlusNonNullIsNull () 1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 511
boolean nullsAreSortedAtEnd () 1.0 Yes  

boolean nullsAreSortedAtStart () 1.0 Yes  

boolean nullsAreSortedHigh () 1.0 Yes  

boolean nullsAreSortedLow () 1.0 Yes  

boolean othersDeletesAreVisible (int) 2.0 Core Yes  

boolean othersInsertsAreVisible (int) 2.0 Core Yes  

boolean othersUpdatesAreVisible (int) 2.0 Core Yes  

boolean ownDeletesAreVisible (int) 2.0 Core Yes  

boolean ownInsertsAreVisible (int) 2.0 Core Yes  

boolean ownUpdatesAreVisible (int) 2.0 Core Yes  

boolean storesLowerCaseIdentifiers () 1.0 Yes  

boolean storesLowerCaseQuoted
Identifiers () 

1.0 Yes  

boolean storesMixedCaseIdentifiers () 1.0 Yes  

boolean storesMixedCaseQuoted
Identifiers () 

1.0 Yes  

boolean storesUpperCaseIdentifiers () 1.0 Yes  

boolean supportsResultSetHoldability (int) 3.0 Yes  

boolean supportsAlterTableWith
AddColumn () 

1.0 Yes  

boolean supportsAlterTableWith
DropColumn () 

1.0 Yes  

boolean supportsANSI92EntryLevelSQL () 1.0 Yes  

boolean supportsANSI92FullSQL () 1.0 Yes  

boolean supportsANSI92Intermediate
SQL () 

1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



512 Appendix C  JDBC Support  
boolean supportsBatchUpdates () 2.0 Core Yes  

boolean supportsCatalogsInData
Manipulation () 

1.0 Yes  

boolean supportsCatalogsInIndex () 1.0 Yes  

boolean supportsCatalogsInPrivilege
Definitions () 

1.0 Yes  

boolean supportsCatalogsInProcedure
Calls () 

1.0 Yes  

boolean supportsCatalogsInTable
Definitions () 

1.0 Yes  

boolean supportsColumnAliasing () 1.0 Yes  

boolean supportsConvert () 1.0 Yes  

boolean supportsConvert (int, int) 1.0 Yes  

boolean supportsCoreSQLGrammar () 1.0 Yes  

boolean supportsCorrelatedSubqueries () 1.0 Yes  

boolean supportsDataDefinitionAndData
ManipulationTransactions () 

1.0 Yes  

boolean supportsDataManipulation
TransactionsOnly () 

1.0 Yes  

boolean supportsDifferentTableCorrelation
Names () 

1.0 Yes  

boolean supportsExpressionsIn
OrderBy () 

1.0 Yes  

boolean supportsExtendedSQLGrammar () 1.0 Yes  

boolean supportsFullOuterJoins () 1.0 Yes  

boolean supportsGetGeneratedKeys () 3.0 Yes  

boolean supportsGroupBy () 1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 513
boolean supportsGroupByBeyondSelect () 1.0 Yes  

boolean supportsGroupByUnrelated () 1.0 Yes  

boolean supportsIntegrityEnhancement
Facility () 

1.0 Yes  

boolean supportsLikeEscapeClause () 1.0 Yes  

boolean supportsLimitedOuterJoins () 1.0 Yes  

boolean supportsMinimumSQLGrammar () 1.0 Yes  

boolean supportsMixedCaseIdentifiers () 1.0 Yes  

boolean supportsMixedCaseQuoted
Identifiers () 

1.0 Yes  

boolean supportsMultipleOpenResultSets () 3.0 Yes  

boolean supportsMultipleResultSets () 1.0 Yes Not supported on 
Informix.

NOTE: Use of this 
method with 
large result sets 
incurs a 
performance and 
scalability 
penalty.

boolean supportsMultipleTransactions () 1.0 Yes  

boolean supportsNamedParameters () 3.0 Yes  

boolean supportsNonNullableColumns () 1.0 Yes  

boolean supportsOpenCursorsAcross
Commit () 

1.0 Yes  

boolean supportsOpenCursorsAcross
Rollback () 

1.0 Yes  

boolean supportsOpenStatementsAcross
Commit () 

1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



514 Appendix C  JDBC Support  
boolean supportsOpenStatementsAcross
Rollback () 

1.0 Yes  

boolean supportsOrderByUnrelated () 1.0 Yes  

boolean supportsOuterJoins () 1.0 Yes  

boolean supportsPositionedDelete () 1.0 Yes The driver returns 
hard coded false. 

boolean supportsPositionedUpdate () 1.0 Yes The driver returns 
hard coded false. 

boolean supportsResultSetConcurrency (int, 
int) 

2.0 Core Yes  

boolean supportsResultSetType (int) 2.0 Core Yes  

boolean supportsSavePoints () 3.0 Yes  

boolean supportsSchemasInData
Manipulation () 

1.0 Yes  

boolean supportsSchemasInIndex
Definitions () 

1.0 Yes  

boolean supportsSchemasIn
PrivilegeDefinitions () 

1.0 Yes  

boolean supportsSchemasInProcedure
Calls () 

1.0 Yes  

boolean supportsSchemasInTable
Definitions () 

1.0 Yes   

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 515
boolean supportsSelectForUpdate () 1.0 Yes SequeLink 
supports SELECT 
FOR UPDATE 
statements 
against certain 
DBMSs. 
SequeLink 
returns false, as it 
does not support 
UPDATE WHERE 
CURRENT OF 
statements.

boolean supportsStoredProcedures () 1.0 Yes  

boolean supportsSubqueriesIn
Comparisons () 

1.0 Yes  

boolean supportsSubqueriesInExists () 1.0 Yes  

boolean supportsSubqueriesInIns () 1.0 Yes  

boolean supportsSubqueriesIn
Quantifieds () 

1.0 Yes  

boolean supportsTableCorrelationNames () 1.0 Yes  

boolean supportsTransactionIsolationLevel 
(int) 

1.0 Yes  

boolean supportsTransactions () 1.0 Yes  

boolean supportsUnion () 1.0 Yes  

boolean supportsUnionAll () 1.0 Yes  

boolean updatesAreDetected (int) 2.0 Core Yes  

boolean usesLocalFilePerTable () 1.0 Yes  

boolean usesLocalFiles () 1.0 Yes  

DatabaseMetaData Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



516 Appendix C  JDBC Support  
DataSource Object

Driver Object

DataSource Object 
Methods

Version
Introduced Supported Comments

Connection getConnection () 2.0 Optional Yes  

Connection getConnection 
(String, String) 

2.0 Optional Yes  

PrintWriter getLogWriter () 2.0 Optional Yes  

int getLoginTimeout () 2.0 Optional Yes  

void setLogWriter 
(PrintWriter) 

2.0 Optional Yes Enables DataDirect Spy, 
which traces JDBC 
information into the 
specified PrintWriter.

void setLoginTimeout (int) 2.0 Optional Yes  

Driver Object 
Methods

Version
Introduced Supported Comments

boolean acceptsURL (String) 1.0 Yes  

Connection connect (String, 
Properties) 

1.0 Yes  

int getMajorVersion () 1.0 Yes  

int getMinorVersion () 1.0 Yes  

DriverPropertyInfo [] 
getPropertyInfo (String, 
Properties) 

1.0 Yes  

boolean jdbcCompliant () 1.0 Yes  
SequeLink Developer’s Reference



Supported Functionality 517
ParameterMetaData Object

PooledConnection Object

ParameterMetaData 
Object 
Methods

Version
Introduced Supported Comments

String getParameterClassName 
(int)

3.0 Yes  

int getParameterCount () 3.0 Yes  

int getParameterMode (int) 3.0 Yes  

int getParameterType (int) 3.0 Yes  

String getParameterTypeName 
(int)

3.0 Yes  

int getPrecision (int) 3.0 Yes  

int getScale (int) 3.0 Yes  

int isNullable (int) 3.0 Yes  

boolean isSigned (int) 3.0 Yes  

PooledConnection Object 

Methods

Version
Introduced Supported Comments

void 
addConnectionEventListener 
(ConnectionEventListener)

2.0 Optional Yes

void close() 2.0 Optional Yes
SequeLink Developer’s Reference



518 Appendix C  JDBC Support  
PreparedStatement Object

Connection getConnection() 2.0 Optional Yes A pooled connection 
object can have only one 
Connection object open 
(the one most recently 
created). The purpose of 
allowing the server 
(PoolManager 
implementation) to invoke 
the method getConnection 
a second time is to give 
that application server a 
way to take a connection 
away from an application 
and give it to another user 
(a rare occurrence). The 
drivers do not support this 
“reclaiming” of 
connections and will throw 
a SQLException “Reclaim 
of open connection is not 
supported.”

void removeConnectionEvent
Listener 
(ConnectionEventListener)

2.0 Optional Yes

PooledConnection Object 
 (cont.)

Methods

Version
Introduced Supported Comments

PreparedStatement 
Object 
Methods

Version
Introduced Supported Comments

void addBatch () 2.0 Core Yes 

void addBatch (String) 2.0 Core No Throws “invalid method call” 
exception.
SequeLink Developer’s Reference



Supported Functionality 519
void cancel () 1.0 Yes Cancel can be used to cancel a 
function running 
synchronously on a statement, 
using a different thread. 
Whether Cancel will actually 
cancel the running function 
depends on the data store.

void clearBatch () 2.0 Core Yes 

void clearParameters () 1.0 Yes 

void clearWarnings () 1.0 Yes 

void close () 1.0 Yes 

boolean execute () 1.0 Yes 

boolean execute (String) 1.0 No Throws “invalid method call” 
exception.

boolean execute (String, int) 3.0 No Throws “invalid method call” 
exception.

boolean execute (String, int []) 3.0 No Throws “invalid method call” 
exception.

boolean execute (String, 
String []) 

3.0 No Throws “invalid method call” 
exception.

int [] executeBatch () 2.0 Core Yes 

ResultSet executeQuery () 1.0 Yes 

ResultSet executeQuery 
(String) 

1.0 No Throws “invalid method call” 
exception.

int executeUpdate () 1.0 Yes 

int executeUpdate (String) 1.0 No Throws “invalid method call” 
exception.

int executeUpdate (String, int) 3.0 No Throws “unsupported 
method” exception.

PreparedStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



520 Appendix C  JDBC Support  
int executeUpdate (String, int 
[]) 

3.0 No Throws “unsupported 
method” exception.

int executeUpdate (String, 
String []) 

3.0 No Throws “unsupported 
method” exception.

Connection getConnection () 2.0 Core Yes 

int getFetchDirection () 2.0 Core Yes 

int getFetchSize () 2.0 Core Yes 

ParameterMetaData 
getParameterMetaData()

3.0 Yes Not supported on Oracle or 
Informix Servers.

ResultSet getGeneratedKeys () 3.0 No Throws “unsupported 
method” exception.

int getMaxFieldSize () 1.0 Yes  

int getMaxRows () 1.0 Yes  

ResultSetMetaData 
getMetaData () 

2.0 Core Yes  

boolean getMoreResults () 1.0 Yes  

boolean getMoreResults (int) 3.0 Yes  

int getQueryTimeout () 1.0 Yes  

ResultSet getResultSet () 1.0 Yes 

int getResultSetConcurrency () 2.0 Core Yes 

int getResultSetHoldability () 3.0 No Throws “unsupported 
method” exception.

int getResultSetType () 2.0 Core Yes 

int getUpdateCount () 1.0 Yes 

SQLWarning getWarnings () 1.0 Yes 

PreparedStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 521
void setArray (int, Array) 2.0 Core No Throws “unsupported 
method” exception.

void setAsciiStream (int, 
InputStream, int) 

1.0 Yes  

void setBigDecimal (int, 
BigDecimal) 

1.0 Yes  

void setBinaryStream (int, 
InputStream, int) 

1.0 Yes  

void setBlob (int, Blob) 2.0 Core Yes  

void setBoolean (int, boolean) 1.0 Yes  

void setByte (int, byte) 1.0 Yes  

void setBytes (int, byte []) 1.0 Yes 

void setCharacterStream (int, 
Reader, int) 

2.0 Core Yes 

void setClob (int, Clob) 2.0 Core Yes 

void setCursorName (String) 1.0 No 

void setDate (int, Date) 1.0 Yes SQL Server throws "optional 
feature not implemented" 
exception.

void setDate (int, Date, 
Calendar) 

2.0 Core Yes SQL Server throws "optional 
feature not implemented" 
exception.

void setDouble (int, double) 1.0 Yes 

void setEscapeProcessing 
(boolean) 

1.0 Yes Ignored.

void setFetchDirection (int) 2.0 Core Yes SequeLink supports this 
method, but will ignore this 
hint provided by the 
application.

PreparedStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



522 Appendix C  JDBC Support  
void setFetchSize (int) 2.0 Core Yes SequeLink supports this 
method, but will ignore this 
hint provided by the 
application.

void setFloat (int, float) 1.0 Yes  

void setInt (int, int) 1.0 Yes  

void setLong (int, long) 1.0 Yes  

void setMaxFieldSize (int) 1.0 Yes  

void setMaxRows (int) 1.0 Yes  

void setNull (int, int) 1.0 Yes  

void setNull (int, int, String) 2.0 Core Yes SequeLink does not support 
the Advanced Data Type 
functionality. This method is 
always mapped to setNull (i, 
sqlType).

void setObject (int, Object) 1.0 Yes 

void setObject (int, Object, int) 1.0 Yes 

void setObject (int, Object, int, 
int) 

1.0 Yes 

void setQueryTimeout (int) 1.0 Yes Support for the JDBC and 
ODBC Socket Servers is 
dependent on the driver it 
loads.

void setRef (int, Ref) 2.0 Core No Throws “unsupported 
method” exception.

void setShort (int, short) 1.0 Yes  

void setString (int, String) 1.0 Yes  

PreparedStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 523
Ref Object

void setTime (int, Time) 1.0 Yes SQL Server throws "optional 
feature not implemented" 
exception.

void setTime (int, Time, 
Calendar) 

2.0 Core Yes SQL Server throws "optional 
feature not implemented" 
exception.

void setTimestamp (int, 
Timestamp) 

1.0 Yes 

void setTimestamp (int, 
Timestamp, Calendar) 

2.0 Core Yes 

void setUnicodeStream (int, 
InputStream, int) 

1.0 Yes Throws “unsupported 
method” exception. This 
method was deprecated in the 
JDBC 2.0 specification.

void setURL (int, URL) 3.0 No Throws “unsupported 
method” exception.

boolean wasNull () 1.0 Yes 

PreparedStatement 
Object  (cont.)

Methods

Version
Introduced Supported Comments

Ref Object 
Methods

Version
Introduced Supported Comments

(all) 2.0 Core No Ref objects are neither 
exposed, nor taken as input.
SequeLink Developer’s Reference



524 Appendix C  JDBC Support  
Referenceable Object

ResultSet Object

Referenceable Object

Methods

JDBC
Version
Introduced Supported Comments

Reference getReference() javax.naming Yes Implemented by 
SequeLinkDataSource.

ResultSet Object 
Methods

Version
Introduced Supported Comments

boolean absolute (int) 2.0 Core Yes  

void afterLast () 2.0 Core Yes  

void beforeFirst () 2.0 Core Yes  

void cancelRowUpdates () 2.0 Core Yes  

void clearWarnings () 1.0 Yes  

void close () 1.0 Yes  

void deleteRow () 2.0 Core Yes  

int findColumn (String) 1.0 Yes  

boolean first () 2.0 Core Yes  

Array getArray (int) 2.0 Core No Throws “unsupported 
method” exception.

Array getArray (String) 2.0 Core No Throws “unsupported 
method” exception.
SequeLink Developer’s Reference



Supported Functionality 525
InputStream getAsciiStream 
(int) 

1.0 Yes For the implementation of 
getAsciiStream (), the driver 
assumes that the underlying 
data in the database only 
contains 7-bit ASCII characters 
(represented in an ASCII or 
EBCDIC code-page). If the 
assumption is true, the driver 
returns bytes corresponding to 
ASCII characters, otherwise 
the results are unpredictable. 
In the case that 
getAsciiStream () is called on a 
binary column, the driver 
converts the binary data to 
the hexadecimal 
representation and returns 
the ASCII representation. For 
example, the binary value 20 is 
represented in hexidecimal as 
14 or "1" "4". In ASCII, 1 is 
represented by "49" and 4 is 
represented by "52". This 
implies that the ASCII stream 
"4952" is returned.

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



526 Appendix C  JDBC Support  
InputStream getAsciiStream 
(String) 

1.0 Yes For the implementation of 
getAsciiStream (), the drivers 
assume that the underlying 
data in the database only 
contains 7-bit ASCII characters 
(represented in an ASCII or 
EBCDIC code-page). If the 
assumption is true, the drivers 
return bytes corresponding to 
ASCII characters, otherwise 
the results are unpredictable. 
In the case that 
getAsciiStream () is called on a 
binary column, the driver 
converts the binary data to 
the hexidecimal 
representation and returns 
the ASCII representation. For 
example, the binary value 20 is 
represented in hexidecimal as 
14 or "1" "4". In ASCII, 1 is 
represented by "49" and 4 is 
represented by "52". This 
implies that the ASCII stream 
"4952" is returned. 

BigDecimal getBigDecimal 
(int) 

2.0 Core Yes  

BigDecimal getBigDecimal 
(String) 

2.0 Core Yes  

BigDecimal getBigDecimal 
(int, int) 

1.0 Yes  

BigDecimal getBigDecimal 
(String, int) 

1.0 Yes  

InputStream getBinaryStream 
(int) 

1.0 Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 527
InputStream getBinaryStream 
(String) 

1.0 Yes  

Blob getBlob (int) 2.0 Core Yes  

Blob getBlob (String) 2.0 Core Yes  

boolean getBoolean (int) 1.0 Yes  

boolean getBoolean (String) 1.0 Yes  

byte getByte (int) 1.0 Yes  

byte getByte (String) 1.0 Yes  

byte [] getBytes (int) 1.0 Yes  

byte [] getBytes (String) 1.0 Yes  

Reader getCharacterStream 
(int) 

2.0 Core Yes  

Reader getCharacterStream 
(String) 

2.0 Core Yes  

Clob getClob (int) 2.0 Core Yes  

Clob getClob (String) 2.0 Core Yes  

int getConcurrency () 2.0 Core Yes  

String getCursorName () 1.0 No Throws “unsupported 
method” exception. 

Date getDate (int) 1.0 Yes  

Date getDate (String) 1.0 Yes  

Date getDate (int, Calendar) 2.0 Core Yes  

Date getDate (String, 
Calendar) 

2.0 Core Yes  

double getDouble (int) 1.0 Yes  

double getDouble (String) 1.0 Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



528 Appendix C  JDBC Support  
int getFetchDirection () 2.0 Core Yes SequeLink supports this 
method, but will ignore this 
hint provided by the 
application.

int getFetchSize () 2.0 Core Yes SequeLink supports this 
method, but will ignore this 
hint provided by the 
application.

float getFloat (int) 1.0 Yes  

float getFloat (String) 1.0 Yes  

int getInt (int) 1.0 Yes  

int getInt (String) 1.0 Yes  

long getLong (int) 1.0 Yes  

long getLong (String) 1.0 Yes  

ResultSetMetaData 
getMetaData () 

1.0 Yes  

Object getObject (int) 1.0 Yes  

Object getObject (String) 1.0 Yes  

Object getObject (int, Map) 2.0 Core Yes Map ignored. 

Object getObject (String, 
Map) 

2.0 Core Yes Map ignored.

Ref getRef (int) 2.0 Core No Throws “unsupported 
method” exception. 

Ref getRef (String) 2.0 Core No Throws “unsupported 
method” exception. 

int getRow () 2.0 Core Yes  

short getShort (int) 1.0 Yes  

short getShort (String) 1.0 Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 529
Statement getStatement () 2.0 Core Yes  

String getString (int) 1.0 Yes  

String getString (String) 1.0 Yes  

Time getTime (int) 1.0 Yes  

Time getTime (String) 1.0 Yes  

Time getTime (int, Calendar) 2.0 Core Yes  

Time getTime (String, 
Calendar) 

2.0 Core Yes  

Timestamp getTimestamp 
(int) 

1.0 Yes  

Timestamp getTimestamp 
(String) 

1.0 Yes  

Timestamp getTimestamp 
(int, Calendar) 

2.0 Core Yes 

Timestamp getTimestamp 
(String, Calendar) 

2.0 Core Yes 

int getType () 2.0 Core Yes  

InputStream 
getUnicodeStream (int) 

1.0 Yes 

InputStream 
getUnicodeStream (String) 

1.0 Yes This method was deprecated 
in the JDBC 2.0 specification.

URL getURL (int) 3.0 No Throws “unsupported 
method” exception.

URL getURL (String) 3.0 No Throws “unsupported 
method” exception.

SQLWarning getWarnings () 1.0 Yes  

void insertRow () 2.0 Core Yes  

boolean isAfterLast () 2.0 Core Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



530 Appendix C  JDBC Support  
boolean isBeforeFirst () 2.0 Core Yes  

boolean isFirst () 2.0 Core Yes  

boolean isLast () 2.0 Core Yes  

boolean last () 2.0 Core Yes  

void moveToCurrentRow () 2.0 Core Yes  

void moveToInsertRow () 2.0 Core Yes  

boolean next () 1.0 Yes  

boolean previous () 2.0 Core Yes  

void refreshRow () 2.0 Core Yes  

boolean relative (int) 2.0 Core Yes  

boolean rowDeleted () 2.0 Core Yes  

boolean rowInserted () 2.0 Core Yes  

boolean rowUpdated () 2.0 Core Yes  

void setFetchDirection (int) 2.0 Core Yes  

void setFetchSize (int) 2.0 Core Yes  

void updateArray (int, Array) 3.0 No Throws “unsupported 
method” exception.

void updateArray (String, 
Array) 

3.0 No Throws “unsupported 
method” exception.

void updateAsciiStream (int, 
InputStream, int) 

2.0 Core Yes  

void updateAsciiStream 
(String, InputStream, int) 

2.0 Core Yes  

void updateBigDecimal (int, 
BigDecimal) 

2.0 Core Yes  

void updateBigDecimal 
(String, BigDecimal) 

2.0 Core Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 531
void updateBinaryStream (int, 
InputStream, int) 

2.0 Core Yes  

void updateBinaryStream 
(String, InputStream, int) 

2.0 Core Yes  

void updateBlob (int, Blob) 3.0 Yes  

void updateBlob (String, Blob) 3.0 Yes  

void updateBoolean (int, 
boolean) 

2.0 Core Yes  

void updateBoolean (String, 
boolean) 

2.0 Core Yes  

void updateByte (int, byte) 2.0 Core Yes  

void updateByte (String, byte) 2.0 Core Yes  

void updateBytes (int, byte []) 2.0 Core Yes  

void updateBytes (String, 
byte []) 

2.0 Core Yes  

void updateCharacterStream 
(int, Reader, int) 

2.0 Core Yes  

void updateCharacterStream 
(String, Reader, int) 

2.0 Core Yes  

void updateClob (int, Clob) 3.0 No  

void updateClob (String, Clob) 3.0 No  

void updateDate (int, Date) 2.0 Core Yes  

void updateDate (String, 
Date) 

2.0 Core Yes  

void updateDouble (int, 
double) 

2.0 Core Yes  

void updateDouble (String, 
double) 

2.0 Core Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



532 Appendix C  JDBC Support  
void updateFloat (int, float) 2.0 Core Yes  

void updateFloat (String, 
float) 

2.0 Core Yes  

void updateInt (int, int) 2.0 Core Yes  

void updateInt (String, int) 2.0 Core Yes  

void updateLong (int, long) 2.0 Core Yes  

void updateLong (String, 
long) 

2.0 Core Yes  

void updateNull (int) 2.0 Core Yes  

void updateNull (String) 2.0 Core Yes  

void updateObject (int, 
Object) 

2.0 Core Yes  

void updateObject (String, 
Object) 

2.0 Core Yes  

void updateObject (int, 
Object, int) 

2.0 Core Yes  

void updateObject (String, 
Object, int) 

2.0 Core Yes  

void updateRef (int, Ref) 3.0 No Throws “unsupported 
method” exception.

void updateRef (String, Ref) 3.0 No Throws “unsupported 
method” exception.

void updateRow () 2.0 Core Yes  

void updateShort (int, short) 2.0 Core Yes  

void updateShort (String, 
short) 

2.0 Core Yes  

void updateString (int, String) 2.0 Core Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 533
ResultSetMetaData Object

void updateString (String, 
String) 

2.0 Core Yes  

void updateTime (int, Time) 2.0 Core Yes  

void updateTime (String, 
Time) 

2.0 Core Yes  

void updateTimestamp (int, 
Timestamp) 

2.0 Core Yes  

void updateTimestamp 
(String, Timestamp) 

2.0 Core Yes  

boolean wasNull () 1.0 Yes  

ResultSet Object  (cont.)

Methods

Version
Introduced Supported Comments

ResultSetMetaData 
Object 
Methods

Version
Introduced Supported Comments

String getCatalogName (int) 1.0 Yes The behavior of this method 
is data store specific.

String getColumnClassName 
(int) 

2.0 Core Yes  

int getColumnCount () 1.0 Yes  

int getColumnDisplaySize (int) 1.0 Yes  

String getColumnLabel (int) 1.0 Yes  

String getColumnName (int) 1.0 Yes  

int getColumnType (int) 1.0 Yes  

String getColumnTypeName 
(int) 

1.0 Yes  

int getPrecision (int) 1.0 Yes  
SequeLink Developer’s Reference



534 Appendix C  JDBC Support  
RowSet Object

int getScale (int) 1.0 Yes  

String getSchemaName (int) 1.0 Yes The behavior of this method 
is data store specific. 

String getTableName (int) 1.0 Yes The behavior of this method 
is data store specific.

boolean isAutoIncrement (int) 1.0 Yes  

boolean isCaseSensitive (int) 1.0 Yes  

boolean isCurrency (int) 1.0 Yes  

boolean isDefinitelyWritable 
(int) 

1.0 Yes  

int isNullable (int) 1.0 Yes  

boolean isReadOnly (int) 1.0 Yes  

boolean isSearchable (int) 1.0 Yes  

boolean isSigned (int) 1.0 Yes  

boolean isWritable (int) 1.0 Yes  

ResultSetMetaData 
Object  (cont.)

Methods

Version
Introduced Supported Comments

RowSet Object 
Methods

Version
Introduced Supported Comments

(all) 2.0 
Optional

No
SequeLink Developer’s Reference



Supported Functionality 535
SavePoint Object

Serializable Object

Statement Object

SavePoint Object 
Methods

Version
Introduced Supported Comments

int getSavepointId () 3.0 Yes Savepoint not supported on 
Informix, JDBC Socket, and 
ODBC Socket Server servers. 

String getSavepointName () 3.0 Yes Savepoint not supported on 
Informix, JDBC Socket, and 
ODBC Socket Server servers. 

Serializable Object 
Methods

Version
Introduced Supported Comments

(N/A) java.io Yes Implemented by 
SequeLinkDataSource.

Statement Object 
Methods

Version
Introduced Supported Comments

void addBatch (String) 2.0 Core Yes  

void cancel () 1.0 Yes Cancel can be used to cancel a 
function running 
synchronously on a 
statement, using a different 
thread. Whether Cancel will 
actually cancel the running 
function depends on the data 
store.

void clearBatch () 2.0 Core Yes  
SequeLink Developer’s Reference



536 Appendix C  JDBC Support  
void clearWarnings () 1.0 Yes  

void close () 1.0 Yes  

boolean execute (String) 1.0 Yes  

boolean execute (String, int) 3.0 No Throws “unsupported 
method” exception.

boolean execute (String, int []) 3.0 No Throws “unsupported 
method” exception.

boolean execute (String, 
String []) 

3.0 No Throws “unsupported 
method” exception.

int [] executeBatch () 2.0 Core Yes  

ResultSet executeQuery 
(String) 

1.0 Yes  

int executeUpdate (String) 1.0 Yes  

int executeUpdate (String, int) 3.0 No Throws “unsupported 
method” exception.

int executeUpdate (String, int 
[]) 

3.0 No Throws “unsupported 
method” exception.

int executeUpdate (String, 
String []) 

3.0 No Throws “unsupported 
method” exception.

Connection getConnection () 2.0 Core Yes  

int getFetchDirection () 2.0 Core Yes SequeLink supports this 
method, but ignores this hint 
provided by the application. 

int getFetchSize () 2.0 Core Yes SequeLink supports this 
method, but ignores this hint 
provided by the application.

ResultSet getGeneratedKeys () 3.0 No Throws “unsupported 
method” exception.

int getMaxFieldSize () 1.0 Yes  

Statement Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



Supported Functionality 537
int getMaxRows () 1.0 Yes  

boolean getMoreResults () 1.0 Yes  

boolean getMoreResults (int) 3.0 No Throws “unsupported 
method” exception.

int getQueryTimeout () 1.0 Yes Returns 0 for DB2 UDB and 
Informix. 

ResultSet getResultSet () 1.0 Yes  

int getResultSetConcurrency () 2.0 Core Yes  

int getResultSetHoldability () 3.0 No Throws “unsupported 
method” exception.

int getResultSetType () 2.0 Core Yes  

int getUpdateCount () 1.0 Yes  

SQLWarning getWarnings () 1.0 Yes  

void setCursorName (String) 1.0 No  

void setEscapeProcessing 
(boolean) 

1.0 Yes  

void setFetchDirection (int) 2.0 Core Yes  

void setFetchSize (int) 2.0 Core Yes  

void setMaxFieldSize (int) 1.0 Yes  

void setMaxRows (int) 1.0 Yes  

void setQueryTimeout (int) 1.0 Yes Support for JDBC and ODBC 
Socket Servers is dependent 
on the driver it loads.

Statement Object  (cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



538 Appendix C  JDBC Support  
Struct Object

XAConnection Object

XADataSource Object

Struct Object 
Methods

Version
Introduced Supported Comments

(all) 2.0 No Struct objects are neither 
exposed, nor taken as 
input.

XAConnection Object 
Methods

Version
Introduced Supported Comments

XAResource getXAResource() 2.0 
Optional

Yes

XADataSource Object 
Methods Version

Introduced Supported Comments

int getLoginTimeout () 2.0 
Optional

Yes  

PrintWriter getLogWriter () 2.0 
Optional

Yes  
SequeLink Developer’s Reference



Supported Functionality 539
XAConnection 
getXAConnection () 

2.0 
Optional

Yes The behavior of these 
methods depends on whether 
distributed/XA transactions 
are supported by the 
SequeLink Server. If not 
supported, the JDBC driver will 
throw an "XA-Open failed 
with return code -3" 
exception. 

XAConnection 
getXAConnection (String, 
String) 

2.0 
Optional

Yes The behavior of these 
methods depends on whether 
distributed/XA transactions 
are supported by the 
SequeLink Server. If not 
supported, the JDBC driver will 
throw an "XA-Open failed 
with return code -3" 
exception. 

void setLoginTimeout (int) 2.0 
Optional

Yes  

void setLogWriter 
(PrintWriter) 

2.0 
Optional

Yes  

XADataSource Object  
(cont.)

Methods

Version
Introduced Supported Comments
SequeLink Developer’s Reference



540 Appendix C  JDBC Support  
SequeLink Developer’s Reference



541
D JDBC Connection Pool 
Manager

Connection pooling means that connections are reused rather 
than created each time a connection is requested. Your 
application can use connection pooling through the DataDirect 
Connection Pool Manager.

Connection pooling is performed in the background and does 
not affect how an application is coded; however, the application 
must use a DataSource object (an object implementing the 
DataSource interface) to obtain a connection instead of using 
the DriverManager class. A class implementing the DataSource 
interface may or may not provide connection pooling. A 
DataSource object registers with a JNDI naming service. Once a 
DataSource object is registered, the application retrieves it from 
the JNDI naming service in the standard way. 

Creating a Data Source
This section contains sample code that is provided as an example 
of using the DataDirect Connection Pool Manager to allow your 
applications to handle connection pooling.
SequeLink Developer’s Reference



542 Appendix D  JDBC Connection Pool Manager  
Creating a DataDirect SequeLink® Data 
Source Object

The following example shows how to create a SequeLink for JDBC 
DataSource object and register it to a JNDI naming service. The 
DataSource class is provided by your SequeLink for JDBC driver and 
is database-independent. In the following example we use 
Oracle, so the DataSource class is SequeLinkDataSource. See 
Chapter 8 “Developing JDBC Applications” on page 327 for the 
name of the DataSource class.

If you want the client application to use non-pooled connections 
(see “Connecting to a Data Source” on page 547), you must 
modify this example so that the JNDI entry is registered using the 
name jdbc/SparkyOracle.

If you want the client application to use pooled connections, the 
JNDI entry must map to the DataSource of the DataDirect 
Connection Pool Manager. Therefore, you must register two data 
sources:

■ The Connection Pool Manager's Data Source using the 
example in “Creating a Data Source Using the DataDirect® 
Connection Pool Manager” on page 544. This process 
registers the data source using the JNDI entry 
jdbc/SparkyOracle. The Connection Pool Manager will create 
physical connections using the JNDI Entry 
jdbc/SequeLinkSparkyOracle.

■ A SequeLink DataSource, using the following example to 
register the DataSource using the JNDI entry 
jdbc/SequeLinkSparkyOracle. 
SequeLink Developer’s Reference



Creating a Data Source 543
//************************************************************************
//
// This code creates a SequeLink for JDBC data source and registers it to a 
// JNDI naming service. This SequeLink for JDBC data source uses the 
// DataSource implementation provided by the SequeLink for JDBC Driver.
//
// If you want users to use non-pooled connections, you must modify this
// example so that it registers the SequeLink Data Source using the JNDI
// entry <jdbc/SparkyOracle>.
//
// If you want users to use pooled connections, use this example as is 
// to register the SequeLink Data Source using the JNDI entry
// <jdbc/SequeLinkSparkyOracle>. Also, use the example in the next section
// to register the Connection Pool Manager's Data Source using the JNDI entry
// <jdbc/SparkyOracle>
//
//************************************************************************

// From SequeLink for JDBC:
import com.ddtek.jdbcx.sequelink.SequeLinkDataSource;

import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Hashtable;

public class SequeLinkDataSourceRegisterJNDI
{

public static void main(String argv[])
{

try {
// Set up data source reference data for naming context:
// ----------------------------------------------------
// Create a class instance that implements the interface
// ConnectionPoolDataSource
OracleDataSource ds = new SequeLinkDataSource();

ds.setDescription(
"Oracle on Sparky - SequeLink Data Source");

ds.setServerName("sparky");
SequeLink Developer’s Reference



544 Appendix D  JDBC Connection Pool Manager  
ds.setPortNumber(19996);
ds.setUser("scott");
ds.setPassword("test");

 // Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource");
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
ctx.bind("jdbc/SequeLinkSparkyOracle", ds);

} catch (Exception e) {
System.out.println(e);
return;

}
} // Main

} // class SequeLinkDataSourceRegisterJNDI

Creating a Data Source Using the 
DataDirect® Connection Pool Manager

The following Java code example creates a data source for JDBC 
and registers it to a JNDI naming service. The 
PooledConnectionDataSource class is provided by the DataDirect 
com.ddtek.pool package. In the following code example, the 
PooledConnectionDataSource object references a JDBC data 
source object. Therefore, the example performs a lookup by 
setting the DataSourceName attribute to the JNDI name of a 
registered pooled data source (in this example, 
jdbc/SequeLinkSparkyOracle, which is the JDBC DataSource object 
created in section “Creating a DataDirect SequeLink® Data 
Source Object” on page 542).
SequeLink Developer’s Reference



Creating a Data Source 545
Client applications that use this data source must perform a 
lookup using the registered JNDI name (jdbc/SparkyOracle in this 
example).

//************************************************************************
//
// This code creates a data source and registers it to a JNDI naming 
// service. This data source uses the PooledConnectionDataSource 
// implementation provided by the DataDirect com.ddtek.pool package.
//
// This data source refers to a previously registered pooled data source.
//
// This data source registers its name as <jdbc/SparkyOracle>.
// Client applications using pooling must perform a lookup for this name.
//
//************************************************************************

// From the DataDirect connection pooling package:
import com.ddtek.pool.PooledConnectionDataSource;

import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Hashtable;

public class PoolMgrDataSourceRegisterJNDI
{

public static void main(String argv[])
{

try {
// Set up data source reference data for naming context:
// ----------------------------------------------------
// Create a pooling manager's class instance that implements
// the interface DataSource
PooledConnectionDataSource ds = new PooledConnectionDataSource();

ds.setDescription("Sparky Oracle - Oracle Data Source");

// Refer to a previously registered pooled data source to access 
// a ConnectionPoolDataSource object
SequeLink Developer’s Reference



546 Appendix D  JDBC Connection Pool Manager  
ds.setDataSourceName("jdbc/SequeLinkSparkyOracle");

// The pool manager will be initiated with 5 physical connections
ds.setInitialPoolSize(5);

// The pool maintenance thread will make sure that there are 
// at least 5 physical connections available
ds.setMinPoolSize(5);

// The pool maintenance thread will check that there are no more
// than 10 physical connections available
ds.setMaxPoolSize(10);

// The pool maintenance thread will wake up and check the pool
// every 20 seconds
ds.setPropertyCycle(20);

// The pool maintenance thread will remove physical connections
// that are inactive for more than 300 seconds
ds.setMaxIdleTime(300);

// Set tracing off since we choose not to see output listing 
// of activities on a connection
ds.setTracing(false);

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource");
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
// for application to use
ctx.bind("jdbc/SparkyOracle", ds);

} catch (Exception e) {
System.out.println(e);
return;

}

SequeLink Developer’s Reference



Connecting to a Data Source 547
} // Main
} // class PoolMgrDataSourceRegisterJNDI

Connecting to a Data Source
Because an application uses connection pooling by referencing 
the JNDI name of a registered PooledConnectionDataSource 
object, code changes are not required for an application to use 
connection pooling. 

The following example shows Java code that looks up and uses 
the JNDI-registered data source for connections. You specify the 
JNDI lookup name for the data source you created (as described 
in “Creating a Data Source Using the DataDirect® Connection 
Pool Manager” on page 544).

//********************************************************************
// 
// Test program to look up and use a JNDI-registered data source.
//
// To run the program, specify the JNDI lookup name for the 
// command-line argument, for example:
//
// java  TestDataSourceApp  
//
//********************************************************************
import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import java.util.Hashtable;

public class TestDataSourceApp
{

public static void main(String argv[])
{

String str JNDILookupName = "jdbc/SparkyOracle";
SequeLink Developer’s Reference



548 Appendix D  JDBC Connection Pool Manager  
// Hard-code the JNDI entry, the application does not need to change

DataSource ds = null;
Connection con = null;
Context ctx = null;
Hashtable env = null;

long nStartTime, nStopTime, nElapsedTime;

// Set up environment for creating InitialContext object
env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource");

try {
// Retrieve the DataSource object that bound to the logical
// lookup JNDI name
ctx = new InitialContext(env);
ds = (DataSource) ctx.lookup(strJNDILookupName);

} catch (NamingException eName) {
System.out.println("Error looking up " + 

strJNDILookupName + ": " +eName);
System.exit(0);

}

int numOfTest = 4;
int [] nCount = {100, 100, 1000, 3000};

for (int i = 0; i < numOfTest; i ++) {
// Log the start time
nStartTime = System.currentTimeMillis();
for (int j = 1; j <= nCount[i]; j++) {

// Get Database Connection
try {

con = ds.getConnection("scott", "tiger");
// Do something with the connection
// ...

// Close Database Connection
if (con != null) con.close();
SequeLink Developer’s Reference



Connecting to a Data Source 549
} catch (SQLException eCon) {
System.out.println("Error getting a connection: " + eCon);
System.exit(0);

} // try getConnection
} // for j loop

// Log the end time
nStopTime = System.currentTimeMillis();

// Compute elapsed time
nElapsedTime = nStopTime - nStartTime;
System.out.println("Test number " + i + ": looping " +

nCount[i] + " times");
System.out.println("Elapsed Time: " + nElapsedTime + "\n");

} // for i loop

// All done
System.exit(0);

} // Main
} // TestDataSourceApp

NOTE: The JDBC DataSource object class implements the 
DataSource interface for non-pooling in addition to 
ConnectionPoolDataSource for pooling. To use non-pooled 
connections, modify the example in “Creating a DataDirect 
SequeLink® Data Source Object” on page 542 so that it registers 
the SequeLink Data Source using the JNDI entry

 <jdbc/SparkyOracle>

You can then run the TestDataSourceApp without any 
modification:

java TestDataSourceApp 
SequeLink Developer’s Reference



550 Appendix D  JDBC Connection Pool Manager  
Closing the Connection Pool
To ensure that the connection pool is closed correctly when an 
application stops running, the application must notify the 
DataDirect Connection Pool Manager when it stops. If your 
application runs on JRE 1.3 or higher, notification occurs 
automatically, so the application does not have to send 
notification. For JRE 1.2, the application must explicitly notify the 
pool manager of termination using a special close method 
defined by DataDirect as shown in the following example:

if (ds instanceof com.ddtek.pool.PooledConnectionDataSource){
            com.ddtek.pool.PooledConnectionDataSource pcds = 
(com.ddtek.pool.PooledConnectionDataSource) ds;
            pcds.close();
            }
SequeLink Developer’s Reference



551
E Troubleshooting Using 
DataDirect Spy™

DataDirect Spy logs detailed information about calls issued by a 
running application to the JDBC driver. This information can help 
you troubleshoot problems when they occur.

Generating a DataDirect Spy™ Log 
When you enable DataDirect Spy for a connection, you can 
customize DataDirect Spy logging for your needs by setting one 
or multiple options for DataDirect Spy. See Chapter 7 “Tracking 
JDBC Calls” on page 315 for information about using DataDirect 
Spy and instructions on enabling and customizing logging. 

Turning On and Off DataDirect Spy™ 
Logging

Once DataDirect Spy logging is enabled for a connection, you 
can turn on and off the logging at runtime using the 
setEnableLogging method in the 
com.ddtek.jdbc.extensions.ExtLogControl interface. When 
DataDirect Spy logging is enabled, all Connection objects 
returned to an application provide an implementation of the 
ExtLogControl interface.
SequeLink Developer’s Reference



552 Appendix E  Troubleshooting Using DataDirect Spy™  
For example, the following code turns off logging using 
setEnableLogging(false):

import com.ddtek.jdbc.extensions.*

// Get Database Connection
Connection con = DriverManager.getConnection
   ("jdbc:sequelink://QANT:4003;User=TEST;Password=secret;
      SpyAttributes=(log=(file)/tmp/spy.log");

((ExtLogControl) con).setEnableLogging(false);
...

The setEnableLogging method only turns on and off logging if 
DataDirect Spy logging has already been enabled for a 
connection; it does not set or change DataDirect Spy attributes. 
See “Enabling DataDirect Spy™” on page 316 for information 
about enabling and customizing DataDirect Spy logging. 

ExtLogControl Class

ExtLogControl Class
Methods Description

void setEnableLogging (boolean) If DataDirect Spy was enabled when the 
connection was created, you can turn on or off 
DataDirect Spy logging at runtime using this 
method. If true, logging is turned on. If false, 
logging is turned off. If DataDirect Spy logging 
was not enabled when the connection was 
created, calling this method has no effect.

boolean getEnableLogging () Indicates whether DataDirect Spy logging was 
enabled when the connection was created and 
whether logging is turned on. If the returned 
value is true, logging is turned on. If the returned 
value is false, logging is turned off.
SequeLink Developer’s Reference



Generating a DataDirect Spy™ Log 553
DataDirect Spy™ Log Example

The following example shows a DataDirect Spy log. The numbers 
in bold superscript are note indicators that correspond to the 
notes following the example. They provide explanations for the 
referenced text to help you understand the content of your own 
DataDirect Spy logs.

All rights reserved.1

registerDriver:driver[className=com.ddtek.jdbcspy.SpyDriver,
context=null,com.ddtek.jdbcspy.SpyDriver@1ec49f]2

*Driver.connect(jdbc:spy:{jdbc:sequelink://QANT:4003;databaseName=Oracle;})
    trying driver[className=com.ddtek.jdbcspy.SpyDriver,
context=null,com.ddtek.jdbcspy.SpyDriver@1ec49f]3

spy>> Driver.connect(String url, Properties info)
spy>> url = jdbc:spy:{jdbc:sequelink://QANT:4003;databaseName=Oracle;
OSUser=qauser;OSPassword=null12}
spy>> info = {password=tiger, user=scott}
spy>> OK (Connection[1])4

getConnection returning driver[className=com.ddtek.jdbcspy.SpyDriver,
context=null,com.ddtek.jdbcspy.SpyDriver@1ec49f]5

spy>> Connection[1].getWarnings()
spy>> OK6

spy>> Connection[1].createStatement
spy>> OK (Statement[1])7

spy>> Statement[1].executeQuery(String sql)
spy>> sql = select empno,ename,job from emp where empno=7369
spy>> OK (ResultSet[1])8

spy>> ResultSet[1].getMetaData()
spy>> OK (ResultSetMetaData[1])9

spy>> ResultSetMetaData[1].getColumnCount()
spy>> OK (3)10
SequeLink Developer’s Reference



554 Appendix E  Troubleshooting Using DataDirect Spy™  
spy>> ResultSetMetaData[1].getColumnLabel(int column)
spy>> column = 1
spy>> OK (EMPNO)11

spy>> ResultSetMetaData[1].getColumnLabel(int column)
spy>> column = 2
spy>> OK (ENAME)12

spy>> ResultSetMetaData[1].getColumnLabel(int column)
spy>> column = 3
spy>> OK (JOB)13

spy>> ResultSet[1].next()
spy>> OK (true)14

spy>> ResultSet[1].getString(int columnIndex)
spy>> columnIndex = 1
spy>> OK (7369)15

spy>> ResultSet[1].getString(int columnIndex)
spy>> columnIndex = 2
spy>> OK (SMITH)16

spy>> ResultSet[1].getString(int columnIndex)
spy>> columnIndex = 3
spy>> OK (CLERK)17

spy>> ResultSet[1].next()
spy>> OK (false)18

spy>> ResultSet[1].close()
spy>> OK19

spy>> Connection[1].close()
spy>> OK20
SequeLink Developer’s Reference



Generating a DataDirect Spy™ Log 555
NOTES:

1: The Spy driver is registered. The spy>> prefix indicates that 
this line has been logged by Spy.

2: The JDBC Driver Manager logs a message each time a JDBC 
driver is registered.

3: This is the logging of the JDBC Driver Manager. It logs a 
message each time a JDBC application makes a connection.

4: The application connects with the specified URL. The User 
Name and Password are specified using properties.

5: This is the logging of the JDBC Driver Manager. It logs a 
message each time a successful connection is made.

6: The application checks to see if there are any warnings. In this 
example, no warnings are present.

7 and 8: The statement “select empno,ename,job from emp 
where empno=7369” is created.

9, 10, 11, 12, and 13: Some metadata is requested.

14, 15, 16, and 17: The first row is fetched.

18: The application attempts to fetch the second row, but the 
database returned only one row for this query.

19: After fetching all data, the result set is closed.

20: The application finishes and disconnects.
SequeLink Developer’s Reference



556 Appendix E  Troubleshooting Using DataDirect Spy™  
SequeLink Developer’s Reference



557
F Developing ODBC 
Applications for 
Internationalization

This appendix provides an overview of how to design your 
applications for internationalization. Refer to the SequeLink 
Administrator’s Guide for information about 
internationalization, localization, and Unicode.

Software that has been designed for internationalization can 
manage different linguistic and cultural conventions 
transparently and without additional modification. Software 
that has been designed for localization includes language 
translation, cultural data, and other components for meeting 
regional market requirements.

Although Unicode was developed to expand the number of 
available characters and ultimately to simplify data access in a 
world-wide setting, these goals have not been fully realized. The 
character set has been expanded, but data access still involves a 
number of conversions. This is because Unicode must be able to 
work with existing ANSI applications and because database 
vendors make data available in a number of different Unicode 
encoding formats, including UCS-2, UTF-16, and UTF-8.

ODBC drivers and the ODBC Driver Manager are the components 
responsible for processing function call and data encoding 
conversions. Developers of these components must code them to 
be able to recognize the type of function call and the various 
Unicode encoding schemes, and to make the appropriate 
conversions. The drivers and Driver Manager must make these 
conversions; Unicode data in a database can be accessed only by 
W function calls, and ANSI data can only be accessed by 
standard, non-W function calls. 
SequeLink Developer’s Reference



558 Appendix F  Developing ODBC Applications for Internationalization  
Application developers, on the other hand, need only consider 
whether a Unicode or ANSI application is most appropriate for a 
particular circumstance and code their function calls 
appropriately-W function calls, such as SQLConnectW, for 
Unicode, or standard function calls, such as SQLConnect, for ANSI. 
They can also code an application to switch dynamically between 
Unicode and ANSI calls.

As Unicode applications and data become more prevalent, and 
more agreements are reached concerning encoding and 
implementation of Unicode, data access will become more 
efficient as the need for function call and data conversion is 
reduced.

References:

Java Internationalization: An Overview, John O’Connor, 
http://developer.java.sun.com/developer/technicalArticles/Intl/
IntlIntro/

Unicode Support in the Solaris Operating Environment, May 
2000, Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, 
CA 94303-4900
SequeLink Developer’s Reference



Unicode and Non-Unicode ODBC Drivers 559
Unicode and Non-Unicode ODBC Drivers
The way in which a driver handles function calls from a Unicode 
application determines whether it is called a Unicode driver.

Function Calls

Instead of the standard ANSI SQL function calls, such as 
SQLConnect, Unicode applications employ W (wide) function 
calls, such as SQLConnectW. If the driver is a true Unicode driver, 
it can understand the "W" function calls and the Driver Manager 
can pass them through to the driver without conversion to ANSI. 
SequeLink Client for ODBC driver is a Unicode driver.

Non-Unicode drivers cannot understand the W function calls; 
therefore, the Driver Manager must convert them to ANSI calls 
before sending them to the driver. The Driver Manager 
determines the ANSI encoding system to which it must convert 
by referring to a code page. On Windows, this reference is to the 
Active Code Page. On Linux/UNIX, it is to the IANAAppCodePage 
connection string attribute, part of the odbc.ini file.

The following examples illustrate the conversion streams. The 
Driver Manager on Linux and UNIX prior to SequeLink Client 6.0 
for ODBC assumes Unicode applications and Unicode drivers that 
use the same encoding (UTF-8). For SequeLink Client 6.0 for ODBC 
on Linux/UNIX, the Driver Manager determines the type of 
Unicode encoding of both the application and the driver, and 
performs conversions when the application and driver each use 
different types of encoding. This determination is made by 
checking two ODBC Environment Attributes: 
SQL_ATTR_APP_UNICODE_TYPE and 
SQL_ATTR_DRIVER_UNICODE_TYPE.
SequeLink Developer’s Reference



560 Appendix F  Developing ODBC Applications for Internationalization  
Unicode Application with the SequeLink ODBC 
Driver

An operation involving a Unicode application and the SequeLink 
Unicode driver is more efficient because no function conversion is 
involved. If the application and the driver use different types of 
encoding, there is some conversion overhead.

Windows

1 The Unicode application sends UCS-2 or UTF-16 function calls 
to the Driver Manager.

2 The Driver Manager does not have to convert the UCS-2 or 
UTF-16 function calls to ANSI. It passes the Unicode function 
call to the SequeLink driver.

3 The driver returns UCS-2 or UTF-16 argument values to the 
Driver Manager.

4 The Driver Manager returns UCS-2 or UTF-16 function calls to 
the application.

Linix/UNIX: SequeLink® Client 5.5 for ODBC

1 The Unicode application sends UTF-8 function calls to the 
Driver Manager.

2 The Driver Manager does not have to convert the UTF-8 
function calls to ANSI. It passes the Unicode function call to 
the SequeLink for ODBC driver.

3 The driver returns UTF-8 argument values to the Driver 
Manager.

4 The Driver Manager returns UTF-8 function calls to the 
application.
SequeLink Developer’s Reference



Unicode and Non-Unicode ODBC Drivers 561
Linux/UNIX: SequeLink® Client 6.0 for ODBC

1 The Unicode application sends function calls to the Driver 
Manager. The Driver Manager expects these function calls to 
be UTF-8 or UTF-16 based on the value of the 
SQL_ATTR_APP_UNICODE_TYPE attribute.

2 The Driver Manager passes the Unicode function call to the 
SequeLink for ODBC driver. The Driver Manager must perform 
function call conversions if the 
SQL_ATTR_APP_UNICODE_TYPE is different from 
SQL_ATTR_DRIVER_UNICODE_TYPE.

3 The driver returns argument values to the Driver Manager. 
Whether these are UTF-8 or UTF-16 argument values is based 
on the value of the SQL_ATTR_DRIVER_UNICODE_TYPE 
attribute.

4 The Driver Manager returns appropriate function calls to the 
application, based on the SQL_ATTR_DRIVER_UNICODE_TYPE 
attribute. The Driver Manager must perform function call 
conversions if the SQL_ATTR_APP_UNICODE_TYPE is different 
from SQL_ATTR_DRIVER_UNICODE_TYPE.

Non-Unicode Application with the SequeLink® 
ODBC Driver 

An operation involving a non-Unicode application and the 
SequeLink Unicode driver incurs some overhead because 
function conversion is involved.

Windows

1 The non-Unicode application sends ANSI function calls to the 
Driver Manager.

2 The Driver Manager converts the ANSI function calls to 
UCS-2/UTF-16. It passes the Unicode function calls with 
SequeLink Developer’s Reference



562 Appendix F  Developing ODBC Applications for Internationalization  
UCS-2/UTF-16 argument values to the SequeLink for ODBC 
driver.

3 The SequeLink driver returns UCS-2/UTF-16 argument values 
to the Driver Manager.

4 The Driver Manager converts the UCS-2/UTF-16 argument 
values to ANSI and returns these argument values to the 
application.

Linux/UNIX: SequeLink® Client for ODBC 5.5

1 The non-Unicode application sends ANSI function calls to the 
Driver Manager.

2 The Driver Manager converts the ANSI function calls to UTF-8. 
It passes the Unicode function calls with UTF-8 argument 
values to the SequeLink for ODBC driver. 

3 The SequeLink ODBC driver returns UTF-8 argument values to 
the Driver Manager.

4 The Driver Manager converts the UTF-8 argument values to 
ANSI and returns them to the application.

Linux/UNIX: SequeLink® Client for ODBC 6.0

1 The non-Unicode application sends ANSI function calls to the 
Driver Manager. The Driver Manager expects these function 
calls to be UTF-8 or UTF-16 based on the value of the 
SQL_ATTR_APP_UNICODE_TYPE attribute. Because 
non-Unicode applications will not set this attribute, the 
default of UTF-8 is used for the conversion.

2 The Driver Manager converts the ANSI function calls to UTF-8. 
It passes the Unicode function calls with UTF-8 argument 
values to the SequeLink ODBC driver.
SequeLink Developer’s Reference



Unicode and Non-Unicode ODBC Drivers 563
3 The SequeLink for ODBC driver returns argument values to the 
Driver Manager. The value of the 
SQL_ATTR_APP_UNICODE_TYPE attribute determines 
whether these argument values are UTF-8 or UTF-16.

4 The Driver Manager converts the UTF-8 or UTF-16 argument 
values to ANSI and returns them to the application.

Data

ODBC C data types are used to indicate the type of C buffers that 
store data in the application. This is in contrast to SQL data 
types, which are mapped to native database types to store data 
in a database (data source). ANSI applications bind to the C data 
type SQL_C_CHAR and expect to receive information bound in 
the same way. Similarly, Unicode applications bind to the C data 
type SQL_C_WCHAR (wide data type) and expect to receive 
information bound in the same way. Any ODBC 3.5 compliant 
driver must be capable of supporting SQL_C_CHAR and 
SQL_C_WCHAR so that it can return data to both ANSI and 
Unicode applications.

When the driver communicates with the database, it must use 
ODBC SQL data types, such as SQL_CHAR and SQL_WCHAR, that 
map to native database types. In the case of ANSI data and an 
ANSI database, the driver receives data bound to SQL_C_CHAR 
and passes it to the database as SQL_CHAR. The same is true of 
SQL_C_WCHAR and SQL_WCHAR in the case of Unicode data 
and a Unicode database.

When data from the application and the data stored in the 
database differ in format, for example, ANSI application data 
and Unicode database data, then conversions must be 
performed. The driver cannot receive SQL_C_CHAR data and pass 
it to a Unicode database that expects to receive a SQL_WCHAR 
data type. The driver or the Driver Manager must, therefore, be 
SequeLink Developer’s Reference



564 Appendix F  Developing ODBC Applications for Internationalization  
capable of converting SQL_C_CHAR to SQL_WCHAR, and vice 
versa.

The simplest cases of data communication are when the 
application, the driver, and the database are all of the same type 
and encoding, ANSI to ANSI to ANSI or Unicode to Unicode to 
Unicode. There is no data conversion involved in these instances.

When there is a difference in types of data, it must be converted 
from one type to another at the driver or Driver Manager level, 
which involves additional overhead. 

The Unicode SequeLink driver, NOT the Driver Manager, converts 
SQL_C_CHAR (ANSI) data to SQL_WCHAR (Unicode) data, and vice 
versa, as well as SQL_C_WCHAR (Unicode) data to SQL_CHAR 
(ANSI) data, and vice versa.

The driver must use client code page information (Active Code 
Page on Windows, IANAAppCodePage attribute on Linux/UNIX) 
to determine which ANSI codepage to use for the conversions.
SequeLink Developer’s Reference



Developing ODBC Applications on Linux/UNIX 565
Developing ODBC Applications on Linux/UNIX
It is important to remember some differences in developing 
applications on Linux/UNIX:

■ “Using Double-Byte Character Sets on Linux/UNIX” on 
page 565

■ “Using UTF-16 for your Applications on Linux/UNIX” on 
page 566

Using Double-Byte Character Sets on 
Linux/UNIX

The SequeLink for ODBC UNIX drivers can use double-byte 
character sets. The drivers normally use the character set defined 
by the default locale C unless explicitly pointed to another 
character set. The default locale C corresponds to the 7-bit 
USASCII character set. 

Use the following procedure to define a different character set 
for the locale:

1 Add the following line at the very beginning of applications 
that use double-byte character sets:

setlocale (LC_ALL, "");

The setlocale(LC_ALL, "") function selects the program's 
entire locale and may be used to change the program's 
entire local. The "" corresponds to the value of the 
associated environment variables, LC_* and LANG. If this line 
is not present, the default locale C is used. If this line is 
present and if LANG or LC_TYPE is set, the locale character 
set is determined based on these values. LC_TYPE overwrites 
the LANG setting.
SequeLink Developer’s Reference



566 Appendix F  Developing ODBC Applications for Internationalization  
If LANG and LC_TYPE is either not set or is set to NULL, the 
default locale C is used. 

2 Set the LC_CTYPE and/or LANG environment variable to the 
appropriate character set. The Linux/UNIX command locale 
-a can be used to display all supported character sets on your 
system.

For more information, see the man pages for locale and setlocale. 

The SequeLink Client 6.0 for ODBC ships the utility ivslkcheckcp to 
check the following information: 

■ What value to choose for the IANAAppCodePage
■ What code page will be used by your application

Using UTF-16 for your Applications on 
Linux/UNIX

Because the DataDirect Driver Manager allows applications to use 
either UTF-8 or UTF-16 Unicode encoding, this means that 
applications written in UTF-16 for Windows platforms can now 
also be used on Linux and UNIX platforms.

The Driver Manager assumes a default of UTF-8 applications; 
therefore, two things must occur for it to determine that the 
application is UTF-16:

■ The definition of SQLWCHAR in the ODBC header files must 
be switched from char * to short *. To do this, the application 
uses #define SQLWCHARSHORT.

■ The application must set the ODBC Environment Attribute 
SQL_ATTR_APP_UNICODE_TYPE to a value of 
SQL_DD_CP_UTF16.
SequeLink Developer’s Reference



The Driver Manager on Linux/UNIX 567
The Driver Manager on Linux/UNIX
The Driver Manager on Linux/UNIX shipped with DataDirect 
SequeLink for ODBC 6.0 determines the type of Unicode encoding 
of both the application and the driver, and performs conversions 
when the application and driver each use different types of 
encoding.

Unicode ODBC drivers on Linux/UNIX can be written with either 
UTF-8 or UTF-16 encoding. This would normally mean that a 
UTF-8 application could not work with a UTF-16 driver, and, 
conversely, that a UTF-16 application could not work with a 
UTF-8 driver. To accomplish the goal of being able to use a single 
UTF-8 or UTF-16 application with either a UTF-8 or UTF-16 driver, 
the Driver Manager must be able to determine with which type 
of encoding the application and driver are written and, if 
necessary, convert them accordingly.

To make this determination, the Driver Manager supports two 
ODBC Environment Attributes: SQL_ATTR_APP_UNICODE_TYPE 
and SQL_ATTR_DRIVER_UNICODE_TYPE, each with possible 
values of SQL_DD_CP_UTF8 and SQL_DD_CP_UTF16. The default 
value is SQL_DD_CP_UTF8.

There are several steps the Driver Manager must undertake 
before actually connecting to the driver to achieve this goal.

1 Determine the application Unicode type: Applications that 
want to use UTF-16 encoding for their string types need to 
set SQL_ATTR_APP_UNICODE_TYPE accordingly before 
connecting to any driver. When the Driver Manager reads 
this attribute, it expects all string arguments to the ODBC W 
functions to be in the specified Unicode. This attribute also 
indicates how the SQL_C_WCHAR buffers must be encoded.
SequeLink Developer’s Reference



568 Appendix F  Developing ODBC Applications for Internationalization  
2 Determine the driver Unicode type: The Driver Manager must 
determine through which Unicode encoding the driver 
supports its "W" functions. This is done as follows:

• SQLGetEnvAttr(SQL_ATTR_DRIVER_UNICODE_TYPE) is 
called in the driver by the Driver Manager. The driver, if 
capable, returns either SQL_DD_CP_UTF16 or 
SQL_DD_CP_UTF8 to indicate to the Driver Manager which 
encoding it expects.

• If the preceding call to SQLGetEnvAttr fails, the Driver 
Manager looks either in the Data Source section of the 
odbc.ini specified by the connection string or in the 
connection string itself for a connection option called 
DriverUnicodeType. The valid values for this option are 1 
(UTF-16) or 2 (UTF-8). The Driver Manager assumes that 
the Unicode encoding of the driver corresponds to the 
value specified.

• If neither of the preceding attempts are successful, the 
Driver Manager assumes that the Unicode encoding of the 
driver is UTF-8.

3 Determine if the driver supports SQL_ATTR_WCHAR_TYPE: 
SQLSetConnectAttr (SQL_ATTR_WCHAR_TYPE, X) is called in 
the driver by the Driver Manager, where X is either 
SQL_DD_CP_UTF8 or SQL_DD_CP_UTF16, depending on the 
value of the SQL_ATTR_APP_UNICODE_TYPE environment 
setting. If the driver returns any error on this call to 
SQLSetConnectAttr, the Driver Manager assumes that the 
driver does not support this connection attribute.

In the case of an error, the Driver Manager converts all data 
bound as SQL_C_WCHAR to the application Unicode type as 
specified by SQL_ATTR_APP_UNICODE_TYPE. The Driver 
Manager also converts all bound parameter data from the 
application Unicode type to the driver Unicode type specified 
by SQL_ATTR_DRIVER_UNICODE_TYPE.
SequeLink Developer’s Reference



Values for IANAAppCodePage Connection String Attribute 569
Based on the information it has gathered prior to connection, 
the Driver Manager either does not have to convert function 
calls, or it converts to either UTF-8 or UTF-16 all string arguments 
to calls to the ODBC W functions before calling the driver.

Values for IANAAppCodePage Connection 
String Attribute

Table F-1 lists supported values, along with a description, for the 
IANAAppCodePage connection string attribute at the time of 
this publication. Support for additional values may have been 
added since publication time; therefore, for up-to-date values, 
go to:

http://www.datadirect.com/support/troubleshooting/su-faq-iana/
index.ssp

See “Connecting Using a Connection String” on page 57 for 
more information about this connection string attribute.

To determine the correct numeric value (the MIBenum value) for 
the IANAAppCodePage connection string attribute, do the 
following:

1 Determine the code page of your database.

2 Determine the MIBenum value that corresponds to your 
database code page. To do this, go to:

http://www.iana.org/assignments/character-sets

On this Web page, search for the name of your database 
code page. This name will be listed as an alias or the name of 
a character set and will have a MIBenum value associated 
with it. 
SequeLink Developer’s Reference

http://www.datadirect.com/support/troubleshooting/su-faq-iana/index.ssp
http://www.iana.org/assignments/character-sets


570 Appendix F  Developing ODBC Applications for Internationalization  
3 Check the table in this appendix to make sure that the 
MIBenum value you looked up on the IANA Web page is 
supported by SequeLink Client for ODBC. If the value is not 
listed, contact DataDirect Technologies technical support to 
request that support for that value be added.

Table F-1.  IANAAppCodePage Values

IANAAppCodePage IANA Character Set Name

3 US_ASCII

4 ISO_8859_1

5 ISO_8859_2

6 ISO_8859_3

8 ISO_8859_5

9 ISO_8859_6

10 ISO_8859_7

11 ISO_8859_8

12 ISO_8859_9

17 Shift_JIS

18 EUC_JP

38 EUC_KR

106 UTF-8

109 ISO_8859_13

111 ISO_8859_15

113 GBK

114 GB18030

2004 HP_ROMAN8

2009 IBM850

2025 2025 GB2312

2026 Big5

2084 KOI8_R

2088 KOI8-U
SequeLink Developer’s Reference



Values for IANAAppCodePage Connection String Attribute 571
Solaris

Table F-2 lists supported code pages, IANA character set name 
and IANAAppCodePage for the SequeLink Client 6.0 or higher 
for ODBC on the Solaris platform.

2251 WINDOWS_1251

2252 WINDOWS_1252

2259 TIS_620

10001 IBM-856

10003 IBM-921

10004 IBM-922

10012 IBM-943

10024 IBM-1046

10030 IBM-1124

Table F-1.  IANAAppCodePage Values (cont.)

IANAAppCodePage IANA Character Set Name

Table F-2.  Code Pages Supported on Solaris

Code page
IANA Character 
Set Name IANAAppCodePage

646 US_ASCII 3

ISO8859-1 ISO_8859_1 4

ISO8859-2 ISO_8859_2 5

ISO8859-5 ISO_8859_5 8

ISO8859-6 ISO_8859_6 9

ISO8859-7 ISO_8859_7 10

ISO8859-8 ISO_8859_8 11
SequeLink Developer’s Reference



572 Appendix F  Developing ODBC Applications for Internationalization  
HP

Table F-3 lists supported code pages, IANA character set name 
and IANAAppCodePage for the SequeLink Client 6.0 or higher for 
ODBC on the HP-UX platform.

ISO8859-9 ISO_8859_9 12

PCK Shift_JIS 17

eucJP EUC_JP 18

ISO8859-13 ISO_8859_13 109

ISO8859-15 ISO_8859_15 111

GBK GBK 113

UTF-8 UTF-8 106

gb2312 GB2312 2025

BIG5 Big5 2026

KOI8-R KOI8_R 2084

TIS620.2533 TIS_620 2259

Table F-2.  Code Pages Supported on Solaris (cont.)

Code page
IANA Character 
Set Name IANAAppCodePage

Table F-3.  Code Pages Supported on HP-UX

Code page
IANA Character 
Set Name IANAAppCodePage

iso88591 ISO_8859_1 4

iso88592 ISO_8859_2 5

iso88595 ISO_8859_5 8

iso88596 ISO_8859_6 9

iso88597 ISO_8859_7 10
SequeLink Developer’s Reference



Values for IANAAppCodePage Connection String Attribute 573
AIX

Table F-4 lists supported code pages, IANA character set name 
and IANAAppCodePage for the SequeLink Client 6.0 or higher 
for ODBC on the AIX platform.

iso88598 ISO_8859_8 11

iso88599 ISO_8859_9 12

utf8 UTF-8 106

big5 Big5 2026

tis620 TIS_620 2259

roman8 HP_ROMAN8 2004

Table F-3.  Code Pages Supported on HP-UX (cont.)

Code page
IANA Character 
Set Name IANAAppCodePage

Table F-4.  Code Pages Supported on AIX

Code Page
IANA Character 
Set Name IANAAppCodePage

kIANACS_MIB_US_ ASCII US_ASCII 3

ISO8859-1 ISO_8859_1 4

ISO8859-2 ISO_8859_2 5

ISO8859-5 ISO_8859_5 8

ISO8859-6 ISO_8859_6 9

ISO8859-7 ISO_8859_7 10

ISO8859-8 ISO_8859_8 11

ISO8859-9 ISO_8859_9 12

IBM-eucJP EUC_JP 18

IBM-eucKR EUC_KR 38
SequeLink Developer’s Reference



574 Appendix F  Developing ODBC Applications for Internationalization  
Linux

Table F-5 lists supported code pages, IANA character set name 
and IANAAppCodePage for the SequeLink Client 6.0 or higher for 
ODBC on the Linux platform.

ISO8859-15 ISO_8859_15 111

GBK GBK 113

UTF-8 UTF-8 106

IBM-850 IBM-850 2009

big5 Big5 2026

IBM-1252 WINDOWS_1252 2252

TIS-620 TIS_620 2259

IBM-856 IBM-856 10001

IBM-921 IBM-921 10003

IBM-922 IBM-922 10004

IBM-943 IBM-943 10012

IBM-1046 IBM-1046 10024

IBM-1124 IBM-1124 10030

Table F-4.  Code Pages Supported on AIX (cont.)

Code Page
IANA Character 
Set Name IANAAppCodePage

Table F-5.  Code Pages Supported on Linux

Code Page
IANA Character 
Set Name IANAAppCodePage

ANSI_X3.4-1968 US_ASCII 3

ISO-8859-1 ISO_8859_1 4

ISO-8859-2 ISO_8859_2 5

ISO-8859-3 ISO_8859_3 6
SequeLink Developer’s Reference



Values for IANAAppCodePage Connection String Attribute 575
ISO-8859-5 ISO_8859_5 8

ISO-8859-5 ISO_8859_6 9

ISO-8859-7 ISO_8859_7 10

ISO-8859-8 ISO_8859_8 11

ISO-8859-9 ISO_8859_9 12

EUC-JP EUC_JP 18

EUC-KR EUC_KR 38

ISO-8859-13 ISO_8859_13 109

ISO-8859-15 ISO_8859_15 111

GBK GBK 113

GB18030 GB18030 114

UTF-8 UTF-8 106

GB2312 2025 GB2312 2025

BIG5 Big5 2026

KOI8-R KOI8_R 2084

KOI8-U KOI8-U 2088

CP1251 WINDOWS_1251 2251

TIS-620 TIS_620 2259

Table F-5.  Code Pages Supported on Linux (cont.)

Code Page
IANA Character 
Set Name IANAAppCodePage
SequeLink Developer’s Reference



576 Appendix F  Developing ODBC Applications for Internationalization  
Windows

Table F-6 lists supported code pages, code page name, MIB 
number, and IANA character set name for the SequeLink 
Client 6.0 or higher for ODBC on the Windows platform.

Table F-6.  Code Pages Supported on Windows

Codepage Codepage Name MIBenum
IANA Character 
Set Name

932 Japanese Shift-JIS 17 Shift_JIS

936 Simplified Chinese GBK 113 GBK

949 Korean 10015 WINDOWS_949

950 Simplified Chinese Big5 2026 Big5

1250 Central Europe 2250 WINDOWS_1251

1251 Cyrillic 2251 WINDOWS_1251

1252 Latin I 2252 WINDOWS_1252

1253 Greek 2253 WINDOWS_1253

1254 Turkish 2254 WINDOWS_1254

1255 Hebrew 2255 WINDOWS_1255

1256 Arabic 2256 WINDOWS_1256

1257 Baltic 2257 WINDOWS_1257

1258 Vietnam 2258 WINDOWS_1258
SequeLink Developer’s Reference



577
G .NET Code Examples

This appendix includes code examples of typical database access 
tasks in ADO.NET using the Microsoft .NET Framework 1.x. All of 
the examples are written in C#. 

You must modify the connection strings in the examples to work 
in your environment. All of the examples include calls to 
MessageBox, which is in the System.Windows.Forms namespace.

Sample Tables Used in the Code Examples 
Many of the samples in this appendix use the emp and dept 
tables. 

■ To create the tables on Oracle, use the script in “Sample 
Tables for Oracle” on page 578.

■ To create the tables on Sybase, use the script in “Sample 
Tables for Sybase” on page 579.
SequeLink Developer’s Reference



578 Appendix G  .NET Code Examples  
Sample Tables for Oracle 

The following script can be run in SQL*Plus. Refer to the Oracle 
documentation for details.

CREATE TABLE emp (
   empno    NUMBER(4) NOT NULL PRIMARY KEY,
   ename    VARCHAR2(10),
   job      VARCHAR2(9),
   mgr      NUMBER(4),
   hiredate DATE,
   sal      NUMBER(7,2),
   comm     NUMBER(7,2),
   dept    NUMBER(2));

alter session set NLS_DATE_FORMAT = 'MM-DD-YYYY';

begin
insert into emp values (1,'JOHNSON','ADMIN',6,'12-17-1990',18000,NULL,4);
insert into emp values (2,'HARDING','MANAGER',9,'02-02-1998',50000,300,3);
insert into emp values (3,'TAFT','SALESMAN',2,'01-02-1996',25000,500,3);
insert into emp values (4,'HOOVER','SALESMAN',2,'04-02-1990',25000,NULL,3);
insert into emp values (5,'LINCOLN','TECH',6,'06-23-1994',22500,1400,4);
insert into emp values (6,'GARFIELD','MANAGER',9,'05-01-1993',50000,NULL,4);
insert into emp values (7,'HARRISON','TECH',6,'09-22-1997',25000,NULL,4);
insert into emp values (8,'GRANT','ENGINEER',10,'03-30-1997',30000,NULL,2);
insert into emp values (9,'JACKSON','CEO',NULL,'01-01-1990',75000,NULL,4);
insert into emp values (10,'FILLMORE','MANAGER',9,'08-09-1994',50000,NULL,2);
insert into emp values (11,'ADAMS','ENGINEER',10,'03-15-1996',30000,NULL,2);
insert into emp values (12,'WASHINGTON','ADMIN',6,'04-16-1998',18000,NULL,4);
insert into emp values (13,'MONROE','ENGINEER',10,'12-03-2000',30000,NULL,2);
insert into emp values (14,'ROOSEVELT','CPA',9,'10-12-1995',35000,NULL,1);
end;
/

CREATE TABLE dept (
   deptno NUMBER(2) NOT NULL,
   dname  VARCHAR2(14),
   loc    VARCHAR2(13));
SequeLink Developer’s Reference



Sample Tables Used in the Code Examples 579
begin
insert into dept values (1,'ACCOUNTING','ST LOUIS');
insert into dept values  (2,'RESEARCH','NEW YORK');
insert into dept values (3,'SALES','ATLANTA');
insert into dept values (4, 'OPERATIONS','SEATTLE');
end;
/

Sample Tables for Sybase

The following script can be run in ISQL. Refer to the Sybase 
documentation for details.

CREATE TABLE emp (
   empno    INT PRIMARY KEY,
   ename    VARCHAR(10),
   job      VARCHAR(9),
   mgr      INT NULL,
   hiredate DATETIME,
   sal      NUMERIC(7,2),
   comm     NUMERIC(7,2) NULL,
   dept     INT)

go

begin
insert into emp values (1,'JOHNSON','ADMIN',6,'12-17-1990',18000,NULL,4)
insert into emp values (2,'HARDING','MANAGER',9,'02-02-1998',50000,300,3)
insert into emp values (3,'TAFT','SALESMAN',2,'01-02-1996',25000,500,3)
insert into emp values (4,'HOOVER','SALESMAN',2,'04-02-1990',25000,NULL,3)
insert into emp values (5,'LINCOLN','TECH',6,'06-23-1994',22500,1400,4)
insert into emp values (6,'GARFIELD','MANAGER',9,'05-01-1993',50000,NULL,4)
insert into emp values (7,'POLK','TECH',6,'09-22-1997',25000,NULL,4)
insert into emp values (8,'GRANT','ENGINEER',10,'03-30-1997',30000,NULL,2)
insert into emp values (9,'JACKSON','CEO',NULL,'01-01-1990',75000,NULL,4)
insert into emp values (10,'FILLMORE','MANAGER',9,'08-09-1994',50000,NULL,2)
insert into emp values (11,'ADAMS','ENGINEER',10,'03-15-1996',30000,NULL,2)
insert into emp values (12,'WASHINGTON','ADMIN',6,'04-16-1998',18000,NULL,4)
SequeLink Developer’s Reference



580 Appendix G  .NET Code Examples  
insert into emp values (13,'MONROE','ENGINEER',10,'12-03-2000',30000,NULL,2)
insert into emp values (14,'ROOSEVELT','CPA',9,'10-12-1995',35000,NULL,1)
end

go

CREATE TABLE dept (
   deptno INT NOT NULL,
   dname  VARCHAR(14),
   loc    VARCHAR(13))
go

begin
insert into dept values (1,'ACCOUNTING','ST LOUIS')
insert into dept values  (2,'RESEARCH','NEW YORK')
insert into dept  values (3,'SALES','ATLANTA')
insert into dept  values (4, 'OPERATIONS','SEATTLE')
end

go

Retrieving Data Using a DataReader
The DataReader provides the fastest but least flexible way to 
retrieve data from the database. Data is returned as a read-only, 
forward-only stream of data that is returned one record at a 
time. If you need to retrieve many records rapidly, using a 
DataReader would require less memory than a DataSet, which 
would need to create a large table to hold the results.

The following code example shows how to execute a simple 
query on a Sybase database and read the results using a 
DataReader.

NOTE: The example requires the emp table (see “Sample Tables 
for Sybase” on page 579). The Sybase database in this example 
does not require the Database connection string option.
SequeLink Developer’s Reference



Retrieving Data Using a DataReader 581
// Open connection to SequeLink Server on Sybase database
SequeLinkConnection  Conn;
Conn = new SequeLinkConnection("host=bowhead;port=19996;User ID=test01;
                                Password=test01");

Conn.Open();

// Create a SQL command
string strSQL = "SELECT ename FROM emp WHERE sal>50000";
SequeLinkCommand   myCommand = new SequeLinkCommand(strSQL, Conn);
SequeLinkDataReader  myDataReader;
myDataReader = myCommand.ExecuteReader()

try
{

   while (myDataReader.Read())
   {
    Console.WriteLine("High salaries:" + my DataReader["ename"].ToString());
   }
}

catch (Exception ex) 

{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}

//  Always close the DataReader 
myDataReader.Close();

//  Close the connection 
Conn.Close();
SequeLink Developer’s Reference



582 Appendix G  .NET Code Examples  
Using a Local Transaction With a DataReader
The following example shows how to use a local transaction with 
a SequeLinkDataReader object on the SequeLink server Sparky on 
Oracle. 

NOTE: The sample uses the emp table (see “Sample Tables for 
Oracle” on page 578). The Oracle database in this example does 
not require the Database connection string option.

SequeLinkConnection   DBConn;
DBConn = new SequeLinkConnection("host=norman;Port=19996;User ID=test01;
                                  Password=test01");
SequeLinkCommand     DBCmd = new SequeLinkCommand();
SequeLinkTransaction DBTxn = null;
try 
{
    DBConn.Open();
    DBTxn = DBConn.BeginTransaction();
    // Set the Connection property of the Command object
    DBCmd.Connection = DBConn;
    // Set the text of the Command to the INSERT statement
    DBCmd.CommandText = "INSERT INTO emp VALUES (15,'HAYES','ADMIN',6,
                      '17-APR-2007',18000,NULL,4)";
    // Set the transaction property of the Command object
    DBCmd.Transaction = DBTxn;
    // Execute the statement
    DBCmd.ExecuteNonQuery();
    // Now commit the transaction
    DBTxn.Commit();
}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
    // If anything failed after the connection was opened, roll back the 
    // transaction
SequeLink Developer’s Reference



Using a Distributed Transaction 583
    if (DBTxn != null) 
    {
        DBTxn.Rollback();
    }
}
//  Close the connection
DBConn.Close();

Using a Distributed Transaction 
The following code example, which uses the emp table (see 
“Sample Tables for Oracle” on page 578), shows how to use a 
distributed transaction to connect to two different Oracle 
servers. 

NOTE: Microsoft Distributed Transaction Coordinator must be 
running on all clients and servers. The Oracle databases in this 
example do not require the Database connection string option.

using System;
using System.EnterpriseServices;
using DDTek.SequeLink;

namespace DistributedTransaction 
{
    /// <summary>
    /// Summary description for Class1.
    /// </summary>
    public class Class1 
    {
       /// <summary>
       /// The main entry point for the application.
       /// </summary>
       [STAThread]
       static void Main(string[] args) {

          SequeLinkConnection DBConn1;
SequeLink Developer’s Reference



584 Appendix G  .NET Code Examples  
          DBConn1 = new SequeLinkConnection("host=norman;SID=test;Port=1521;
                                User ID=test01;Password=test01;Enlist=true");
          SequeLinkConnection DBConn2;
          DBConn2 = new SequeLinkConnection("host=Carrie;SID=test;Port=1521;
                                User ID=test01;Password=test01;Enlist=true");
          try {
             DBConn1.Open();
             DBConn2.Open();

             DistributedTran myDistributedTran = new DistributedTran();
             myDistributedTran.TestDistributedTransaction(DBConn1, DBConn2);

             // Note, the connections used in distributed transaction must
             // only be closed outside of transaction methods, because after 
             // these methods finish, DTC still needs these
             // connections to complete commit/rollback commands.
             DBConn1.Close();
             DBConn2.Close();
          }
          catch (Exception e) {
            System.Console.WriteLine("Error returned: " + e.Message);
          }
       }
    }

    /// <summary>
    /// To use distributed transactions in .NET, we need a ServicedComponent 
    /// derived class with transaction attribute declared as "Required".
    /// </summary>
    [Transaction(TransactionOption.Required) ]
    public class DistributedTran : ServicedComponent {

       /// <summary>
       /// This method executes two SQL statements, one on each database 
       /// server. If both are successful, both are commited by DTC after the 
       /// method finishes. However, if an exception is thrown, both will be
       /// rolled back by DTC.
       /// </summary>
       [AutoComplete]
SequeLink Developer’s Reference



Using a Distributed Transaction 585
       public void TestDistributedTransaction(
          SequeLinkConnection DBConn1,
          SequeLinkConnection DBConn2) {

          // The following Insert statement goes to the first server, norman.
          // This Insert statement does not produce any errors.
          String DBCmdSql1 = "INSERT INTO emp VALUES
                          (15,'HAYES','ADMIN',6,'17-NOV-2006',18000,NULL,4)";

          // The following Delete statement goes to the second server, 
          // Carrie. Because the Raises table does not exist on Carrie,
          // the code throws an exception.
          String DBCmdSql2 = "DELETE * FROM Raises WHERE sal > 100000";

          SequeLinkCommand DBCmd1 = new SequeLinkCommand(DBCmdSql1, DBConn1);
          SequeLinkCommand DBCmd2 = new SequeLinkCommand(DBCmdSql2, DBConn2);

          DBCmd1.ExecuteNonQuery();

          // This command results in an exception, which automatically rolls 
          // back the DBCmd1 command on the other server.
          DBCmd2.ExecuteNonQuery();
       }
    } 
}

SequeLink Developer’s Reference



586 Appendix G  .NET Code Examples  
Using the CommandBuilder
The following example uses the CommandBuilder to create a SQL 
statement on the SequeLink Server Sparky on Oracle. 

NOTE: This example uses the "emp" sample table (see “Sample 
Tables for Oracle” on page 578). The Oracle database in this 
example does not require the Database connection string option.

SequeLinkConnection    DBConn;
DBConn = new SequeLinkConnection("host=norman;Port=19996;User ID=test01;
                                  Password=test01");

SequeLinkDataAdapter    myDataAdapter = new SequeLinkDataAdapter();
SequeLinkCommand    DBCmd = new SequeLinkCommand("SELECT * FROM EMP",DBConn);
myDataAdapter.SelectCommand = DBCmd;
//  Set up the CommandBuilder
SequeLinkCommandBuilder  
   CommBuild = new SequeLinkCommandBuilder(myDataAdapter);
DataSet      myDataSet = new DataSet();
try 
{
    DBConn.Open();
    myDataAdapter.Fill(myDataSet);
    //  Now change the salary of the first employee
    DataRow     myRow;
    myRow = myDataSet.Tables["Table"].Rows[0];
    myRow["sal"] = 95000;
    // Tell the DataAdapter to resynch with the Oracle server.
    // Without the CommandBuilder, this line would fail.
    myDataAdapter.Update(myDataSet);
}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}
//  Close the connection
DBConn.Close();
SequeLink Developer’s Reference



Retrieving a Result Set Using a DataAdapter Object 587
Retrieving a Result Set Using a DataAdapter 
Object

The DataAdapter is a bridge between the ADO.NET DataSet 
object and the underlying DBMS. The DataAdapter can be used 
to fill a DataSet with a result set or multiple result sets. Although 
the DataAdapter also includes functionality to propagate 
changes to the result set back to the DBMS, this example only 
shows how to set up the DataAdapter to retrieve the data and 
Fill a DataSet.

NOTE: The example requires the emp table (see “Sample Tables 
for Sybase” on page 579). The Sybase database in this example 
does not require the Database connection string option. 

// Open connection to SequeLink Server on Sybase database
SequeLinkConnection  Conn;
Conn = new SequeLinkConnection("host=bowhead;port=19996;User ID=test01;
                                Password=test01");

Conn.Open();

// Create a SQL command
string sqlSEL = "SELECT NAME FROM emp WHERE sal>’50000’";
SequeLinkDataAdapter   myDataAdapter = new SequeLinkDataAdapter(sqlSEL, 
Conn);

DataSet myDataSet = new DataSet("salDataSet");

try
{
     myDataAdapter.Fill(myDataSet, "emp");
}

catch(Exception ex) {
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}

SequeLink Developer’s Reference



588 Appendix G  .NET Code Examples  
finally
//  Close the connection
{
Conn.Close();
}

Limiting the Rows Returned by a Select 
Statement

The following example shows how to use a Command object to 
limit the number of rows returned by the Oracle server. 

NOTE: The example requires the emp table (see “Sample Tables 
for Oracle” on page 578). The Oracle database in this example 
does not require the Database connection string option.

SequeLinkConnection  DBConn;
DBConn = new SequeLinkConnection("host=baleen;Port=19996;User ID=test01;
                                  Password=test01");

SequeLinkDataAdapter myDataAdapter = new SequeLinkDataAdapter();
SequeLinkCommand  DBCmd = new SequeLinkCommand("SELECT * FROM EMP",DBConn);
myDataAdapter.SelectCommand = DBCmd;
DataSet   myDataSet = new DataSet();
try 
{
    DBConn.Open();
    // Set the RowSetSize on the Command object to limit the number 
    // of rows returned
    DBCmd.RowSetSize = 10;
    myDataAdapter.SelectCommand = DBCmd;
    myDataAdapter.Fill(myDataSet);
    // Normally, emp contains 14 rows.
    // But with RowSetSize set to 10, the Command object
    // will limit the result set to 10 rows.

    MessageBox.Show(Convert.ToString(myDataSet.Tables["Table"].Rows.Count));
SequeLink Developer’s Reference



Updating Data in a DataSet 589
}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}
// Close the connection
DBConn.Close();

Updating Data in a DataSet
When updating a row at the data source, you call the Update 
statement. The Update statement uses parameters that contain 
the unique identifier (such as the primary key), and the columns 
to be updated, as shown in the following example:

[C#]
string updateSQL As String = "UPDATE emp SET sal = ?, job = ? + 
     = WHERE empno = ?;

The parameterized query statements define the parameters that 
will be created. See “Parameter Markers” on page 379 for more 
information about using parameters.

The following code example uses the Parameters.Add method to 
create the parameters for the preceding SQL statement, fill a 
DataSet, and print the updated table.

NOTE: The example requires the emp table (see “Sample Tables 
for Oracle” on page 578). The Oracle database in this example 
does not require the Database connection string option.

void test () {
   string updateSQL = "UPDATE emp SET sal = ?, job = ? WHERE empno = ?";
   string selectText = "SELECT sal, job, empno FROM emp";
   string updateText = "UPDATE emp SET sal = ?, job = ? WHERE empno = ?";
   SequeLinkConnection con = new SequeLinkConnection("host=baleen;
                                 User ID=test01;Password=test01");
SequeLink Developer’s Reference



590 Appendix G  .NET Code Examples  
   SequeLinkDataAdapter adapter = new SequeLinkDataAdapter(selectText, Conn);

   SequeLinkCommand updateCommand = new SequeLinkCommand(updateText, Conn);
   updateCommand.Parameters.Add("@sal", SequeLinkDbType.Decimal, 0, "SAL");
   updateCommand.Parameters.Add("@job", SequeLinkDbType.Varchar, 9, "JOB");
   updateCommand.Parameters.Add("@empno", SequeLinkDbType.Int, 0,
                                   "EMPNO");

   updateCommand.Parameters["@empno"].SourceVersion = DataRowVersion.Original;
   adapter.UpdateCommand = updateCommand;

   DataSet   myDataSet = new DataSet("emp");
   adapter.Fill(myDataSet, "emp");

   // print
   PrintTable(myDataSet);

   // Give employee number 11 a promotion and a raise
   DataRow changeRow = myDataSet.Tables["emp"].Rows[10];
   changeRow["sal"] = "35000";
   changeRow["job"] = "MANAGER";

   // Send back to database and reprint
   try
   {
      adapter.Update(myDataSet, "emp");
      myDataSet.Dispose();
      myDataSet = new DataSet();
      adapter.Fill(myDataSet, "emp");
      PrintTable(myDataSet);
   }
   catch (Exception ex) 
   {
     // Display any exceptions in a messagebox
     MessageBox.Show (ex.Message);
   }
   //  Close the connection
   Conn.Close();

}

SequeLink Developer’s Reference



Calling a Stored Procedure 591
Calling a Stored Procedure
You call stored procedures using a Command object. When you 
issue a command on a stored procedure, you must set the 
CommandType of the Command object to StoredProcedure.

The following code example shows how to execute a stored 
procedure on a Sybase database and read the results using a 
DataReader. The example uses the emp table (see “Sample 
Tables for Sybase” on page 579). The Sybase database in this 
example does not require the Database connection string 
option.

Create the following stored procedure:

CREATE PROCEDURE GetEmpSalary
    (@empno int,
     @sal char(7) output)
AS
SELECT @sal = sal FROM emp WHERE empno = @empno
SequeLink Developer’s Reference



592 Appendix G  .NET Code Examples  
The following code example executes the GetEmpSalary stored 
procedure: 

// Open connection to SequeLink Server on Sybase database
SybaseConnection  Conn;
Conn = new SequeLinkConnection("host=bowhead;port=19996;User ID=test01;
                               Password=test01");
Conn.Open();

// Make a command object for the stored procedure
// You must set the CommandType of the Command object 
// to StoredProcedure 
SequeLinkCommand   DBCmd = new SequeLinkCommand("GetEmpSalary",Conn);
DBCmd.CommandType = CommandType.StoredProcedure;
SequeLinkDataReader  myDataReader;
try
{
    myDataReader = myCommand.ExecuteReader()
    myDataReader.Close();
}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}
//  Close the connection
Conn.Close();
SequeLink Developer’s Reference



Retrieving Warning Information 593
Retrieving Warning Information
The data providers handle database server warnings through the 
InfoMessage delegates on the Connection objects. 

The following example shows how to retrieve a warning from a 
Sybase server:

// Define an event handler
public void myHandler(object sender, SequeLinkInfoMessageEventArgs e)
{
    // Display any warnings in a messagebox
    MessageBox.Show (e.Message,"This is a Warning.");
}

Add the following code to a method and call it:

SequeLinkConnection  Conn;
Conn = new SequeLinkConnection("host=bowhead;port=19996;User ID=test01;
                                Password=test01");
                                        
SequeLinkCommand   DBCmd = new SequeLinkCommand("print 'This is a warning.'", 
                           Conn);
SequeLinkDataReader  myDataReader;
try 
{
    Conn.InfoMessage += new SequeLinkInfoMessageEventHandler(myHandler);
    Conn.Open();
    myDataReader = DBCmd.ExecuteReader();
    // This will throw a SequeLinkInfoMessageEvent as the print
    // statement generates a warning.

}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}
//  Close the connection
Conn.Close();
SequeLink Developer’s Reference



594 Appendix G  .NET Code Examples  
Retrieving a Scalar Value 
You can use the ExecuteScalar method of the Command object to 
return a single value, such as a sum or a count, from the 
database. The ExecuteScalar method returns the value of the first 
column of the first row of the result set. 

The following code example, which requires the emp table (see 
“Sample Tables for Sybase” on page 579), shows how to retrieve 
the count of a specified group: 

// Retrieve the number of employees who make more than $50000
// from the emp table

// Open connection to SequeLink Server on Sybase database
SequeLinkConnection  Conn;
Conn = new SequeLinkConnection("host=bowhead;port=19996;User ID=test01;
                               Password=test01");
Conn.Open();

// Make a command object 
SequeLinkCommand  salCmd = new SequeLinkCommand("SELECT COUNT(sal) FROM emp
                                                 WHERE sal>’50000’",Conn);

try
{
    int count = (int)salCmd.ExecuteScalar();
}
catch (Exception ex) 
{
    // Display any exceptions in a messagebox
    MessageBox.Show (ex.Message);
}
//  Close the connection
Conn.Close();
SequeLink Developer’s Reference



595
Index

Symbols
.NET

closing opened connections 400
Framework data types for .NET data 

provider 390
security 405, 406
supported public objects 396

.NET Client
assembly name 378
configuring connection failover 375

Alternate Servers connection string 
option 370

Connection Retry Count connection 
string option 371

Connection Retry Delay connection 
string option 372

Load Balancing connection string 
option 373

connecting to a database 383
connection string attributes 370
creating a connection pool 364
data types 390
data types supported

DB2 UDB on Linux/UNIX/Windows 460
DB2 UDB on z/OS 452, 455
Informix 462
Microsoft SQL Server 466
Oracle 473, 478
Sybase 480

database errors 408
event handling 396
isolation levels 395
mapping parameter types 392
namespace 389

object
InfoMessageEventArgs 402
SequeLinkCommand 397
SequeLinkCommandBuilder 398
SequeLinkConnection 399
SequeLinkDataAdapter 400
SequeLinkDataReader 401
SequeLinkError 401
SequeLinkErrorCollection 401
SequeLinkException 402
SequeLinkTrace 403
SequeLinkTransaction 405

parameter arrays 379
parameter markers 379
provider-specific methods and properties 

supported 397
SequeLink client errors 407
setting a savepoint 405
thread support 395
transaction support 381

? for parameter markers 379

Numerics
64-bit ODBC Client (Linux/UNIX)

configuring 53
example 54
executing the shell script 55

64-bit platform support for JDBC Client 215
SequeLink Developer’s Reference



596 Index
A
ABS function 442
Access Order 190, 203
accessor support 177, 198
ACOS function 442
Active Sessions 194
adding connections to a connection pool 365
ADO

Command object 190
Connection object 193
mapping OLE DB methods 190
OLE DB interfaces supported 188
Recordset object 201

ADO Client
data types supported

DB2 UDB on z/OS 453
ADO client data sources

See client data sources
ADO data provider

client load balancing 168
connection failover

configuring 164
connection properties

for connection failover 167
connection retry 169
copying data sources 142
creating data sources 133
data types supported

DB2 UDB on Linux/UNIX/Windows 457
Informix 463
Oracle 475
Sybase 481

deleting data sources 141
enabling SSL encryption on the ADO 

Client 136
modifying data sources 140
renaming data sources 141

AllowPartiallyTrustedCallers 406

alternate servers, specifying
.NET Client 370
ADO Client 157
JDBC Client 238
ODBC Client 39

API functions 85
application

logging DataDirect Spy calls 551
optimizing performance for ODBC 105
performance tips for .NET 412
performance tuning for JDBC 344

application developers
.NET 389
ADO 171
JDBC 327
ODBC 84

application ID
generating automatically 100, 209
specifying explicitly 99, 158, 208
specifying for ADO data provider 158
specifying for ADO provider 208
specifying for JDBC driver 336

ApplicationID ODBC connection attribute 62
ApplicationName

ADO Client 158
JDBC Client 237
ODBC Client 62

arguments, null 106
Array object 489
arrays of parameter

support
.NET data provider 379

arrays of parameters
performance advantages 116
support

ODBC driver 101
ASCII

converting to character 439
function 439

ASIN function 442
assembly name of the .NET provider 378
Asynchable

Abort 194
Commit 194
SequeLink Developer’s Reference



Index 597
ATAN function 442
ATAN2 function 442
attributes

ADO 156
DistinguishedName 164
ODBC 61

Autocommit Isolation Levels 194
AutomaticApplicationID ODBC connection 

attribute 62

B
balancing the connection load 377
BigDecimal objects, fetching 346, 491
binding SQL statements

JDBC Client 329
ODBC Client 88

blanks, generating 441
Blob object 490
BlockFetchForUpdate 62
Blocking Storage Objects 190, 203
Bookmark Information 203
Bookmark Type 203
bookmarks 184
bound columns 113
bridge, performance impact of using 422

C

CallableStatement object 490
calling a data source in a JDBC 

application 227
cancelling functions (JDBC driver) 332
catalog functions

defined 105
effect on performance 106

Catalog Location 194
Catalog Term 194
Catalog Usage 195
CEILING function 442

centralized system information file 56
Change Inserted Rows 190, 203
changing directories for ADO client data 

sources 143
CHAR function 439
checking version of

DataDirect Spy 325
cipher suites 240
Client

SequeLink for .NET 363
SequeLink for ADO 127
SequeLink for JDBC 215
SequeLink for ODBC 31

client code page
See code pages

client data sources
configuring

ODBC file 42
ODBC User and System 33
on Linux/UNIX 53

creating
ADO 133
ODBC 32

deleting ADO 141
modifying ADO 141

client errors, SequeLink (.NET) 407
client load balancing

.NET Client 373
about 377
ADO data provider 168
JDBC driver 257
ODBC driver 81
see also SequeLink Administrator’s Guide

Clob object 501
closing opened connections (.NET) 400
code examples (.NET)

calling a stored procedure 591
limiting the rows returned by a Select 

statement 588
retrieving a result set 587
retrieving a scalar value 594
retrieving warning information 593
updating data in a DataSet 589
using a distributed transaction 583
SequeLink Developer’s Reference



598 Index
using a local transaction with a 
DataReader 582

using the CommandBuilder 586
code page support

AIX 573
checking values for 

IANAAppCodePage 566
HP 572
IANAAppCodePage attribute 569
Linux 574
Solaris 571
Windows 576

code page support for ODBC Client 37
Column Definition 195
Column Privileges 191, 203
COM Object Support 195
Command object (.NET)

calling stored procedures 591
properties 397
threading support 395

Command object (ADO)
dynamic properties 190
methods 190

CommandBuilder class
impact on performance 415
performance implications 415

CommandBuilder object
code example 586
properties 398

commands
retrieving little or no data 419
using multiple times 421

committing data 121
compatibility of JDBC versions 489
compiler requirements, Linux/UNIX 84
CONCAT function 440
concurrency types for result sets 334
Configuration Manager

menu bar 130
overview 128

configuring
ADO client data sources 133
file client data sources 42
JDBC data sources 225
ODBC client data source for Linux/UNIX 53

connecting
example using Driver Manager 318
improving performance 416
overview 364
resetting the state of the connection 371
to data source, logon dialog box 147
tracking performance 410
using DataDirect Test 267
using URLs (JDBC) 224
with a provider string 155
with JDBC data sources 236

connection
attributes in ADO 156
attributes in ODBC 61
defining using master data source file 

(ADO) 145
handles 121
JDBC options 215
managing 120
non-pooled 549
ODBC options 31
options in .NET 369
precedence for JDBC driver 236
properties for JDBC driver 235
testing ADO 147
testing ODBC on Windows 52

Connection dialog box 147
connection failover

.NET data provider
Connection Retry Count connection 

option 371
Connection Retry Delay connection 

option 372
Load Balancing connection option 373
overview 375

ADO Client 164
SequeLink Developer’s Reference



Index 599
ADO data provider
Alternate Servers attribute 157
Connection Retry Count attribute 159
Connection Retry Delay attribute 160
defining on the Options tab 139
LDAP server 161

client load balancing and 377
JDBC driver

ConnectionRetryCount connection 
property 241

ConnectionRetryDelay connection 
property 242

LoadBalancing connection property 248
overview 254

ODBC driver
AlternateServers connection 

attribute 79
ConnectionRetryCount connection 

properties 79
ConnectionRetryDelay connection 

attribute 79
LDAP server 80
LoadBalancing connection attribute 80
overview 76

Connection Lifetime 370
Connection object

.NET
properties 399
threading 395
using in the namespace 389

ADO
dynamic properties 194
methods supported 193

JDBC 501
connection pool

adding connections (.NET) 365
closing (JDBC) 550
creating (.NET) 364
handling dead connections (.NET) 367
handling distribution transactions 

(.NET) 368
improving performance (JDBC) 356
tracking performance (.NET) 410

Connection Pool Manager, about (JDBC) 218

connection pooling
.NET data provider

adding connections 365
creating 364
enabling 374
maximum number of pools 373
minimum number of connections 374
removing connections 366

JDBC driver
connecting to a data source 547
Connection Pool Manager 541
creating a data source 544
creating a pooled data source 

object 542
terminating the pool manager 550
using 229

ODBC driver 121
connection retry

ADO data provider 169
JDBC driver 258
ODBC driver 82

Connection Retry Count, specifying
.NET data provider 375
ADO data provider 159
JDBC driver 256
ODBC driver 78

Connection Retry Delay, specifying
.NET data provider 376
ADO data provider 160
JDBC driver 256
ODBC driver 78

Connection Status 195
contacting Technical Support 27
conventions used 25
converting variant types to date/time types 

208
copying, ADO client data sources 142
COS function 442
COT function 442
counters, PerfMon 410
creating

ADO client data sources 133
connection string for .NET provider 369
JDBC data sources 226
SequeLink Developer’s Reference



600 Index
master data source file 145
ODBC Client data sources 32
template data source file 144

CURDATE function 444
Current Catalog 195
cursors

forward-only 401
forward-only result sets (JDBC) 333
keyset-driven scrollable (ODBC) 93
scroll-insensitive (Java 2 platform) 260
scroll-insensitive result sets (JDBC) 333
scroll-sensitive result sets (JDBC) 333
static scrollable (ODBC) 93
support for scrollable (JDBC) 334
support for scrollable (ODBC) 93
using scrollable instead of cursor library 

(ODBC) 119
CURTIME function 444

D
data shaping 206
data source

calling in a JDBC application 227
configuring

JDBC 225
on Linux/UNIX (ODBC) 53
User and System (ODBC) 33
values overridden 207

connecting with JDBC 236
creating

ADO client 133
JDBC 226
non-pooled 542
ODBC file client 42
ODBC system 33
ODBC user 33
pooled 542

default 143
displaying properties 131
examples of JDBC 227

file
creating a master 145
creating a template 144

non-pooled 542
system 33
user 33

data source information property group 176
Data Source Name 195
Data Source Object Threading Model 195
Data Source property 195
data source property group 176
data types

.NET 390
choosing to improve performance 425
DB2 UDB on Linux/UNIX/Windows 456
DB2 UDB on z/OS 452
Informix 462
mapping year format 208
Microsoft SQL Server 466
Oracle 473, 478
Sybase 480

DataAdapter object
code example 587
properties 400

database
data dictionary 109
meta-information, retrieving 109
naming using JNDI 228

Database connection attribute
.NET Client 372
ADO provider 160
ODBC driver 64

Database Data Dictionary
filters 110
views (DB2 UDB for z/OS) 110

database errors (.NET client) 408
DATABASE function 447
DatabaseMetaData object 505
database-specific information 451
DataDirect Configuration Manager

menu bar 130
DataDirect Connection Pool Manager 221
SequeLink Developer’s Reference



Index 601
DataDirect Spy
about 315
attributes 323
checking the version 325
enabling

using DataDirect Spy URL 320
using JDBC data sources 318
using JDBC Driver Manager 317

example
JDBC data source connection 320
JDBC Driver Manager 

connection 317, 318
URL 320

generating a log 551
jar file 222
log example 553
logging

generating a log 551
turning on and off 551

options 323
overview 217
registering the JDBC driver 322
setEnableLogging method 551
SpyAttributes connection property 317
URL syntax 323
using with JDBC data sources 324

DataDirect Test
batch execution on a prepared statement 

284
configuring 264
connecting 267
establishing savepoints 290
executing a prepared statement 274
executing a simple select statement 272
files 221
LOB support 309
retrieving database metadata 278
returning ParameterMetaData 288
scrolling through a result set 281
starting 265
tutorial 263
updateable result sets 297
using 263

DataReader object
choosing when to use 412
code example 580, 582
importance of closing 401
properties 401

DataSet
choosing when to use 412
code example 589
creating and using 427
keeping result sets small 412

DataSource object 516
date

returning current 444
returning month 445
returning year 446
scalar functions 444

DAYNAME function 444
DAYOFMONTH function 445
DAYOFWEEK function 445
DAYOFYEAR function 445
DB2 UDB for z/OS

data types supported
ODBC driver 452

DB2 UDB on Linux/UNIX/Windows
data types for the .NET provider 460
data types for the JDBC driver 459
Distributed Transaction Management 

support 231
scalar functions 434
support for scrollable cursors

JDBC 334
ODBC 93

DB2 UDB on Windows and UNIX
Database Data Dictionary views 110

DB2 UDB on z/OS
Database Data Dictionary views 110
scalar functions 433

DBMS Name property 195
DBMS Version property 195
DBPassword 64
DBPROP_ 

ROWSETCONVERSIONSONCOMMAND 180
DBPROP_ SUBQUERIES 181
DBPROP_ SUPPORTEDTXNDDL 181
SequeLink Developer’s Reference



602 Index
DBPROP_ SUPPORTEDTXNISOLEVELS 181
DBPROP_ SUPPORTEDTXNISORETAIN 181
DBPROP_ABORTPRESERVE 184
DBPROP_ACCESSORDER 184
DBPROP_ASYNCTXNABORT 177
DBPROP_ASYNCTXNCOMMIT 177
DBPROP_AUTH_ PASSWORD 182
DBPROP_AUTH_ USERID 182
DBPROP_AUTH_PASSWORD 182
DBPROP_AUTH_PERSIST_SENSITIVE_AUTHIN

FO 182
DBPROP_AUTH_USERID 182
DBPROP_BLOCKINGSTORAGEOBJECTS 184
DBPROP_BOOKMARKINFO 184
DBPROP_BOOKMARKS 184
DBPROP_BOOKMARKSKIPPED 184
DBPROP_BOOKMARKTYPE 184
DBPROP_CANFETCHBACKWARDS 184
DBPROP_CANSCROLLBACKWARDS 184
DBPROP_CATALOGLOCATION 177
DBPROP_CATALOGTERM 177
DBPROP_CATALOGUSAGE 177
DBPROP_COLUMNDEFINITION 177
DBPROP_COMMITPRESERVE 185
DBPROP_CONCATNULLBEHAVIOR 178
DBPROP_CONNECTIONSTATUS 178
DBPROP_CURRENTCATALOG 176
DBPROP_DATASOURCENAME 178
DBPROP_DATASOURCEREADONLY 178
DBPROP_DBMSNAME 178
DBPROP_DBMSVER 178
DBPROP_DELAYSTORAGEOBJECTS 185
DBPROP_DSOTHREADMODEL 178
DBPROP_HETEROGENEOUSTABLES 178
DBPROP_IDENTIFIERCASE 178
DBPROP_IMMOBILEROWS 185
DBPROP_INIT_ DATASOURCE 182
DBPROP_INIT_ HWND 182
DBPROP_INIT_ MODE 183
DBPROP_INIT_ PROMPT 183
DBPROP_INIT_ PROVIDERSTRING 183
DBPROP_INIT_CATALOG 182
DBPROP_INIT_DATASOURCE 182
DBPROP_INIT_HWND 182

DBPROP_INIT_LCID 182
DBPROP_INIT_MODE 182
DBPROP_INIT_OLEDBSERVICES 183
DBPROP_INIT_PROMPT 182
DBPROP_INIT_PROVIDERSTRING 182
DBPROP_LITERALBOOKMARKS 186
DBPROP_LITERALIDENTITY 186
DBPROP_LOCKMODE 186
DBPROP_MAXINDEXSIZE 178
DBPROP_MAXOPENROWS 186
DBPROP_MAXPENDINGROWS 186
DBPROP_MAXROWS 186
DBPROP_MAXROWSIZE 178
DBPROP_MAXROWSIZEINCLUDESBLOB 179
DBPROP_MAXTABLEINSELECT 179
DBPROP_MEMORYUSAGE 186
DBPROP_MULTIPLEPARAMSETS 179
DBPROP_MULTIPLERESULTS 179
DBPROP_MULTIPLESTORAGEOBJECTS 179
DBPROP_MULTITABLEUPDATE 179
DBPROP_NULLCOLLATION 179
DBPROP_OLEOBJECTS 179
DBPROP_OPENROWSETSUPPORT 179
DBPROP_ORDERBYCOLUMNSINSELECT 179
DBPROP_OTHERINSERT 186
DBPROP_OTHERUPDATEDELETE 186
DBPROP_OUTPUTPARAMETERAVAILABILITY 

179
DBPROP_OWNINSERT 186
DBPROP_OWNUPDATEDELETE 186
DBPROP_PERSISTENTIDTYPE 179
DBPROP_PREPAREABORTBEHAVIOR 180
DBPROP_PREPARECOMMITBEHAVIOR 180
DBPROP_PROCEDURETERM 180
DBPROP_PROVIDERFRIENDLYNAME 180
DBPROP_PROVIDERNAME 180
DBPROP_PROVIDEROLEDBVER 180
DBPROP_PROVIDERVER 180
DBPROP_QUOTEDIDENTIFIERCASE 180
DBPROP_REENTRANTEVENTS 186
DBPROP_REMOVEDELETED 187
DBPROP_REPORTMULTIPLECHANGES 187
DBPROP_RETURNPENDINGINSERTS 187
DBPROP_ROWRESTRICT 187
SequeLink Developer’s Reference



Index 603
DBPROP_ROWTHREADMODEL 187
DBPROP_SCHEMATERM 180
DBPROP_SCHEMAUSAGE 180
DBPROP_SERVERCURSOR 187
DBPROP_SERVERNAME 180
DBPROP_SESS_ AUTOCOMMITISOLEVELS 

188
DBPROP_SQLSUPPORT 180
DBPROP_STRONGIDENTITY 187
DBPROP_STRUCTUREDSTORAGE 180
DBPROP_TABLETERM 181
DBPROP_TRANSACTEDOBJECT 187
DBPROP_UNIQUEROWS 187
DBPROP_UPDATABILITY 187
DBPROP_USERNAME 181
dead connections 400
debugging

using PerfMon 410
using the Trace object to maintain 

security 408
default data source files

master 143
template 143

Default Length for Long Data 161
defining

data source using the ODBC 
Administrator 33

default setup options 143
DEGREES function 442
Delay Storage Object Updates 203
deletes, positional 122
deleting ADO client data sources 141
developing ODBC applications 84
diagnostic support

PerfMon counters 410
tracing method calls 408

DIFFERENCE function 440
direct SSL encryption 244
directory structure for the JDBC Client 220
Distinguished Name identifier 161
DistinguishedName attribute

ADO 164
ODBC 64

Distributed Transaction Management 231

distributed transactions
code example 583
for more information 427
in a .NET connection pool 368

documentation, SequeLink 22
double-byte character sets, using on UNIX 

and Linux 565
downloading applets, tips 344
DPROP_GROUPBY 178
Driver object 516
DSN connection attribute 65
dynamic parameters, binding

JDBC driver 329
ODBC Client 88

dynamic properties
Command object (ADO) 190
Connection object (ADO) 194
Recordset object (ADO) 203

E
EnableDescribeParam 65
enabling tracing 408
encryption, SSL

ADO Client 136
JDBC Client 244
ODBC CLient 65

environment variables (Linux/UNIX) 55
environmental variable use in tracing 409
environment-specific information 26
error handling

.NET data provider 406
ADO data provider 209
JDBC driver 342
ODBC driver 103

Error object (.NET) 401
ErrorCollection object

.NET data provider 401
checking for multiple errors 402

event handling for the ADO.NET data 
provider 396
SequeLink Developer’s Reference



604 Index
examples
64-bit ODBC Client configured for 

Solaris 54
connection pooling 229
creating and using JDBC data sources 227
DataDirect Spy

JDBC data source connection 320
JDBC Driver Manager 

connection 317, 318
URL 320

DataDirect Spy log 553
Driver Manager, using to connect 317, 318
odbc.ini file configured for Solaris 54

Exception object (.NET) 402
ExecuteScalar and ExecuteNonQuery, 

performance implications 419
EXP function 442
ExtLogControl class 552
EXTRACT function 445

F
fetching

backward 184, 191, 203
BigDecimal objects 346

fetching random data 412
FetchNextOnly 66
file

creating a master data source 145
creating a template data source 144

file client data sources, configuring 42
File System JNDI Provider 222
files in the JDBC Client directory 220
filters, Database Data Dictionary 110
FixCharTrim 66
FLOOR function 443
forward only cursors 114
forward-only result sets (JDBC) 333
Framework types (.NET) 390
FullTrust 405

functions
cancelling in multithreaded 

applications 92, 332
date and time 444
numeric 442
ODBC API 85
scalar 432
string 439

G
generating DataDirect Spy log 551
generating ODBC application IDs 

automatically 100
get methods, using effectively 354
GetOutputParams 67
Global Assembly Cache (GAC) 378
GROUP BY Support 196

H

header files and libraries, 
platform-specific 84

Heterogeneous Table Support 196
HLogonID 67
Hold Rows 191, 203
Host attribute 67, 161
host password 67
Host Password attribute 162
HOUR function 445
HPassword 67
SequeLink Developer’s Reference



Index 605
I
IANAAppCodePage, supported values 569
Identifier Case Sensitivity 196
IFNULL function 447
Immobile Rows 204
Informix

data types 462
persisting result set as XML 101
support for scrollable cursors (ODBC) 93

Initial Catalog 196
initialization properties 182
INSERT function 440
interfaces supported by ADO provider 172
IOpenRowset 207
IPersistFile 207
IRowset interface 172
IRowsetIdentity 183
isolation levels

ADO data provider 197
ADO.NET data provider 395
by data store 486
JDBC driver 331
ODBC driver 91

Isolation Retention 197
ivslkcheckcp utility 566

J

JAR files 344
Java 2 Platform 259
Java Transaction API 231
Java Virtual Machine versions 489
JavaDoubleToString 247
JCA

resource adapter class 329
resource adapters

overview 232
using from an application 233
using with application server 233

JDBC
compatibility 489
connection options 215
forward-only result sets 333
functionality supported 489
scroll-insensitive result sets 333
scroll-sensitive result sets 333
support 489
support for 2.0 functionality 328

JDBC 2.0 Optional Package 220, 222
JDBC Client

64-bit platform support 215
configuring JDBC data sources 226
connection properties

JavaDoubleToString 247
data types supported

DB2 UDB on z/OS 454
directory structure 220
overview 215
using connection pooling 229
using on a Java 2 Platform 259
using the JTA 231

JDBC data sources 220
JDBC driver

binding dynamic parameters 329
calling a data source in an application 227
client load balancing 257
configuring data sources 225
connection failover, configuring 254
connection properties 235, 237
connection retry 258
creating data sources 226
data types supported

DB2 UDB on Linux/UNIX/Windows 459
DB2 UDB on z/OS 452
Informix 462
Microsoft SQL Server 466
Oracle 473
Sybase 480

error handling 342
functionality for JDBC objects 489
loading 223
overview 216
performance 513
SequeLink Developer’s Reference



606 Index
registering with JDBC driver Manager 223
ResultSet metadata 339
specification supported 216
specifying application IDs 336
specifying connection URLs 224
supported JDBC connection properties 237
threading for driver 331
tracking calls 217
using

data sources 236
getObject method 354

using connection pooling 229
using Distributed Transaction 

Management 231
using Spy with data sources 324

JDBC Driver Manager
registering DataDirect Spy driver 320
SpyAttributes property, specifying 

with 316
JNDI

registering a SequeLink for JDBC 
DataSource object 542

using for naming databases 228
JNDI 1.2 222
JTA 1.0.1 222

K

keyset-driven scrollable cursors 
(ODBC) 93, 95

L

LCASE function 440
LDAP

configuring the ADO Client 135
configuring the ODBC Client 36, 53
creating a JDBC data source 227
property in ADO 164
setting parameters in DataDirect Test 264

specifying port for the listener 71, 135, 163
TCP/IP address of the LDAP server 67
UseLDAP attribute (ADO) 164
UseLDAP attribute (ODBC) 72

LDAP JNDI Provider 222
LEFT function 440
LENGTH function 440
libraries and header files, 

platform-specific 84
license file, defining path for .NET data 

provider 373
LicensePath 373
limiting the rows returned by a Select 

statement 588
Linux

See Linux/UNIX
Literal Bookmarks 204
literal parameter values 379
Literal Row Identity 191, 204
load balancing

See client load balancing
Load Balancing connection attribute (ADO 

data provider) 162
Load Balancing connection string option 

(.NET data provider) 373
LoadBalancing connection attribute (ODBC 

driver) 70
LoadBalancing connection property (JDBC 

driver) 248
loading the JDBC driver 223
local transactions 381
Locale Identifier 197
LOCATE function 440
Lock Mode 191, 204
log for DataDirect Spy, generating 551
LOG function 443
LOG10 function 443
logging JDBC calls 315
LogonID 70
long data, performance issues with 

retrieving 111
LTRIM function 440
SequeLink Developer’s Reference



Index 607
M
managed code

performance advantages 422
use in distributed transaction 

processing 382
use in local transactions 381

ManagedConnectionFactory 329
managing

connections to improve driver 
performance 120

JDBC data sources 226
retrieval of database 

meta-information 109
mapping data types

ADO provider 208
SequeLink DbTypes 394
supported by DB2 UDB on 

Linux/UNIX/Windows 456
supported by DB2 UDB on z/OS

ODBC driver 452
supported by Informix 462
supported by Microsoft SQL Server 466
supported by Oracle 473, 478
supported by Sybase 480

master data source file
creating a 145
overview 143

Maximum Index Size 197
Maximum Open Chapters 197
Maximum Open Rows 191, 204
Maximum Pending Rows 191, 204
Maximum Row Size 197
Maximum Row Size Includes BLOB 197
Maximum Rows 191, 204
Maximum Tables in SELECT 197
Memory Usage 191, 204
metadata

parameter 337
ResultSet 339

meta-information
limiting amount to be retrieved 110
managing retrieval of 109

methods
.NET provider-specific 399
ADO Command object 190
ADO Recordset object 201
ExtLogControl class 552
supported by ADO Connection object 193
supported public 396
tracing calls 408

Microsoft SQL Server, data types 
supported 466

MINUTE function 445
MOD function 443
Mode property 197
modifying ADO client data sources 140
MONTH function 445
MONTHNAME function 445
Multiple Connections property 197
Multi-Table Update 197
multithreaded applications

cancelling functions 92, 332
functionality of the ODBC driver 92

N
namespace, .NET data provider 389
naming databases with JNDI 228
native managed providers, performance 

advantages 422
NewPassword 71
non-pooled data source 542
NOW function 445
null arguments, impact on performance 106
NULL Collation Order 198
NULL Concatenation Behavior 198
null values in data conversions 242
Number

raising to power 443
rounding 443

numeric functions 442
SequeLink Developer’s Reference



608 Index
O
object (.NET)

exposing 378
provider-specific prefix 396
SequeLinkCommand 397
SequeLinkCommandBuilder 398
SequeLinkConnection 399
SequeLinkError 401
SequeLinkErrorCollection 401
SequeLinkException 402
SequeLinkInfoMessageEventsArgs 402
SequeLinkTrace 403
SequeLinkTransaction 381

object (JDBC)
ExtConnection 552
fetching BigDecimal 346

objects supported
by the .NET data provider 396
by the ADO data provider 172
by the JDBC driver 489

Objects Transacted 192, 204
ODBC

functions that improve driver 
performance 115

keyset-driven scrollable cursors 95
Level 2.x API functions 85
optimizing performance 105
static scrollable cursors 93, 94

ODBC Administrator
configuring file client data sources 42
configuring User and System client data 

sources 33
starting 32

ODBC driver
application IDs 99
binding dynamic parameters 88
cancelling functions in multithreaded 

applications 92, 332
client load balancing 81
configuring connection failover 76
configuring file client data sources 42

connecting to a data source using a logon 
dialog box 46

connection attributes 61
connection options 31
connection properties for connection 

failover 79
connection retry 82
enabling SSL encryption 65
error handling 103
handling Unicode characters 72
ODBC API functions supported 85
overview 31
persisting result set as XML data file 101
required libraries and header files 84
specification supported 31
SSL encryption 36
threading 91
using the system information file 53

ODBC translators 37
odbc.ini (Linux/UNIX)

sample odbc.ini file 54
using a centralized odbc.ini file 56

odbc64.ini (Linux/UNIX)
configuration example 54
executing a shell script 55

ODBCINI environment variable 
(Linux/UNIX) 55

ODBCTest 98
OLE DB

mapping methods to ADO 190
objects supported by the SequeLink for 

ADO provider 172
property groups supported 175
schema rowsets supported 174

OLE DB Services property 198
OLE DB Version property 198
Open Rowset Support 198
Oracle

data types 473
support for scrollable cursors (JDBC) 334
support for scrollable cursors (ODBC) 94
using stored procedures with (ODBC) 95

ORDER BY Columns In Select List 198
Others' Changes Visible 192, 204
SequeLink Developer’s Reference



Index 609
Others' Inserts Visible 192
Output Parameter Availability 198
Own Changes Visible 192, 204
Own Inserts Visible 192, 204

P
parameter (.NET)

array support 379
in stored procedures 380
markers, using the ? symbol 379
object, adding to a collection 379
types 392

parameter markers
as arguments to stored procedures 

(.NET) 413
ParameterCollection object 379

parameter metadata (JDBC) 288
INSERT and UPDATE statements 337
SELECT statements 338

ParameterMetaData object 330, 517
Pass By Ref Accessors 198
Password

.NET data provider connection string 
option 374

ADO data provider connection 
attribute 163

ODBC driver connection attribute 71
property for Connection object 198

password, concealed in trace log 408
PerfMon support 410
performance hints

.NET data provider
size of data retrieved 424
using a SequeLinkCommandBuilder 

object 398
choosing the data type 425, 451
committing data 121

JDBC
fetching BigDecimal objects 346
penalty for emulating multiple open 

ResultSet objects 513
reducing download time 344
using get methods effectively 354

ODBC driver
avoiding the cursor library 119
catalog functions 105
locking a row when isolation level is 

Read committed 62
managing connections 120
managing retrieval of database 

meta-information 109
null arguments 106
reducing the size of retrieved data 111
retrieving data with 

SQLExtendedFetch 114
using a dummy query 108

resetting the state of a connection 371
using bound columns 113

performance optimization
avoiding distributed transactions 419
avoiding use of CommandBuilder 

objects 415
choosing between a DataReader and a 

DataSet 412
designing JDBC applications 355
managing connections 416
retrieving data 349
selecting JDBC objects and methods 351
turning off autocommit 418
updating data 357
using disconnected DataSet 412
using native managed providers 422

persisting
information 207
result set as XML data file (ODBC) 101

PI function 443
platform-specific header files and libraries 84
pool manager

See connection pooling
pooled data source 542
PooledConnection object 517
SequeLink Developer’s Reference



610 Index
Port (ODBC connection attribute) 71
Port attribute 163
positional updates and deletes 122
POWER function 443
precedence of JDBC connection 

properties 236
prefix on a public object 396
Prepare Abort Behavior 198
Prepare Commit Behavior 198
prepared statements 421
PreparedStatement object 518
Preserve on Abort 192, 205
Preserve on Commit 192, 205
private assembly 378
Procedure Term 198
Prompt property for Connection object 198
properties

ADO Command object 190
ADO Connection object 194
ADO Recordset object 203
Data Source Information property 

group 176
Data Source property group 176
displaying ADO provider data source 131
Initialization property group 182
JDBC connection 235, 237
Oracle data provider 397
Session property group 188
supported public 396

Property 183
property groups supported 175
Provider Friendly Name 198
Provider Name 199
provider string 155
Provider Version 199
Proxy Server, SequeLink 216
pseudo-columns 123

Q
QUARTER function 445
QueryTimeout connection property 251
Quick Restart 192, 205
Quoted Identifier Sensitivity 199

R

RADIANS function 443
RAND function 443
random data, fetching 412
Read Only Data Source 199
read-only result set 334
Recordset object

dynamic properties 203
methods 201
overview 201

Ref object 523
Referenceable object 524
registering the JDBC driver 223
Remove Deleted Rows 192, 205
removing connections from a connection 

pool 366
renaming an ADO Client data source 141
REPEAT function 441
REPLACE function 441
Report Multiple Changes 192, 205
resetting connection state 371
resource adapters, JCA

overview 232
resource adapter class 329
support 219

Resource Archive 220
result sets

concurrency types (JDBC) 334
impact of size on scalability (.NET) 413
types (JDBC) 333
updatable supported (JDBC) 335

ResultSet metadata for Select statements 
(JDBC) 339
SequeLink Developer’s Reference



Index 611
ResultSet object 524
ResultSetMetaData object 533
resultSetMetaDataOptions performance 

considerations 252
retrieving

data
avoiding long data 111, 423
reducing the size 111
using bound columns 113
using SQLExtendedFetch 114

database meta-information 109
long data using JDBC applications 349
warning information from .NET 

application 593
Return Pending Inserts 192, 205
reusing connections with connection 

pooling 229
RIGHT function 441
ROUND function 443
Row Privileges 192, 205
Row Threading Model 192, 205
rowset

characteristics 183
properties 183
using 207

Rowset Conversions on Command 199
RowSet object 534
rowset support 341
RTRIM function 441

S

sample code
calling a stored procedure 591
limiting the rows returned by a Select 

statement 588
retrieving a result set using a DataAdapter 

object 587
retrieving a scalar value 594
retrieving warning information 593
updating data in a DataSet 589
using a distributed transaction 583

using a local transaction with a 
DataReader 582

using the CommandBuilder 586
SavePoint object (JDBC) 535
savepoint support in .NET data provider 405
saving current connection information 207
scalar functions

.NET code example of retrieving scalar 
values 594

support for 432
schema rowsets supported 174
Schema Term 199
Schema Usage 199
Scroll Backward 192, 205
scrollable cursors

concurrency types (JDBC) 334
insensitive (JDBC) 260
result set types (JDBC) 333
using keyset-driven (ODBC) 95
using static (ODBC) 94
using with JDBC driver 333
using with ODBC driver 93

scrolling backward 184
scroll-insensitive result sets (JDBC) 333
scroll-sensitive result sets (JDBC) 333
SECOND function 445
security (.NET)

attributes 406
enabling for tracing 408
required permissions for data provider 405
see also SequeLink Administrator’s Guide
SequeLinkTrace object 403

SequeLink Client for .NET
data types

DB2 UDB on Linux/UNIX/Windows 460
DB2 UDB on z/OS 455
Informix 465
Microsoft SQL Server 471
Oracle 478

event handling 396
Framework data types 390
isolation levels 395
limiting number of rows returned 398
mapping parameter types 392
SequeLink Developer’s Reference



612 Index
namespace 382, 389
public objects supported 396
SequeLinkCommand object 397
SequeLinkConnection object 389
thread support 395
tracing method calls 408
using a distributed transaction 583

SequeLink Client for ADO
ADO Command object 190
connecting to a data source 148
connection attributes 156
data shaping 206
data source information properties 176
data source property group 176
data types

DB2 on z/OS 452
DB2 UDB on Linux/UNIX/Windows 456
Informix 462
Microsoft SQL Server 466
Oracle 473, 478
Sybase 480

error handling 209
initialization properties 182
objects and interfaces 172
overview 127
rowset properties 183
rowset property group 183
session property group 188
SQL grammar supported 200

SequeLink Client for JDBC
JDBC 3.0 functionality 328
Proxy Server 216
specifying application IDs 336

SequeLink Client for ODBC
checking code page used by 

applications 566
configuring file client data sources 42
connection dialogs 46

data types
DB2 UDB on Linux/UNIX/Windows 456
DB2 UDB on z/OS 452
Informix 462
Microsoft SQL Server 466
Oracle 473
Sybase 480

functions that improve performance 115
isolation levels 486
overview 31

SequeLink documentation 22
SequeLink Proxy Server

files 221
overview 216
using SSL encryption 216

SequeLink Server errors (.NET) 407
SequeLink Server for DB2 UDB on z/OS

data types 452
scalar functions 433

SequeLink Server for JDBC Socket
JTA support 231
keyset-driven cursor support 93
scroll-sensitive cursor support 334

SequeLink Server for ODBC Socket
JTA support 231
scrollable cursor support (JDBC) 334
support for scrollable cursors (ODBC) 94

SequeLinkCommand object 397
SequeLinkCommandBuilder object 398
SequeLinkConnection object 399
SequeLinkError object 401
SequeLinkErrorCollection 401
SequeLinkException object 402
SequeLinkInfoMessageEventArgs object 402
SequeLinkTrace object 409
SequeLinkTransaction object 381, 405
Serializable object 535
Server Cursor 192, 205
server errors, SequeLink (.NET) 407
Server Name 200
ServerDatasource 375
serviced components 427
session property group 188
SequeLink Developer’s Reference



Index 613
sessions
maximum number supported 177
setting maximum number supported 194

setEnableLogging, using to turn on and off 
DataDirect Spy logging 551

setting
maximum number of sessions 194
ODBCINI environment variable 

(Linux/UNIX) 55
shared assembly 378
shell script, using to set environmental 

variables 55
SIGN function 443
SIN function 443
Skip Deleted Bookmarks 205
SLKStaticCursorLongColBuffLen 72
Snapshot Isolation level, SQL Server Wire 

Protocol 488
SOUNDEX function 441
SPACE function 441
specification supported

JDBC 216, 328
ODBC driver 31
OLE DB 180

specifying alternate servers
ODBC Client 39

specifying connection attributes 369
specifying load balancing

ODBC Client 38
specifying provider-specific logon 

information 196
Spy

see DataDirect Spy
SQL support

binding SQL statements (JDBC) 329
date and timestamp escape sequences 432
numeric functions 442
outer join escape sequences 448
overview 431
scalar functions 432
string functions 439

SQL Support (ADO connection property) 200
SQLCancel, effect of threading 92, 332
SQLColumns, performance implications 108

SQLExecDirect 115
SQLExtendedFetch 114
SQLParamOptions 118
SQLPrepare 115
SQLSetConnectAttr 100
SQLSpecialColumns 123
SQRT function 443
SSL encryption

ADO Client 136
cancel functionality 332
connection URL format 224
JAR files 220
JDBC Client 244
ODBC Client 36
permissions required 260
using with the proxy server 216

starting
Configuration Manager 131
ODBC Administrator 32

statement handles 121
Statement object 535
static methods, enabling tracing with 409
static scrollable cursors (ODBC) 93, 94
Status bar (Configuration Manager) 131
stored procedures

.NET code example 591
output array support 379
performance implications 421
support for (.NET) 380
using parameter markers as 

arguments 413
using the "?" in SQL statements (.NET) 379
using with ODBC driver 116
using with Oracle 95

string
changing case of 440
functions 439
length of 440
removing blanks from 440, 441
returning substring of 441

strong name 378
Strong Row Identity 192, 205
Struct object 538
Structured Storage 200
SequeLink Developer’s Reference



614 Index
Subquery Support 200
SUBSTRING function 441
SupportLink 27
Sybase

.NET code example 580, 587, 591
data types 480
support for scrollable cursors (ODBC) 94

syntax for URLs for Spy 323
system information file

centralized 56
using to configure the ODBC driver 53

T
table characteristics, determining 108
Table Term 200
TAN function 443
TCP port 224
TCP/IP port for SequeLink listener 71
Technical Support, contacting 27
template data source file

creating a 144
overview 143

terminating the pool manager 550
testing

ADO connections 147
JDBC connections 267
ODBC connections on Windows 52

threading
.NET provider 395
ADO provider 178, 195
JDBC driver 331
ODBC driver use 91

time functions 444
TIMESTAMPADD function 446
TIMESTAMPDIFF function 446
Trace object (.NET)

properties 403
using 408

tracing
.NET data provider method calls 403
enabling

using environment variables 409
using static methods 409

overview 408
re-creating the trace file 408
setting the path to the trace file 408

tracking JDBC calls 217, 324
Transaction DDL 201
transactions

isolation levels 197
managing commits 418
performance considerations of using 

distributed 419
support for local (.NET) 381

Translate button 37
transliteration

ODBC Client 37
see also SequeLink Administrator’s Guide

troubleshooting driver problems 551
TRUNCATE function 443
tuning and debugging applications with 

PerfMon 410
turning on and off DataDirect Spy 

logging 551
typographical conventions 25

U

UCASE function 441
Unicode

ANSI code page for conversions 564
data types 563
DB2 UDB data types supported 456
function calls 559
JDBC driver 341
non-Unicode application 561
see also SequeLink Administrator’s Guide
support for ADO data provider 457
support in ODBC drivers 559
Unicode application 560
SequeLink Developer’s Reference



Index 615
Unique Rows 193, 205
UNIX and Linux

code pages, IANAAppCodePage 
attribute 569

compiler requirements 84
configuring an ODBC data source 53
Driver Manager 567
multithreading functionality of the ODBC 

driver 92
setting environmental variables 55
system information file 53
using a centralized odbc.ini or odbc64.ini 

file 56
using double-byte character sets 565

unmanaged code
performance impact 422
use in distributed transaction 

processing 381
Updatability 193, 205
updatable result sets 334
updates, positional 122
updating opened rowset 183
URL

format for connections (JDBC) 224
precedence of JDBC connection 

properties 236
Use Bookmarks 193, 205
Use LDAP attribute (ADO) 164
UseLDAP attribute (ODBC) 72
USER function 447
User Name property of Connection 

object 201
using

arrays of parameters 116
centralized odbc.ini files (Linux/UNIX) 56
Command.Prepare 421
JDBC Client on Java 2 Platform 259
keyset-driven cursors 93
scrollable cursors

with the JDBC driver 335
with the ODBC driver 93

SequeLink Client for ADO 127
static cursors 93
stored procedures with Oracle 95

UTF-16, using for applications on 
Linux/UNIX 566

W
warning information, retrieving 593
WEEK function 446
window handle 182
Window Handle (ADO Connection object 

property) 201
Windows

code page support 576
configuring SequeLink Client for ADO 127
multithreading functional of the ODBC 

driver 92
required ODBC libraries and header 

files 84
testing ODBC connections 52

WorkArounds attribute 73

X

XAConnection object 538
XADataSource object 538
XML

manipulating relational data as 413
persistence, implementing (ODBC 

driver) 101

Y
year format for conversions 208
YEAR function 446
SequeLink Developer’s Reference



616 Index
Z
z/OS

data types 452
.NET Client 455
ADO Client 453
JDBC Client 454

data types supported
ODBC driver 452
SequeLink Developer’s Reference


	Table of Contents
	List of Tables
	Preface
	What Is DataDirect SequeLink®?
	Using This Book
	Other SequeLink® Documentation
	HTML Version
	PDF Version

	Typographical Conventions
	Environment-Specific Information
	Contacting Technical Support

	Part 1: Developing ODBC Applications
	1 Using the ODBC Client
	About the ODBC Client
	Using the ODBC Administrator
	Configuring ODBC Client Data Sources on Windows
	Configuring ODBC User and System Client Data Sources
	Configuring ODBC File Client Data Sources
	ODBC Connection Dialogs
	Stage 1: Establishing a Network Connection
	Connecting Directly to a SequeLink® Service
	Retrieving Connection Information from an LDAP Directory

	Stage 2: SequeLink® Server Authentication
	Stage 3: Data Store Logon

	Testing ODBC Connections on Windows

	Configuring ODBC Client Data Sources on Linux and UNIX
	Configuring the System Information File
	Example: odbc.ini for Solaris
	Example: odbc64.ini for Solaris
	Setting Environment Variables
	Using a Centralized System Information File

	Connecting Using a Connection String
	DSN-less Connections in Linux and UNIX

	ODBC Connection Attributes
	Configuring Connection Failover
	Connection Failover Properties

	Using Client Load Balancing
	Using Connection Retry

	2 Developing ODBC Applications
	Required ODBC Libraries and Header Files
	Compiler Requirements
	ODBC API Functions
	Binding SQL Statements
	Support for Unicode ODBC W (Wide) Function Calls

	SQL Escape Sequences
	Data Types and Isolation Levels
	Threading
	Threading Architecture
	Cancelling Functions in Multithreaded Applications

	Using Scrollable Cursors
	Static and Keyset-Driven Cursors
	Using Static Scrollable Cursors
	Using Keyset-Driven Scrollable Cursors

	Using Stored Procedures with Oracle
	Specifying Application IDs
	Specifying Application IDs Explicitly
	Generating Application IDs Automatically

	Sending Arrays of Parameters
	Persisting a Result Set as an XML Data File
	Error Handling
	SequeLink® for ODBC Driver Errors
	SequeLink® Client Errors
	SequeLink® Server Errors
	Database Errors

	Developing Performance-Optimized ODBC Applications
	Catalog Functions
	Minimizing the Use of Catalog Functions
	Avoiding Search Patterns
	Determining Table Characteristics with a Dummy Query
	Managing the Retrieval of Database Meta-Information
	Using Database Data Dictionary Filters
	Using Database Data Dictionary Views


	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Retrieved Data
	Using Bound Columns
	Using SQLExtendedFetch Instead of SQLFetch
	Choosing the Right Data Type

	Selecting ODBC Function
	Using SQLPrepare/SQLExecute and SQLExecDirect
	Using Arrays of Parameters
	Using SQLPrepare and Multiple SQLExecute Calls
	Using the Cursor Library

	Managing Connections and Updates
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model
	Using Positional Updates and Deletes
	Using SQLSpecialColumns




	Part 2: Developing ADO Applications
	3 Using the ADO Client
	About the ADO Client
	Using the DataDirect Configuration Manager
	Working with the DataDirect Configuration Manager
	Displaying Data Source Properties

	Configuring ADO Client Data Sources
	Creating an ADO Client Data Source
	Modifying an ADO Client Data Source
	Renaming an ADO Client Data Source
	Deleting an ADO Client Data Source
	Copying an ADO Client Data Source
	Changing Data Source Directories
	Defining Default Setup Options
	Creating a Template Data Source File
	Creating a Master Data Source File


	Connecting to an ADO Client
	Testing ADO Connections
	ADO Connection Dialogs
	Stage 1: Establishing a Network Connection
	Connecting Directly to a SequeLink® Service
	Retrieving Connection Information from an LDAP Directory

	Stage 2: SequeLink® Server Authentication
	Stage 3: Data Store Logon

	Connecting with a Provider String
	ADO Connection Attributes

	Configuring Connection Failover
	Connection Failover Properties

	Using Client Load Balancing
	Using Connection Retry

	4 Developing ADO Applications
	OLE DB Objects and Interfaces
	Supported Schema Rowsets
	Supported OLE DB Property Groups
	Data Source Property Group
	Data Source Information Property Group
	Initialization Property Group
	Rowset Property Group
	Session Property Group

	OLE DB Interfaces Supported in ADO
	Mapping ADO Methods and Properties
	ADO Command Object
	Connection Object
	Recordset Object

	Data Shaping
	Persisting Information
	Using Rowsets
	Mapping Data Types
	Specifying Application IDs
	Specifying Application IDs Explicitly
	Generating Application IDs Automatically

	Error Handling
	SequeLink® for ADO Provider Errors
	SequeLink® Client Errors
	SequeLink® Server Errors
	Database Errors



	Part 3: Developing JDBC Applications
	5 Using the JDBC Client
	About the JDBC Client
	JDBC Driver
	SequeLink® Proxy Server
	DataDirect Spy™
	DataDirect Test™
	DataDirect Connection Pool Manager
	J2EE Connector Architecture (JCA) Resource Adapter
	JDBC Client Directory Structure

	Registering the JDBC Driver
	Specifying JDBC Driver Connection URLs
	Configuring JDBC Data Sources
	Creating and Managing JDBC Data Sources
	Calling a Data Source in an Application
	Using JNDI for Naming Databases
	Using Connection Pooling

	Using the Java Transaction API
	J2EE Connector Architecture Resource Adapter
	Using the Resource Adapter with an Application Server
	Using the Resource Adapter from an Application

	Specifying Connection Properties
	Using Connection URLs or the JDBC Driver Manager
	Using JDBC Data Sources

	JDBC Connection Properties
	Configuring Connection Failover
	Using Client Load Balancing
	Using Connection Retry
	Testing JDBC Connections
	Using the JDBC Client on a Java 2 Platform

	6 Using DataDirect Test™
	DataDirect Test™ Tutorial
	Configuring DataDirect Test™
	Starting DataDirect Test™
	Connecting Using DataDirect Test™
	Connecting Using a Data Source
	Connecting Using Driver/Database Selection

	Executing a Simple Select Statement
	Executing a Prepared Statement
	Retrieving Database Metadata
	Scrolling Through a Result Set
	Batch Execution on a Prepared Statement
	Returning ParameterMetaData
	Establishing Savepoints
	Updatable Result Sets
	Deleting a Row
	Inserting a Row
	Updating a Row

	LOB Support


	7 Tracking JDBC Calls
	About DataDirect Spy™
	Enabling DataDirect Spy™
	Using the JDBC Driver Manager
	Using JDBC Data Sources
	Using the DataDirect Spy™ URL

	Registering the DataDirect Spy™ JDBC Driver
	DataDirect Spy™ Attributes

	Using DataDirect Spy™ with JDBC Data Sources
	Checking the DataDirect Spy™ Version

	8 Developing JDBC Applications
	JDBC 3.0 Support
	JCA Resource Adapter Class
	SQL Support
	Binding SQL Statements

	Data Types and Isolation Levels
	Threading
	Threading Architecture
	Cancelling Functions in Multithreaded Applications

	Using Scrollable Cursors
	Result Set Types
	Concurrency Types
	Using Scrollable Cursors

	Specifying Application IDs
	Parameter Metadata Support
	INSERT and UPDATE Statements
	Select Statements

	ResultSet Metadata Support
	Unicode Support
	Rowset Support
	Error Handling
	Driver Errors
	SequeLink® Server Errors
	Database Errors

	Fine-Tuning JDBC Application Performance
	Reducing Download Time
	Fetching BigDecimal Objects
	Using Database Metadata Methods
	Minimizing the Use of Database Metadata Methods
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics
	Case 1: GetColumns Method
	Case 2: GetMetadata Method


	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Choosing the Right Data Type

	Selecting JDBC Objects and Methods
	Using Parameter Markers as Arguments to Stored Procedures
	Case 1
	Case 2

	Using the Statement Object instead of the PreparedStatement Object
	Choosing the Right Cursor

	Using get Methods Effectively
	Designing JDBC Applications
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model

	Updating Data
	Using updateXXX Methods
	Using getBestRowIdentifier()




	Part 4: Developing .NET Applications
	9 Using the .NET Client
	About the .NET Client
	Using Connection Pooling
	Creating a Connection Pool
	Adding Connections to a Pool
	Removing Connections from a Pool
	Handling Dead Connection in a Pool
	Handling Distributed Transactions in a Pool
	Tracking Connection Pool Performance

	Specifying Connection Options
	Using Connection Failover
	Client Load Balancing
	Using .NET Objects
	Assemblies
	Parameter Markers
	Parameter Arrays
	Stored Procedures
	Transaction Support
	Using Local Transactions
	Using Distributed Transactions

	Connecting to a Database

	10 Developing .NET Applications
	Namespace
	Data Types
	Mapping Parameter Data Types

	Isolation Levels
	Threading
	Event Handling
	.NET Public Objects/Interfaces Supported
	SequeLinkCommand Object
	SequeLinkCommandBuilder Object
	SequeLinkConnection Object
	SequeLinkDataAdapter Object
	SequeLinkDataReader Object
	SequeLinkError Object
	SequeLinkErrorCollection Object
	SequeLinkException Object
	SequeLinkInfoMessageEventArgs Object
	SequeLinkParameter Object
	SequeLinkTrace Object
	SequeLinkTransaction Object

	Setting .NET Security Permissions
	Code Access Permissions
	Security Attributes

	Error Handling
	.NET Errors
	ADO.NET Data Provider Errors
	SequeLink® Server Errors
	Database Errors

	Diagnostic Support
	Tracing Method Calls
	Using Environment Variables
	Using Static Methods

	PerfMon Support

	Designing .NET Applications for Performance
	Selecting .NET Objects and Methods
	Choosing Between a DataSet and a DataReader
	Using Parameter Markers as Arguments to Stored Procedures
	Avoiding the CommandBuilder Object

	Designing .NET Applications
	Using Connection Pooling
	Opening and Closing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model
	Using Commands that Retrieve Little or No Data
	Using Commands Multiple Times
	Using Native Managed Providers

	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Choosing the Right Data Type

	Updating Data
	Synchronizing Changes Back to the Data Source


	For More Information


	Part 5: Reference
	A SQL Escape Sequences
	Date, Time, and Timestamp Escape Sequences
	Scalar Functions
	String Functions
	Numeric Functions
	Date and Time Functions
	System Functions

	Like Predicate Escape Characters
	Outer Join Escape Sequences
	Procedure Call Escape Sequences
	Procedure Call Escape Sequences

	B Data Types and Isolation Levels
	Supported Data Types
	DB2 UDB on z/OS
	DB2 UDB on Linux, UNIX, and Windows
	Informix
	Microsoft SQL Server
	Oracle
	Sybase

	Isolation Levels
	Using Snapshot Isolation Level (Microsoft SQL Server 2005 Only)
	Using The Snapshot Isolation Level with the ODBC Driver



	C JDBC Support
	JDBC Compatibility
	Supported Functionality

	D JDBC Connection Pool Manager
	Creating a Data Source
	Creating a DataDirect SequeLink® Data Source Object
	Creating a Data Source Using the DataDirect® Connection Pool Manager

	Connecting to a Data Source
	Closing the Connection Pool

	E Troubleshooting Using DataDirect Spy™
	Generating a DataDirect Spy™ Log
	Turning On and Off DataDirect Spy™ Logging
	ExtLogControl Class
	DataDirect Spy™ Log Example


	F Developing ODBC Applications for Internationalization
	Unicode and Non-Unicode ODBC Drivers
	Function Calls
	Unicode Application with the SequeLink ODBC Driver
	Windows
	Linix/UNIX: SequeLink® Client 5.5 for ODBC
	Linux/UNIX: SequeLink® Client 6.0 for ODBC

	Non-Unicode Application with the SequeLink® ODBC Driver
	Windows
	Linux/UNIX: SequeLink® Client for ODBC 5.5
	Linux/UNIX: SequeLink® Client for ODBC 6.0


	Data

	Developing ODBC Applications on Linux/UNIX
	Using Double-Byte Character Sets on Linux/UNIX
	Using UTF-16 for your Applications on Linux/UNIX

	The Driver Manager on Linux/UNIX
	Values for IANAAppCodePage Connection String Attribute
	Solaris
	HP
	AIX
	Linux
	Windows


	G .NET Code Examples
	Sample Tables Used in the Code Examples
	Sample Tables for Oracle
	Sample Tables for Sybase

	Retrieving Data Using a DataReader
	Using a Local Transaction With a DataReader
	Using a Distributed Transaction
	Using the CommandBuilder
	Retrieving a Result Set Using a DataAdapter Object
	Limiting the Rows Returned by a Select Statement
	Updating Data in a DataSet
	Calling a Stored Procedure
	Retrieving Warning Information
	Retrieving a Scalar Value


	Index

