
Release 5.0
October 2009

DataDirect®
XML Converters™

User’s Guide and Reference
for .NET

© 2009 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved by
Progress Software Corporation. The information in these materials is subject to change without notice,
and Progress Software Corporation assumes no responsibility for any errors that may appear therein.
The references in these materials to specific platforms supported are subject to change.

Actional, Actional (and design), Allegrix, Allegrix (and design), Apama, Apama (and Design), Artix,
Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64,
DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing
Architecture, EdgeXtend, Empowerment Center, Fathom, IntelliStream, IONA, IONA (and design),
Making Software Work Together, Mindreef, Neon, Neon New Era of Networks, ObjectStore,
OpenEdge, Orbix, PeerDirect, Persistence, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress Results,
Progress Software Developers Network, Progress Sonic, ProVision, PS Select, SequeLink, Shadow,
SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration Server, Sonic Software (and
design), SonicSynergy, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and
design), and Your Software, Our Technology-Experience the Connection are registered trademarks of
Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries.
AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event
Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, DataDirect Spy, DataDirect SupportLink, FUSE, FUSE Mediation Router, FUSE
Message Broker, FUSE Services Framework, Future Proof, GVAC, High Performance Integration,
ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress ESP Event Manager, Progress ESP Event Modeler, Progress Event Engine, Progress
RFID, Progress Software Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow
z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business
Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Continuous Availability
Architecture, Sonic Database Service, Sonic Workbench, Sonic XML Server, StormGlass, The Brains
Behind BAM, WebClient, Who Makes Progress, and Your World. Your SOA. are trademarks or service
marks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and other
countries. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. MySQL and MySQL Enterprise are registered trademarks of MySQL
AB in the United States, the European Union and other countries. Any other trademarks or service
marks contained herein are the property of their respective owners.

Third Party Acknowledgments:

DataDirect products for the Microsoft SQL Server database:

These products contain a licensed implementation of the Microsoft TDS Protocol.

Stylus Studio includes:

Xerces c++ developed by the Apache Software Foundation (http:// www.apache.org/). Copyright ©

3

1999-2006 the Apache Software Foundation. All rights reserved.

XercesJ developed by the Apache Software Foundation (http:// www.apache.org/). Copyright ©
1999-2006 the Apache Software Foundation. All rights reserved.

FOP developed by the Apache Software Foundation (http:// www.apache.org/). Copyright © 1999-2006
the Apache Software Foundation. All rights reserved.

Axis developed by the Apache Software Foundation (http:// www.apache.org/). Copyright © 1999-2006
the Apache Software Foundation. All rights reserved.

The names "Xalan", "FOP", and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. Products derived from
this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation. For written permission, please contact
apache@apache.org.

Files that are subject to the DSTC Public License (DPL) Version 1.1 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at http://
www.dstc.com. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific language
governing rights and limitations under the License. The Original Code is xs3p. The Initial Developer of
the Original Code is DSTC. Portions created by DSTC are Copyright © 2002. All rights reserved.

Pathan developed by DecisionSoft Limited. Copyright © 2001 DecisionSoft Limited. All rights reserved.

Software developed by Thai Open Source Software Center Ltd. Copyright © 2001-2003, Thai Open
Source Software Center Ltd. All rights reserved.

IBM ICU developed by IBM. Copyright © 1995-2003 International Business Machines Corporation and
others. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
provided that the above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

Software developed by Kevin Atkinson. Copyright © 2000-2004, by Kevin Atkinson. All rights reserved.

Aspell 0.60.2, from the Free Software Foundation, Inc. (http://www.fsf.org/), which is subject to the GNU
Lesser General Public License Version 2.1 (http://www.gnu.org/licenses/lgpl.html). Software distributed
under this license is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
or implied. See the license for the specific language governing rights and limitations under the license.

Software developed by xqDoc.org. Copyright © 2005 Elsevier, Inc. All rights reserved.

Software developed by Info-ZIP. Copyright © 1990-2004 Info-ZIP. All rights reserved. For the purposes of
this copyright and license, "Info-ZIP" is defined as the following set of individuals: Mark Adler, John
Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly, Hunter Goatley, Ian Gorman,
Chris Herborth, Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David
Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith
Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Christian Spieler,
Antoine Verheijen, Paul von Behren, Rich Wales, Mike White. Info-ZIP software is provided "as is",
without warranty of any kind, express or implied. In no event shall Info-ZIP or its contributors be held
liable for any direct, indirect, incidental, special or consequential damages arising out of the use of or
inability to use this software.

4

Software developed by Tim Bray and Sun Microsystems and is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. Copyright © 2004 Tim Bray and Sun Microsystems.
All rights reserved.

Software developed by Saxonica Limited and is distributed on an "AS IS" basis WITHOUT WARRANTY
OF ANY KIND, either express or implied. Copyright © 2005 Saxonica Limited. All rights reserved.

Software developed by The Anti-Grain Geometry Project. Copyright © 2002-2005 Maxim Shemanarev
(McSeem). This software is provided "as is" without express or implied warranty, and with no claim as
to its suitability for any purpose.

DataDirect XML Converters. Copyright 2004 - 2009 Progress Software Corporation and/or its subsidiaries
or affiliates. All rights reserved.

DataDirect XQuery. Copyright 2004 - 2009 Progress Software Corporation and/or its subsidiaries or
affiliates. All rights reserved.

DataDirect XML Converters includes:

Software developed by World Wide Web Consortium. Copyright (c) 1998-2003 World Wide Web
Consortium (Massachusetts Institute of Technology, European Research Consortium for Informatics and
Mathematics, Keio University). All Rights Reserved.

Software developed by World Wide Web Consortium. Copyright (c) 1998-2000 World Wide Web
Consortium (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et
en Automatique, Keio University). All Rights Reserved.

Software developed by JSON.org. Copyright (c) 2002 JSON.org. All rights reserved.

DataDirect XQuery includes:

XQJ 225 XQuery API for Java 1.0 Reference Implementation. Copyright (c) 2003 -2007 Oracle. THIS
SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED, IMPLIED OR STATUTORY WARRANTIES,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL ORACLE OR
ITS LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMTED TO LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ORACLE IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

September 2009

Table of Contents 5
Table of Contents

Preface . 11

What are DataDirect XML Converters™?. 11

Using This Book . 12

Typographical Conventions. 13

Contacting Technical Support . 14

1 DataDirect XML Converters™ Overview 17

Types of XML Converters. 17
XML Converters Can Be Customized 19

Data Access . 20

URI Schemes . 21

Command Line Usage . 21
Usage Notes . 22
Example . 23

Handling Proprietary EDI Formats . 23
Creating a SEF File . 23
The SEF Specification . 24
Example: Using a SEF File . 25

Managing Errors . 25
EDI Analyzer. 25
ConverterListener Interface . 26
EDIConverterListener Interface. 26
EDIConverterException Interface . 27

XML Schema Generation. 28
Command Line Usage . 28
Example Scenario. 29
DataDirect XML Converters User’s Guide and Reference for .NET

6 Table of Contents
Instance Documents . 31
URI Parameters That Affect XML Schema. 31
XML Schema Generation Summary 35

Example Applications. 36
Converting EDI to XML . 36
Creating XML Schemas from EDI . 37

2 XML Converters™ URI Schemes 39

The converter: URI Scheme . 39

Converter URI Syntax . 39
Example. 40

Specifying XML Converter Properties 41

Building a converter: URI . 41
Where Converter URIs are Displayed in Stylus Studio . . . 42

Invoking a Custom XML Conversion . 43

Invoking a Converter URI in XSLT . 44

3 Analyzing EDI to XML Conversions 47

Overview. 47
Illustration. 48
Dialect Support. 51
Method Definition . 52
Command Line Interface . 53

EDI Analysis Report . 54
Document Root . 54
Interchanges Element . 55
Response Element . 60

Managing Transmission Responses . 61
Receipt Element Example . 62
Acknowledgement Element Example 63
Converting Response Messages to EDI 66
Sending Responses to the EDI Sender 68
DataDirect XML Converters User’s Guide and Reference for .NET

Table of Contents 7
4 Deploying XML Converters™ on Microsoft®

BizTalk® Server. 71

About Microsoft BizTalk Server . 71
The BizTalk Architecture . 72

Receiving and Sending Messages . 72
XmlConverters Disassembler . 73
XmlConverters Assembler . 73

Building a BizTalk Receive Pipeline . 74
Registering DataDirect XML Converters Components . . . 74
Adding the Disassembler to the Receive Pipeline 77

Building a BizTalk Send Pipeline. 79

Example: Converting EDI X12 Into a Flat File 80
Create XML Schema. 80

5 XML Converters™ Examples 85

Overview of the demo.cs Example . 85
Examples Summary . 86
Demonstration Files. 88

Running demo.cs . 89
How to Run the Demonstration . 89
Example 1 . 90
Example 2 . 91
Example 3 . 92
Example 4 . 93
Example 5 . 95
Example 6 . 96
Example 7 . 97
Example 8 . 98
Example 9 . 101
Example 10 . 102
Example 11 . 103
Example 12 . 104
DataDirect XML Converters User’s Guide and Reference for .NET

8 Table of Contents
Example 13 . 105
Example 14 . 106

Processing Conversion Results . 109

Loading SEF Files Programmatically . 109
Using SEF Files Created with Stylus Studio 110
Using a SEF File for Multiple Conversions 110

6 XML Converters™ Properties 113

Line Separator Values. 114

Base-64 XML Converter Properties . 115
XML Converter Name in URL . 115

Binary XML Converter Properties . 116
XML Converter Name in URL . 116

Comma-Separated Values (CSV) XML Converter Properties . 117
XML Converter Name in URL . 117

dBase XML Converter Properties. 119
XML Converter Names in URL . 119
Datatypes Supported by Version . 120

DIF XML Converter Properties . 121
XML Converter Name in URL . 121

EDI XML Converter Properties . 122
XML Converter Name in URL . 122
Properties for EDI XML Converters 123
Using Special Characters for Separators 145
EDI Processing Instructions . 150

Java .properties File XML Converter Properties 152
XML Converter Name in URL . 152

JSON XML Converter Properties . 153
XML Converter Name in URL . 153

OpenEdge .d Data Dump XML Converter Properties. 154
XML Converter Name in URL . 154
DataDirect XML Converters User’s Guide and Reference for .NET

Table of Contents 9
Pyx Format XML Converter Properties 155
XML Converter Name in URL . 155

Rich Text Format XML Converter Properties 156
XML Converter Name in URL . 156

SDI XML Converter Properties . 157
XML Converter Name in URL . 157

SYLK XML Converter Properties . 158
XML Converter Name in URL . 158

Tab-Separated Values XML Converter Properties 159
XML Converter Name in URL . 159

Whole-line Text XML Converter Properties 161
XML Converter Name in URL . 161

Windows .ini File XML Converter Properties 162
XML Converter Name in URL . 162

Windows Write XML Converter Properties 163
XML Converter Name in URL . 163

Index . 165
DataDirect XML Converters User’s Guide and Reference for .NET

10 Table of Contents
DataDirect XML Converters User’s Guide and Reference for .NET

11
Preface

This book is your guide and reference to DataDirect XML
Converters™ from DataDirect Technologies and describes how to
use DataDirect XML Converters to build .NET applications that
provide bi-directional access to non-XML data. This book
provides information about the following topics:

■ The converter: URI scheme

■ Using DataDirect XML Converters to convert non-XML
sources (like EDI and legacy file formats) to XML

■ Using DataDirect XML Converters to convert XML to
non-XML format (like CSV and tab-delimited files)

■ Examples and tutorials that show how you can use
DataDirect XML Converters in your environment

■ XML Converters properties reference

What are DataDirect XML Converters™?
DataDirect XML Converters™ are high-performance Java™ and
.NET components that provide bi-directional, programmatic
access to virtually any non-XML file including EDI, flat files, and
other legacy formats. DataDirect XML Converters allow
developers to seamlessly stream any non-XML data as XML to
industry-leading XML processing components or to any
application. They support StAX, SAX, XmlReader, XmlWriter,
DOM and I/O streaming interfaces, and can be embedded
directly for translation purposes, or as part of a chain of
programs including XSLT and XQuery, or even inside XML
pipelines. DataDirect XML Converters maximize developer
DataDirect XML Converters User’s Guide and Reference for .NET

12 Preface
productivity and provide a fast, scalable solution for converting
between EDI and other legacy formats and XML.

Using This Book
This manual describes DataDirect XML Converters and how to use
them to develop .NET applications. It is assumed that you are
familiar with XML, .NET, and related technologies.

This manual has the following chapters:

■ Chapter 1, “DataDirect XML Converters™ Overview” provides
an overview of the DataDirect XML Converters API and URI
schemes used for data integration.

■ Chapter 2, “XML Converters™ URI Schemes” describes the
converter: URI scheme and how to use Stylus Studio XML
Enterprise Suite to build converter: URIs.

■ Chapter 3, “Analyzing EDI to XML Conversions” describes
how to use the DataDirect XML Converters API to analyze EDI
streams for errors, generate an analysis report in XML format,
and manage transmission response messages as part of the
conversion process.

■ Chapter 4, “Deploying XML Converters™ on Microsoft®
BizTalk® Server” describes how to register DataDirect XML
Converters components with Microsoft Visual Studio and use
them to build BizTalk Server applications.

■ Chapter 5, “XML Converters™ Examples” describes demo.cs, a
simple C# program installed with the XML Converters,
including how to run it, and detailed information about the
actions performed by the example applications it contains.
Other uses of the .NET API are also illustrated.

■ Chapter 6, “XML Converters™ Properties” describes values for
the properties for XML Converters.
DataDirect XML Converters User’s Guide and Reference for .NET

Typographical Conventions 13
Typographical Conventions
This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms that you may not be familiar
with, and is used occasionally for emphasis.

bold Emphasizes important information. Also indicates
button, menu, and icon names on which you can
act. For example, click Next.

UPPERCASE Indicates keys or key combinations that you can
use. For example, press the ENTER key.

monospace Indicates syntax examples, values that you specify,
or results that you receive.

monospaced
italics

Indicates names that are placeholders for values
you specify; for example, filename.

forward slash / Separates menus and their associated commands.
For example, Select File / Copy means to select
Copy from the File menu.

vertical rule | Indicates an OR separator to delineate items.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT], DISTINCT
is an optional keyword.

braces { } Indicates that you must select one item. For
example, {yes | no} means you must specify either
yes or no.

ellipsis . . . Indicates that the immediately preceding item can
be repeated any number of times in succession. An
ellipsis following a closing bracket indicates that
all information in that unit can be repeated.
DataDirect XML Converters User’s Guide and Reference for .NET

14 Preface
Contacting Technical Support
DataDirect Technologies offers a variety of options to meet your
technical support needs. Please visit our Web site for more details
and for contact information:

http://support.datadirect.com

The DataDirect Technologies Web site provides the latest support
information through our global service network. The
SupportLink program provides access to support contact details,
tools, patches, and valuable information, including a list of FAQs
for each product. In addition, you can search our Knowledgebase
for technical bulletins and other information.

To obtain technical support for an evaluation copy of the
product, go to:

http://www.datadirect.com/support/eval_help/index.ssp

or contact your sales representative.

When you contact us for assistance, please provide the following
information:

■ The serial number that corresponds to the product for which
you are seeking support, or a case number if you have been
provided one for your issue. If you do not have a SupportLink
contract, the SupportLink representative assisting you will
connect you with our Sales team.

■ Your name, phone number, email address, and organization.
For a first-time call, you may be asked for full customer
information, including location.

■ The DataDirect product and the version that you are using.

■ The type and version of the operating system where you have
installed your DataDirect product.
DataDirect XML Converters User’s Guide and Reference for .NET

http://support.datadirect.com
http://www.datadirect.com/support/eval_help/index.ssp

Contacting Technical Support 15
■ Any EDI, flat file, legacy file, custom XML conversion
definition, or other environment information required to
understand the problem.

■ A brief description of the problem, including, but not limited
to, any error messages you have received, what steps you
followed prior to the initial occurrence of the problem, any
trace logs capturing the issue, and so on. Depending on the
complexity of the problem, you may be asked to submit an
example or reproducible application so that the issue can be
recreated.

■ A description of what you have attempted to resolve the
issue. If you have researched your issue on Web search
engines, our Knowledgebase, or have tested additional
configurations, applications, or other vendor products, you
will want to carefully note everything you have already
attempted.

■ A simple assessment of how the severity of the issue is
impacting your organization.
DataDirect XML Converters User’s Guide and Reference for .NET

16 Preface
DataDirect XML Converters User’s Guide and Reference for .NET

17
1 DataDirect XML Converters™

Overview

DataDirect XML Converters is an assembly of .NET classes that
provides programmatic bi-directional access to numerous data
sources such as EDI, CSV, and other legacy formats as XML
through .NET applications.

This chapter provides an overview of the XML Converters,
including the types of file formats they support, how they can be
used to access data from other sources, and examples of
converting EDI to XML and XML Schema generation from EDI.

Types of XML Converters
DataDirect XML Converters support numerous file formats, from
many EDI dialects to common formats such as CSV and
tab-delimited files. Most XML Converters are bidirectional,
allowing you to convert from a native format to XML and vice
versa.

The following table summarizes the types of available XML
Converters.
DataDirect XML Converters User’s Guide and Reference for .NET

18 Chapter 1 DataDirect XML Converters™ Overview
Table 1-1. File Formats Supported by XML Converters

File Type Description Bidirectional

Base-64 Converts any file, text or binary (such as an
image), into a XML document with a single
element containing the Base-64 encoded content
of the input file.

Yes

Binary Similar to the Base-64 XML Converter, except with
hexadecimal output. Other options allow output
in other bases, such as decimal or octal or even
binary.

Yes

CSV Converter for comma-separated values (CSV) files.
Supports multiple encodings and options to tune
the quote and escape characters. Supports
delimiters besides commas.

Yes

dBase Support for dBase II, III, III+, IV, and V formats. Yes

DIF Data Interchange Format (DIF) is a
spreadsheet-based file format. There are also XML
Converters for Super Data Interchange (SDI) and
Symbolic Link (SYLK).

Yes

DotD Support for Progress Software’s OpenEdge text
dump file format.

Yes

EDI Automatically detects and parses ATIS, EANCOM,
EDIFACT, Edig@s, HIPAA, HL7, IATA Cargo-IMP,
IATA PADIS, NCPDP, TRADACOMS, and X12 EDI
message types, with options for custom message
types and message extensions to cover proprietary
EDI-based formats.

Yes

JavaProps Support for Java .properties file format, which is
used for program configuration, translation, and
data storage.

Yes

JSON Uses the algorithms on the JSON.org website to
read from XML and write to JSON (JavaScript
Object Notation), and vice-versa.

Yes
DataDirect XML Converters User’s Guide and Reference for .NET

Types of XML Converters 19
XML Converters Can Be Customized

Every XML Converter has properties that allow you to tailor the
converter to suit your needs. Some XML Converters, for example,
let you specify the line separator character, escape character,
root element name, and other aspects of the output format.
Default values are used for all properties that you do not
explicitly specify. You specify properties in the converter: URI
string that you use to invoke the XML Converter.

Line Reads in text one line at a time, wrapping an
element around each line and escaping any
embedded & or > or < symbols.

Yes

Pyx Support for this line-oriented notation for
expressing tree-oriented data.

Yes

RTF Converts rich-text format (RTF) into XML, and vice
versa.

Yes

SDI Super Data Interchange (SDI) is another popular
spreadsheet-based file format. There are also XML
Converters for DIF and SYLK.

Yes

SYLK SYLK (Symbolic Link) is another popular
spreadsheet-based file format. There are also XML
Converters for DIF and SDI.

Yes

TAB Tab-separated values format commonly associated
with MS Excel spreadsheets.

Yes

WinIni Converter for Windows .ini configuration files. Yes

WinWrite Converter for Microsoft WinWrite files; renders
XHTML.

No

Custom Custom XML conversions (.conv files) created
using Stylus Studio.

No

Table 1-1. File Formats Supported by XML Converters

File Type Description Bidirectional
DataDirect XML Converters User’s Guide and Reference for .NET

20 Chapter 1 DataDirect XML Converters™ Overview
See “URI Schemes” on page 21 to learn more about the
converter: URI. See Chapter 6 “XML Converters™ Properties” on
page 113 for more information.

Data Access
XML Converters provide access to non-XML data stored in EDI
and flat file formats like CSV, RTF, dBase, binary, and others. The
following figure illustrates the different ways you can use XML
Converters to access XML and non-XML data from .NET
applications or from XSLT code.

Data access to non-XML data stored as EDI or other file formats
(CSV, tab-delimited, and others, for example) is accomplished
using the DataDirect XML Converters converter: URI scheme. See
“URI Schemes” on page 21 to learn more about the URI schemes
supported by XML Converters.
DataDirect XML Converters User’s Guide and Reference for .NET

URI Schemes 21
URI Schemes
In .NET, files and other data resources are referenced using file:,
http:, ftp:, and a limited set of other URI schemes.

The XML Converters .NET API extends the functionality of the
basic URI to recognize and understand the converter: URI
scheme developed by DataDirect. You can use the converter: URI
scheme in your C# and XSLT code.

For example, the URI scheme converter:myConverter.conv
invokes the custom XML conversion myConverter.conv file. The URI
scheme converter:EDI?file:///m:/testing/editeur.edi invokes
the EDI XML Converter, using the file editeur.edi as the EDI
source to be converted.

See Chapter 2, “XML Converters™ URI Schemes” for more
information.

Command Line Usage
You can run DataDirect XML Converters™ from the command
line.

To specify a native file to be converted to XML:

CmdLine /to [/analyze] [/report filename]
/converter name[:property_name=value ...] /in filename [/out filename]
DataDirect XML Converters User’s Guide and Reference for .NET

22 Chapter 1 DataDirect XML Converters™ Overview
To specify an XML file to be converted to a native format:

CmdLine /from /converter name[:property_name=value ...] /in filename [/out
filename]

Usage Notes

Following are some usage notes for running DataDirect XML
Converters™ from the command line:

■ The/to option specifies that you are converting a file from its
native format to XML; the /from option specifies that you are
converting an XML file to the file type specified in the
/converter option.

■ The XML Converter specified in the name argument for the
converter option can take settings for properties specific to
that converter. For example, /converter EDI:newline=cr
indicates that the carriage return (cr) is to be used as the line
separator (newline) character.

■ property_name=value pairs cannot include blanks. For
example, newline=platform is valid, newline = platform is not.

■ Use /analyze to analyze and convert an EDI stream; use
/report if you want to save the analysis report (by default, it
is written to a temp file and deleted after the conversion).
The /analyze and /report options can only be used when
converting EDI to XML (that is, when you are using the /to
option.

See Chapter 3, “Analyzing EDI to XML Conversions” for more
information.

■ Use /in - to read from the standard input.

■ To write to the standard output, omit the /out option.

■ You can use dashes (-) instead of forward slashes (/) to
separate options – for example, -to instead of /to.
DataDirect XML Converters User’s Guide and Reference for .NET

Handling Proprietary EDI Formats 23
■ To generate XML Schema, replace the /to option with the
/schema option. See “XML Schema Generation” on page 28
for more information.

Example

The following example uses the EDI XML Converter to convert
the input file, 831.x12, to an XML file, my831.xml using default
values for the EDI XML Converter:

CmdLine /to /converter EDI /in ..\examples\831.x12
/out my831.xml

The 831.x12 sample file and others are in the \examples directory
where you installed XML Converters. To learn more about the
examples, see “Example Applications” on page 36.

Handling Proprietary EDI Formats
DataDirect XML Converters™ supports the Standard Exchange
Format (SEF). SEF allows you to specify an EDI structure, typically
one that differs from one of the EDI standards like EDIFACT or
X12, for example. You save this structure definition in a SEF file,
which you can then instruct the EDI XML Converter to use when
converting proprietary EDI to XML.

Creating a SEF File

You can create SEF files manually, based on the SEF specification.
This process, however, can be difficult and error-prone. An easier
way is to use the Stylus Studio EDI to XML Module, which
provides a visual editor to help you build SEF files based on
standard EDI dialects.
DataDirect XML Converters User’s Guide and Reference for .NET

24 Chapter 1 DataDirect XML Converters™ Overview
When using the EDI to XML Module, you can choose as your
starting point an EDI document (from which an EDI dialect is
inferred) or an EDI dialect. From there, you use the EDI to XML
Module editor’s tools to define the ways in which your
proprietary EDI structure differs from the EDI standard.

The SEF Specification

You can find a copy of the SEF specification on the DataDirect
XML Converters web site:

http://www.datadirect.com/docs/sef161.pdf

You need Adobe Acrobat Reader Version 4.0 or later to view this
document. You can download the free Adobe Acrobat Reader
here.
DataDirect XML Converters User’s Guide and Reference for .NET

http://www.datadirect.com/docs/sef161.pdf
http://www.adobe.com

Managing Errors 25
Example: Using a SEF File

See “Example 7” on page 97 for an example of using an SEF
extension file to define an XML Schema. See also “Loading SEF
Files Programmatically” on page 109.

Managing Errors
The DataDirect XML Converters™ API provides several ways to
manage errors in your applications:

■ EDI Analyzer

■ ConverterListener Interface

■ EDIConverterListener Interface

■ EDIConverterException Interface

These features are currently implemented only for the EDI XML
Converter.

EDI Analyzer

The EDI Analyzer API allows you to analyze an EDI stream for
errors that might cause the XML Converter to throw an
exception before converting the EDI stream to XML. A report
generated by the EDI Analyzer in XML format identifies and
describes any errors. The EDI Analyzer also automatically
generates Accept/Reject messages that can be forwarded to the
EDI sender.

The EDI Analyzer API is supported for EDI-to-XML conversions
(and not vice versa).
DataDirect XML Converters User’s Guide and Reference for .NET

26 Chapter 1 DataDirect XML Converters™ Overview
See Chapter 3, “Analyzing EDI to XML Conversions” for more
information on the EDI Analyzer API.

ConverterListener Interface

In an application, it is not always necessary for warnings and
errors to throw exceptions and abort a conversion process; in
such cases it can be desirable to simply make the application
aware that a problem has occurred and allow it to recover (or
not) from the warning or the error.

The ConverterListener interface allows you to intercept
warnings, errors, and fatal errors and manage them separately.
The default action is to ignore warnings, and to throw exceptions
for errors and fatal errors.

Processing can resume after both warnings and errors; by simply
not throwing the exception received, processing continues. In the
case of an error, it is possible that other errors will cascade from
the first. Fatal errors can be reported, but upon return a
ConverterException is always thrown by the EDI XML
Converters™ engine. The exception that is thrown will be an
instance of ConverterException or one of its subclasses such as
ConverterArgumentException.

Example

See “Example 8” on page 98 for an example of registering a
ConverterListener.

EDIConverterListener Interface

The EDIConverterListener is a specialized version of
ConverterListener; its methods provide more detailed
information about error conditions. The InvalidCharacter()
DataDirect XML Converters User’s Guide and Reference for .NET

Managing Errors 27
method, for example, is called when a character does not match
the specified encoding in the EDI stream;
UnknownCodeListValue() is called when codelist validation fails.

EDIConverterException Interface

EDI-based conversions are typically more complex than other
types of conversions (those for CSV and tab-delimited files for
example). By providing more contextual information about
where a problem has occurred, EDI XML Converters™ allow you
to capture the error and possibly return standard EDI messages
back to the sender of the message – CONTRL (for EDIFACT), 997
(for X12), or ACK (for HL7), for example.

The EDIConverterException is a specialized version of
ConverterException that contains extra information about the
context of errors in EDI files. When a ConverterException is
thrown while processing an EDI file, or when a
ConverterListener is registered and a Warning(), Error(), or
FatalError() is called, in most cases the exception thrown will
be EDIConverterException.

This exception contains many methods to probe the context of
the specific error – GetContentData(), GetControlData(),
GetData(), and GetError(). Processing can recover from both
warnings and errors; fatal errors, however, always end the
processing.

Error Diagnostics

Full context information is provided when an error is
encountered within the EDI file, including the error number
according to the local EDI dialect. For example, many EDIFACT
errors are recorded in the 0085 element codelist, and if the error
occurring matches one of those, it is reported as such.
DataDirect XML Converters User’s Guide and Reference for .NET

28 Chapter 1 DataDirect XML Converters™ Overview
XML Schema Generation
You can use the SchemaGenerator interface to create XML Schema
files that describe the structure of XML files read or created by a
ConvertToXML or ConvertFromXML object. You might want to use
the SchemaGenerator interface in the following situations:

■ You have a FromXML converter: URI, and you want to know the
XML Schema that the input XML data must satisfy.

■ You have a ToXML converter: URI, and you want to know the
XML Schema of the XML output.

■ You have a ToXML converter: URI and a non-XML data file, and
you want to know the XML Schema of the XML output. (This
functionality is available only with certain XML Converters.
See “XML Schema Generation Summary” on page 35 for more
information.)

The XML Schema of the generated file depends on the type of
file for which the XML Schema is being created, and not on the
actual data. For example, if you are creating an XML Schema for
an EDI file, the XML Converter is concerned only with the file’s
dialect, version, and message type/transaction set. You can specify
this information by providing a sample file input, or by specifying
the appropriate properties in the converter: URI. See “Instance
Documents” on page 31 and “URI Parameters That Affect XML
Schema” on page 31 for more information.

Command Line Usage

To generate XML Schema from the command line:

CmdLine /schema /converter name
[:property_name=value [:property_name=value ...]] /in filename
DataDirect XML Converters User’s Guide and Reference for .NET

XML Schema Generation 29
[/out filename]

Note that some XML Converters (like EDI, for example) require
that you either provide an instance document or that you specify
sufficient properties in the converter: URI. For ED,I for example,
you need to provide dialect, version, and message
type/transaction set.

Example Scenario

Consider the following example scenario: your enterprise
routinely receives client data in EDI files. The data in these files
needs to be converted to XML so that it can be transformed for
processing by an application. After application processing, the
resulting XML is again transformed to another format before
being converted back to EDI.

Such a workflow can be represented with the following
diagram:

In this illustration, the conversion block Convert EDI to XML
represents an instance of DataDirect XML Converters™, which is
used to convert the incoming EDI document – imagine it is an
X12 810 transaction set (Invoice). This XML conforms to the XML
Schema consistent with the X12 EDI transaction set from which it
was derived. However, before the XML can be used by the
processing application, it needs to be transformed into the
DataDirect XML Converters User’s Guide and Reference for .NET

30 Chapter 1 DataDirect XML Converters™ Overview
format expected by the processing application – that is, it must
conform to an XML Schema.

Imagine that XSLT is used to perform this transformation (the
block XML to XML Transformation in the preceding illustration).
One way to create such an XSLT is to use a mapping tool. In this
case, we map nodes from the XML Schema representing the EDI
X12 810 transaction set to the XML Schema representing the
document format expected by the XML processing application.
Here, we use DataDirect XML Converters™ to create the XML
Schema for the EDI X12 810 transaction set, as shown in the
following illustration.

A similar mapping process is performed to create the second XML
to XML transformation (another XSLT), this time mapping XML
Schema nodes from the application format to the EDI X12 810
transaction set format to create an XSLT. This XSLT transforms the
XML data to a format that can be understood by the DataDirect
XML Converters™.

See “Creating XML Schemas from EDI” on page 37 for an
example of using DataDirect XML Converters™ to create XML
Schema from an EDI document.
DataDirect XML Converters User’s Guide and Reference for .NET

XML Schema Generation 31
Instance Documents

Some XML Converters, like those for CSV and Tab, require an
instance document in order to provide DataDirect XML
Converters™ with the information it needs to generate an XML
Schema. Other XML Converters (like EDI) can use instance
documents, but they are not required; for this type of file, you
can provide information using converter: URI properties to
specify characteristics of the generated XML Schema. Still others
(Base64 and SDI, for example) use neither instance documents
nor converter: URI properties, relying instead on DataDirect XML
Converters™ built-in settings for XML Schema generation for
files of that type.

See “XML Schema Generation Summary” on page 35 for more
information concerning instance document and converter: URI
property usage for XML Converters.

URI Parameters That Affect XML
Schema

This section describes how URI parameters affect XML Schema
generation for the XML Converters that support their use. The
XML Converters for which you can specify URI parameters are:

■ CSV
■ EDI
■ Line
■ Tab
■ custom (built using Stylus Studio)
DataDirect XML Converters User’s Guide and Reference for .NET

32 Chapter 1 DataDirect XML Converters™ Overview
CSV XML Converter URI Parameters

The following parameters affect XML Schema generation for
both CSV and tab-delimited files:

EDI XML Converter URI Parameters

The following parameters affect XML Schema generation for EDI
files:

Table 1-2. Parameters for CSV and Tab XML Converters

Property Description

first= Specifies whether elements subordinate to
the row element are named column (plus a
number to make it unique) or are given their
name based on the first row of data.

root= Specifies the name of the root element in
converted XML; also specifies the name of the
root element in generated XML Schema.

row= Specifies the name of the row element in
converted XML; also specifies the name of the
row element in generated XML Schema.

Table 1-3. Parameters for EDI XML Converters

Property Description

dialect= Must be one of the following: ATIS, CARGO,
EANCOM, EDIFACT, EDIGAS, HIPAA, HL7,
IATA, NCPDP, TRADACOMS, or X12.

Use IATA to specify the PADIS dialect.

The dialect must be specified if an instance
document is not provided.
DataDirect XML Converters User’s Guide and Reference for .NET

XML Schema Generation 33
doc= Whether or not to include xs:documentation
comments in the XML Schema. Default is
"yes."

inter= Certain EDI messages have alternate batch
and interactive forms, depending upon
whether they are used between systems that
have real-time connections. The inter=yes
setting causes the interactive form to be used,
if available. For example, in EDIFACT, this
would cause the normal envelope of
UNB/UNH/UNT/UNZ to be replaced by
UIB/UIH/UIT/UIZ.

long= Whether you want to use long or short
element names in your XML conversions –
FTX03-TextReference (long=yes) or FTX03
(long=no), for example.

message= Varies based on the dialect and version.
Examples for EDIFACT include CONTRL and
ORDERS; examples for HL7 include ACK and
ADT_A01; examples for IATA PADIS include
SPORES and TKTRES; and so on.

Required if an instance document is not
provided.

tbl= Whether or not the codelist tables are created
as enumerations in the generated XSD
output. Default is "no."

user= Optionally specifies a SEF extension file,
whose structure is incorporated in the
generated XML Schema.

version= Varies based on the dialect. Examples for
EDIFACT include 921 and D07A; examples for
HL7 include 2.1 and 2.5; examples for IATA
PADIS include 991 and 992; and so on.

Required if an instance document is not
provided.

Table 1-3. Parameters for EDI XML Converters

Property Description
DataDirect XML Converters User’s Guide and Reference for .NET

34 Chapter 1 DataDirect XML Converters™ Overview
Line XML Converter URI Parameters

The following parameters affect XML Schema generation for
whole-line text files:

Tab XML Converter URI Parameters

See “CSV XML Converter URI Parameters” on page 32.

Table 1-4. Parameters for Line XML Converters

Property Description

line= Specifies the name of the element that wraps
each line in converted XML; also specifies the
name of that element in generated XML
Schema.

root= Specifies the name of the root element in
converted XML; also specifies the name of the
root element in generated XML Schema.
DataDirect XML Converters User’s Guide and Reference for .NET

XML Schema Generation 35
XML Schema Generation Summary

The following table summarizes information about the XML
Schema generation capabilities of DataDirect XML Converters.
Note that not all XML Converters can generate XML Schema.

Table 1-5. XML Converters That Can Generate XML Schema

Converter
Name

Can Generate
XML Schema

Instance
Document

URI Parameters
Affect XML
Schema

Base64 Yes Not needed No

Binary Yes Not needed No

CSV Yes Mandatory Yes

custom Yes Not needed via .conv file

dBase (all) Yes Mandatory No

DIF Yes Not needed No

DotD Yes Not needed No

EDI (all) Yes Optional Yes

JavaProps Yes Not needed No

JSON No n/a n/a

Line Yes Not needed Yes

Pyx No n/a n/a

RTF No n/a n/a

SDI Yes Not needed No

Sylk Yes Not needed No

Tab Yes Mandatory Yes

WinIni Yes Not needed No

WinWrite Yes Not needed No
DataDirect XML Converters User’s Guide and Reference for .NET

36 Chapter 1 DataDirect XML Converters™ Overview
Example Applications
This section presents two simple applications: one showing the
conversion of an EDI file to XML, and another that shows how to
use the API to create an XML Schema from an EDI file.

See Chapter 5 “XML Converters™ Examples” on page 85 for other
application examples.

Converting EDI to XML

Following is a simple example application that reads EDI from
one file (myEdi.x12) and writes XML to another (myEdi.x12.xml).

using System;
using System.Collections.Generic;
using System.Text;
using DDTek.XmlConverter;

namespace ConverterOne
{

class Program
{

static void Main(string[] args)
{
Console.Out.WriteLine(args[0] + " --> " + args[1]);
Converter toXML = new ConverterFactory().CreateConvertFromXml
("converter:EDI");
toXML.Convert(new UriSource(args[0]), new UriResult(args[1]));
}

}
}

This program can be invoked from a command line as follows:

ConverterOne file:///c:/path/myEdi.x12 file:///c:/path/myEdi.x12.xml
DataDirect XML Converters User’s Guide and Reference for .NET

Example Applications 37
Creating XML Schemas from EDI

Following is a simple example that shows a C# program that
generates XML Schema for EDIFACT version D07A; the name of
the message being converted (in this case, ORDERS), is taken
from the command line, which might look like this:

com.ddtek.example.CreateEdifactSchema ORDERS

In this example, the XML Schema is written to the console.

using System;
using DDTek.XmlConverter;
namespace Example
{

public class CreateEdifactSchema {
static void Main(String[] args) {

String uri = "EDI:dialect=EDIFACT:version=D07A:long=yes:message=" +
args[0];

try {
ConverterFactory factory = new ConverterFactory();
SchemaGenerator schema = factory.CreateSchemaGenerator(uri);
Result twr = new TextWriterResult(Console.Out);
schema.GetSchema(twr);

} catch (ConverterException ce) {
Console.WriteLine(ce.Message);

}
}

}
}

The previous example specified the dialect, version and message
directly in the EDI: URI, using the dialect=, version= and
message= properties:

...
String uri = "EDI:dialect=EDIFACT:version=D07A:long=yes:message=" + args[0];
...
DataDirect XML Converters User’s Guide and Reference for .NET

38 Chapter 1 DataDirect XML Converters™ Overview
For some file types, like EDI, you can instead supply a sample, or
instance, document from which the XML Converters engine can
read this information. When you use an EDI instance document,
the schema generator generates an XML Schema for the
dialect/version/message in that instance document.

In the following example, the name of the EDI instance
document (data.edi) is taken from the command line, which
might look like this:

 com.ddtek.example.CreateAnySchema c:\myhome\data.edi

In this example, the XML Schema is again written to the console:

using System;
using DDTek.XmlConverter;
namespace Example
{
 public class CreateAnySchema {
 static void Main(String[] args) {
 String uri = "EDI:long=yes";
 try {
 ConverterFactory factory = new ConverterFactory();
 SchemaGenerator schema = factory.CreateSchemaGenerator(uri);
 Source us = new UriSource(args[0]);
 Result twr = new TextWriterResult(Console.Out);
 schema.GetSchema(us, twr);
 } catch (ConverterException ce) {
 Console.WriteLine(ce.Message);
 }
 }
 }
}

DataDirect XML Converters User’s Guide and Reference for .NET

39
2 XML Converters™ URI Schemes

You can use the converter: URI scheme to reach a variety of data
sources using DataDirect XML Converters. The converter: URI
scheme can also be used with user-defined custom XML
conversions created using Stylus Studio XML Enterprise Suite.

The converter: URI Scheme
The converter: URI scheme specifies an XML Converter name –
either one of the standard XML Converters (for EDI or
tab-delimited files, for example) and settings for the properties
you wish to use, or a custom XML conversion created using Stylus
Studio XML Enterprise Suite. SEF files, which describe proprietary
extensions to EDI standard dialects and messages, can be passed
as a parameter of the converter: URI.

Converter URI Syntax
While properties differ from one XML Converter to the next, the
syntax used to invoke an XML Converter is the same:

converter:name[:property_name=value]... [?URI]

To specify a converter: URI, you need to identify:

■ The XML Converter you want to use (EDI, CSV, dBase, and so
on)

■ Options for that XML Converter (separator and escape
characters, for example)
DataDirect XML Converters User’s Guide and Reference for .NET

40 Chapter 2 XML Converters™ URI Schemes
■ The file to be converted

The format of the converter: URI string

Example

This converter: URI invokes the XML Converter for
comma-separated values to convert the three.txt file in the
\XMLConverters\examples\ directory to XML:

converter:CSV:newline=lf:first=yes?file:///c:/XMLConverters/examples/
three.txt

The instructions to the XML Converter engine from this instance
of the converter URI are described the following table.

In this example:

■ The name of the XML Converter is CSV. It could be any XML
Converter – EDI, Base64, DIF, RTF, and so on.

■ Only the newline= and first= properties have been specified;
default values are used for all other converter properties.

■ The source file being converted is three.txt on
c:/XMLConverters/examples. If you are using the converter:
URI programatically, you omit the ?URI parameter as the
source file being converted is specified by the program.

Instruction Converter URI String

Use the Comma-Separated Values XML
Converter converter

converter:CSV

The line separator in the source file is a line
feed

newline=lf

The values in the first row of the source file
should be used to supply field names

first=yes

The source file is three.txt ?file:///c:/XMLConverters/examples
/three.txt
DataDirect XML Converters User’s Guide and Reference for .NET

Specifying XML Converter Properties 41
Specifying XML Converter Properties
XML Converter properties that use default values do not have to
be specified in the converter URI. A comma is the default
separator character for the CSV XML Converter, for example. But
if the particular file you were converting used another separator
character, you would need to specify it using the sep= property.

While the basic format of the converter URI is the same from one
XML Converter to another, XML Converters have different
properties. For example, the XML Converter for dBase files has
properties that the XML Converter for binary files does not.

For a complete description of properties for all XML Converters,
see Chapter 6, “XML Converters™ Properties”.

Building a converter: URI
If you have Stylus Studio XML Enterprise Suite, you can use Stylus
Studio to build the converter URIs you use in your .NET
applications. Converter URIs can be long and complex –
properties and their values vary from one converter to another,
for example – so using Stylus Studio to construct them can
reduce errors in your applications. Its graphic user interface can
make it easier to specify the converter properties you need to
include.

Otherwise, you must construct the converter URL manually,
taking care to specify both setting names and their values
correctly. For a complete description of properties for all XML
Converters, see Chapter 6, “XML Converters™ Properties”.
DataDirect XML Converters User’s Guide and Reference for .NET

42 Chapter 2 XML Converters™ URI Schemes
Where Converter URIs are Displayed in
Stylus Studio

Converter URIs are displayed in the following places in Stylus
Studio XML Enterprise Suite:

■ In the URI field of the EDI to XML Module editor. You can also
make changes to the converter URI here.

■ In the Project window (select Show Full URL Info from the
Project window shortcut menu)
DataDirect XML Converters User’s Guide and Reference for .NET

Invoking a Custom XML Conversion 43
■ In the URI field of the Select XML Converter dialog box, as
shown in the following illustration.

You can use any of these sources to capture the converter: URI
string for use in your .NET applications. For more information,
see the Stylus Studio product documentation.

Invoking a Custom XML Conversion
The converter: URI scheme can also be used to reference a
custom XML conversion (a .conv file) built using Stylus Studio
XML Enterprise Suite. In this case, the converter URI specifies
only the location of the .conv file; the custom XML conversion
contains all the information required to perform the XML
conversion.

A converter URI that references a custom XML conversion called
myConverter.conv might look like this:

converter:///myConverter.conv?file:inventory.txt

This converter: URI uses myConverter.conv to convert the file
inventory.txt to some format (specified in the custom XML
DataDirect XML Converters User’s Guide and Reference for .NET

44 Chapter 2 XML Converters™ URI Schemes
conversion when you built it using Stylus Studio XML Enterprise
Suite).

NOTE: Custom XML conversions can be defined using Stylus
Studio XML Enterprise Suite only.

Invoking a Converter URI in XSLT
The .NET Framework uses a document URI resolver that enables
the document() function to take a converter: URI as its argument.

Consider the following example of the document() function,
which invokes the CSV XML Converter to convert the file one.csv
to XML:

document('converter:///CSV:sep=,:first=yes?file:///c:/XMLConverter/one.csv')

In this example, only two of the CSV XML Converters properties is
set (sep=, and first=yes); default settings are used for all other
properties.

Here is the document() function in the context of a code sample
that shows the use of XML Converter as XmlResolver. The
transformation combines one.xml with one.csv into eleven.xml.
The XSLT processor resolves one.csv through the XmlResolver
implementation provided by the ConverterFactory class.

try{
 String xsltString =
 @"<xsl:stylesheet version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <xsl:output method='xml' indent='yes'/>
 <xsl:template match='/'>

 <root>
 <xsl:copy-of select='.'/>
 <xsl:copy-of select=""

document('converter:///CSV:sep=,:first=yes?" + exampleDir
+ @"one.csv')""/>
DataDirect XML Converters User’s Guide and Reference for .NET

Invoking a Converter URI in XSLT 45
 </root>
 </xsl:template>

 </xsl:stylesheet>";

 XslCompiledTransform xslt = new XslCompiledTransform();
 XsltSettings settings = new XsltSettings(true, false);

 xslt.Load(XmlReader.Create(new StringReader(xsltString)),
settings, null);

 xslt.Transform(
 XmlReader.Create(exampleDir + "one.xml"),
 new XsltArgumentList(),
 XmlWriter.Create(exampleDir + "eleven.xml"),
 factory.CreateResolver());
 Console.WriteLine("test 11 finished: one.xml + one.csv ->

eleven.xml");
 }
 catch (Exception e)
 {
 Console.WriteLine("test 11 failed with exception: " + e);
 }
DataDirect XML Converters User’s Guide and Reference for .NET

46 Chapter 2 XML Converters™ URI Schemes
DataDirect XML Converters User’s Guide and Reference for .NET

47
3 Analyzing EDI to XML
Conversions

This chapter describes the EDI Analyzer API and how to use it to
convert EDI to XML. It covers the following topics:

■ “Overview,”
■ “EDI Analysis Report,”
■ “Managing Transmission Responses,”

Overview
The Analyze method of the EDI Analyzer API analyzes an EDI
stream for warnings, errors, and fatal errors before converting
the EDI stream to XML. An XML report generated by the Analyze
method identifies any errors in the EDI; this report is used by the
Convert method to filter out interchanges, groups, and messages
that contain errors during conversion, allowing partial
processing of EDI streams that contain errors. The analysis report
also includes dialect-specific transmission response messages that
can be returned to the EDI sender.

This section covers the following topics:

■ “Illustration,”
■ “Dialect Support,”
■ “Method Definition,”
■ “Command Line Interface,”
DataDirect XML Converters User’s Guide and Reference for .NET

48 Chapter 3 Analyzing EDI to XML Conversions
Illustration

The following illustration shows how you can use EDI Analyzer
API Analyze and Convert methods to convert EDI to XML. It
shows EDI provided by an EDI sender – this could be an EDI
document, EDI data stored on a file system, or EDI provided by a
business partner’s Web service, for example – being passed to an
EDI receiver – a separate business entity, a business partner, or
some other consuming application. Transmission response
messages contained in the analysis report can optionally be
returned to the EDI sender.
DataDirect XML Converters User’s Guide and Reference for .NET

Overview 49
EDI Analysis

First the EDI data stream is analyzed by the Analyze method for
any errors. Errors are classified as warnings, errors, and fatal
errors. Errors, along with other information about the EDI
stream and its transmission, are captured in an analysis report.
The analysis report is always generated by the Analyze method,
whether or not the EDI stream is free of errors. The Analyze
method does not throw an exception unless the input stream or
output stream could not be opened.

Some input data errors can make the input data file
unrecognizable to the Convert method. If such is the case, then
the analysis report will contain a <FatalError> element which
describes the fatal error.

Analysis Report

The analysis report is an XML report generated by the Analyze
method. It identifies any interchanges, groups, or messages that
contain errors and describes those errors. For some EDI dialects,
the analysis report also includes a Response element, with
Receipt and Acknowledgement sub-elements that you can use to
send transmission responses to the EDI sender.

You can write the analysis report to any output you choose – you
might want to review the report before converting the EDI to
XML, for example – but the analysis report needs to be available
to the Convert method in order for the EDI to be converted to
XML.

See “EDI Analysis Report” on page 54 for detailed information
about the report’s contents and structure.
DataDirect XML Converters User’s Guide and Reference for .NET

50 Chapter 3 Analyzing EDI to XML Conversions
EDI Conversion

The same EDI stream specified for the Analyze method must be
specified for the Convert method. Once the analysis is complete,
you pass the analysis report to the Convert method. The Convert
method uses the errors identified in the analysis report to filter
the EDI, preventing messages containing errors from being
converted to XML while allowing the rest of the messages to be
converted. When using Convert without the analysis report, if an
error or fatal error occurs, the Convert method will throw an
exception and no useful XML output will be generated. When
Convert is used with the analysis report, then it will throw an
exception only if:

■ The input stream, output stream or analysis report could not
be opened.

■ The analysis report contains a <FatalError> element indicating
that the input data file is unrecognizable.

Specifying the EDI Stream and EDI Conversion
Settings

The EDI input stream specified for the Analyze method must be
the same as that specified in the Convert method for a given XML
conversion. When using a UriSource, it is convenient to use the
same UriSource object for both Analyze and Convert. If, however,
you use an InputStream source, you must rewind the input
stream after calling Analyze, so that Convert can reread the same
data.

Also, any conversion properties specified for the EDI stream in the
Analyze method must also be specified for the EDI stream in the
Convert method. These conversion properties were specified
when the Converter object was created using the
ConverterFactory.CreateConvertToXml(…) method. As long as
you use the same Converter object for both the Analyze and
DataDirect XML Converters User’s Guide and Reference for .NET

Overview 51
Convert, you are assured that the same conversion properties are
used for both.

To learn more about conversion properties, see “EDI XML
Converter Properties” on page 122.

Transmission Response Messages

Some EDI specifications provide message definitions for
notifying an EDI sender about the success of a transmission, and
about those messages that were successfully processed or
rejected because of errors. The Analyze method automatically
generates transmission response messages, creating a Response
element with Receipt and Acknowledgement subelements in the
EDI analysis report. Each subelement holds a complete EDI
message in XML format that can be easily manipulated using
.NET and then serialized to EDI to transmit the response to the
EDI sender.

Communicating with the EDI sender is optional, and business
entities will have different requirements for transmitting receipt
messages, acknowledgement messages, or both. See “Managing
Transmission Responses,” for more information on this topic.

Dialect Support

The Analyze method is supported for all EDI dialects supported
by DataDirect XML Converters. The Analyze method is supported
for EDI to XML conversions only, and not vice versa.

Note, however, that automatic generation of transmission
response messages is supported only for these EDI dialects:

■ ATIS
■ EDIFACT
■ HIPAA
■ X12
DataDirect XML Converters User’s Guide and Reference for .NET

52 Chapter 3 Analyzing EDI to XML Conversions
See “Managing Transmission Responses,” for more information
on this topic.

Method Definition

The Analyze method is defined as follows:

void ConvertToXml.Analyze(Source source, Result result)

The Source and Result implementations are the same as those
supported by the Convert(Source, Result) method. In the case of
the Analyze method, the Result object receives the EDI analysis
report. Once the analysis report has been created, you use this
method to convert the input data file:

void Convert(Source source, Result result, Source analyzeReportSource)

See “EDI Analysis Report” on page 54 for detailed information
about the report’s contents and structure. See “Example 14” on
page 106 to see an implementation of the Analyze method in a
simple .NET application.
DataDirect XML Converters User’s Guide and Reference for .NET

Overview 53
Command Line Interface

The EDI Analyzer is supported through the command line
interface using /analyze and /report options as part of the
CmdLine command, as summarized in the following table.

See “Command Line Usage” on page 21 for general information
about using the XML Converters command line interface.

Sending a Transmission Response

The /analyze option performs the EDI analysis and conversion as
a single operation. If you want to be able to send a transmission
response to the EDI sender, you must use the /report option and
specify a file name in order to make the analysis report’s Receipt
and Acknowledgement elements accessible for conversion back
to EDI.

Table 3-1. EDI Analyzer Command Line Options

Option Description

/analyze Analyzes the EDI data stream,
identifying invalid items (a segment
with an error, for example). Invalid
items are skipped, and the rest of the
data stream is converted to XML.
Writes the analysis report to a temp
file, which is used during the
conversion, and then deleted.

/report <Uri> Saves the analysis report to the
specified <Uri>. Allows later use of the
transmission response messages that
are automatically generated for some
EDI dialects.

Note: The /report option cannot be
used alone. It must always be used
with the /analyze option.
DataDirect XML Converters User’s Guide and Reference for .NET

54 Chapter 3 Analyzing EDI to XML Conversions
See “Managing Transmission Responses” on page 61 for more
information on this topic.

EDI Analysis Report
The EDI analysis report is an XML document that is generated
automatically by the Analyze method. It contains complete
information about the transmission, including information about

■ The dialect of the EDI data source

■ The interchanges, groups, and messages in the transmission

■ Errors

■ Dialect-specific accept/reject messages

The remainder of this section describes the structure of the
analysis report and provides details about the format and
content of each section in the report. It is organized as follows:

■ “Document Root,”

■ “Interchanges Element,”

■ “Response Element,”

Document Root

The document root of the EDI analysis report is called
AnalyzeReport. It has a single attribute that indicates the EDI
dialect of the input document. For example:

<AnalyzeReport dialect="X12">

The AnalyzeRoot element contains two subelements – the
Interchanges element and the Response element.
DataDirect XML Converters User’s Guide and Reference for .NET

EDI Analysis Report 55
Interchanges Element

An interchange is an envelope for a set of EDI messages. The
AnalyzeReport element contains a sequence of Interchange
elements in which errors have been found. Interchange elements
are grouped by a single Interchanges element. For example:

<Interchanges>
<Interchange

sequence="1"
implicit="false"
firstSegment="1"
lastSegment="11"
errors="false"
warnings="true">

Each Interchange element defines the following attributes:

■ sequence – the ordinal position in the input document

■ implicit – indicates if the interchange was missing, and,
therefore, inferred

■ firstSegment, lastSegment – the segment range for this
interchange

■ errors – whether or not errors were found in the interchange

■ warnings – whether or not warnings were found in the
interchange

Note that both errors and warnings are recorded using the
Error element; a severity attribute indicates the type of error
– W for warning, E for error. See “Errors” on page 56 for
more information about the Error element.

Segments

Each Interchange element contains a Segments element, which
includes header and trailer Segment elements, as well as a
Segment element for any segment containing errors.
DataDirect XML Converters User’s Guide and Reference for .NET

56 Chapter 3 Analyzing EDI to XML Conversions
<Segments>
 <Segment segnum="1" header="true" segname="ISA">

Each Segment element defines the following attributes:

■ segnum – the absolute ordinal number for the segment in the
entire EDI transmission

■ header – indicates whether the segment is a header or trailer
(=true) or data segment (=false)

■ segname – the segment name

SegmentData

Each Segment element contains a SegmentData subelement. The
specific contents of the SegmentData subelement varies based on
the dialect of the EDI source being converted to XML. For an X12
EDI document, for example, the SegmentData sublement would
contain an ISA element, with ISA01, ISA02, subelements, as
shown here:

<SegmentData>
<IEA>
<IEA01><!--I16: Number of Included Functional-->1</IEA01>
<IEA02><!--I12: Interchange Control Number-->32123</IEA02>

</IEA>
</SegmentData>

Errors

Each Segment element can also contain an Errors subelement.
The Errors subelement contains one or more Error subelements.
For example:

<Errors>
<Error severity="E">
<ErrorCode>DDEE0008</ErrorCode>
<NativeErrorCode>7</NativeErrorCode>
<NativeErrorTable>723</NativeErrorTable>
<SegmentName>BGN</SegmentName>
DataDirect XML Converters User’s Guide and Reference for .NET

EDI Analysis Report 57
<SegmentNumber>4</SegmentNumber>
<Value>99</Value>
<InvalidCharacter/>
<Element>1</Element>
<Repeat>1</Repeat>
<SubElement/>
<TriElement/>
<Offset>4</Offset>
<ElementName>353 (s)</ElementName>
<Dialect>X12</Dialect>
<SyntaxVersion>00403</SyntaxVersion>
<MessageVersion>00403</MessageVersion>
<CodeListVersion>004030</CodeListVersion>
<SystemVersion/>
<HeaderVersion/>
<ControllingAgency>004030</ControllingAgency>
<ErrorText>[DDEE0008] ERROR Value 99 not in codelist 353.
Dialect: X12
Version: syntax=00403/004030;codelist=004030/;message=

00403/004030;agency=004030
Message: 831
Segment: BGN (segment 4)
Position: BGN01
Element: 353 (s) Transaction Set Purpose Code
Value: "99"
Native error: 7, in table: 723

The value for an element in the data stream cannot be found
in the codelist associated
with the element. Turning off codelist validation with
"tbl=no" will eliminate the error.</ErrorText>
</Error>

</Errors>

The Error element defines a single attribute:

■ severity – E for error, W for warning, F for fatal.

Note that if the file contains an <Error severity="F">
element, it will also contain a <FatalError> element (the first
DataDirect XML Converters User’s Guide and Reference for .NET

58 Chapter 3 Analyzing EDI to XML Conversions
child of the <AnalyzeReport> element). In this case, the
analysis report cannot be used by the Convert method.

Each Error element can contain the following subelements. Note
that if the element is empty, it is omitted from the report.

■ ErrorCode – the vendor code

■ NativeErrorCode – internal use only

■ NativeErrorTable – internal use only

■ SegmentName – the name of the segment in which the error
occurred

■ SegmentNumber – the absolute ordinal position of the
segment relative to the entire EDI transmission

■ Value – the field value that triggered the error

■ InvalidCharacter – the invalid character that triggered the
error

■ Element – the absolute ordinal position of the message
element where the error occurred

■ Repeat – the iteration number in a loop where the error
occurred

■ Subelement – the particle where the error occurred; appears
for HL7 conversions only

■ TriElement – the particle where the error occurred; appears
for HL7 conversions only

■ Offset – the offset in characters from the start of the segment

■ ElementName – the name of the message element where the
error occurred

■ Dialect – the EDI dialect name

■ SyntaxVersion – the EDI syntax version

■ MessageVersion – the EDI message version
DataDirect XML Converters User’s Guide and Reference for .NET

EDI Analysis Report 59
■ CodeListVersion – the EDI codelist version

■ SystemVersion – the EDI system version

■ HeaderVersion – the EDI message header version

■ ControllingAgency – the agency controlling the EDI
specification

■ ErrorText – the complete error message

Groups

Each Interchange element also contains a Groups subelement,
itself containing one or more Group elements. Each Group
element defines the following attributes:

■ sequence – the ordinal position within the interchange

■ implicit – indicates there was no group start segment, and,
therefore, it was inferred

■ firstSegment, lastSegment – the segment range for this
group

■ errors – whether or not errors were found in the group

■ warnings – whether or not warnings were found in the
group

Segments

Each Group element contains a Segments element. See
“Segments” on page 55 for a description.

Messages

Each Group element contains a Messages element, itself
containing one or more Message elements. Each Message
element defines the following attributes:

■ sequence – the ordinal position in the input document
DataDirect XML Converters User’s Guide and Reference for .NET

60 Chapter 3 Analyzing EDI to XML Conversions
■ implicit – indicates if the message was missing, and, therefore,
inferred

■ firstSegment, lastSegment – the segment range for this
message

■ errors – whether or not errors were found in the message

■ warnings – whether or not warnings were found in the
message

Response Element

For EDI dialects for which transmission responses are supported
(ATIS, EDIFACT, HIPAA, and X12), the Analyze method generates a
Response element in the EDI analysis report. The Response
element contains Receipt and Acknowledgement subelements :

<Response>
<Receipt>...</Receipt>

 <Acknowledgement>...</Acknowledgement>
</Response>

The Receipt and Acknowledgement elements each contain a
complete EDI message in XML format:

■ Receipt element messages indicate only that the transmission
from the EDI sender was received; they contain no
information about the content of the transmission.

■ Acknowledgement element messages contain information for
each interchange, group, and message that was received,
including whether it was accepted without errors, rejected, or
partially accepted.

Receipt and Acknowledgement elements can be easily
manipulated using .NET and then serialized to EDI for
consumption by the EDI sender.
DataDirect XML Converters User’s Guide and Reference for .NET

Managing Transmission Responses 61
For EDI dialects for which transmission responses are not
supported, the analysis report contains an empty Response
element.

See “Managing Transmission Responses” on page 61 for more
information on this topic.

Managing Transmission Responses
Some EDI specifications define the interchanges and messages to
be used to notify the EDI sender about transmission status, from
initial receipt of the transmission to the errors, if any,
encountered in the EDI data stream received from the EDI
sender. For example:

■ HIPAA and X12 use the TA1 interchange to indicate whether
a transmission was accepted, accepted with errors, or
rejected. The 997 transaction set is used to report errors
encountered during EDI processing.

■ EDIFACT uses the CONTRL message to indicate acceptance or
rejection of a transmission, and also to report errors
encountered during EDI processing.

As described in “Response Element” on page 60, the Analyze
method generates dialect-specific transmission responses as
Receipt and Acknowledgement elements in the EDI analysis
report.

This section covers the following topics:

■ Receipt Element Example

■ Acknowledgement Element Example

■ Converting Response Messages to EDI

■ Sending Responses to the EDI Sender
DataDirect XML Converters User’s Guide and Reference for .NET

62 Chapter 3 Analyzing EDI to XML Conversions
Receipt Element Example

Here is an example of the Receipt element from the analysis
report created using the Analyze method to convert the sample
file threemsgs.x12 to XML:

<Receipt>
<X12>

<ISA>
<ISA01>00</ISA01>
<ISA03>00</ISA03>
<ISA05>01</ISA05>
<ISA06>5151515151</ISA06>
<ISA07>01</ISA07>
<ISA08>1515151515</ISA08>
<ISA11>^</ISA11>
<ISA12>00403</ISA12>
<ISA13>0</ISA13>
<ISA14>0</ISA14>
<ISA15>P</ISA15>
<ISA16>*</ISA16>

</ISA>
<TA1>

<TA101>32123</TA101>
<TA102>041201</TA102>
<TA103>1217</TA103>
<TA104>A</TA104>
<TA105>000</TA105>

</TA1>
<IEA/>

</X12>
</Receipt>

The specific structure of the Receipt element varies based on the
dialect, and contents, of the EDI stream being converted. In this
example:

■ The X12 element specifies the EDI dialect of the EDI data
stream that was converted to XML.
DataDirect XML Converters User’s Guide and Reference for .NET

Managing Transmission Responses 63
■ The ISA element represents the Interchange Control Header
segment; its subelements (ISA01, ISA02, and so on) show the
values for the corresponding segment fields (Authorization
Information Qualifier, Authorization Information, and so on).

■ The TA1 element represents the Transaction
Acknowledgement segment; its subelements (TA101, TA102,
and so on) show the values for the corresponding segment
fields (Interchange Control Number, Interchange Date, and
so on).

■ The IEA element represents the Interchange Control Trailer
segment; it is empty because the values for this segment are
computed automatically by DataDirect XML Converters when
the Receipt element is converted to EDI for transmission back
to the EDI sender.

Other EDI segments that are computed when the XML is
converted to EDI include the Transaction Set Trailer (SE) and
Function Group Trailer (GE).

Acknowledgement Element Example

Following is an example of the Acknowledgement element from
the same analysis report created using the Analyze method to
convert the sample file threemsgs.x12 to XML. Note that is has
been abbreviated for formatting considerations.

<Acknowledgement>
<X12>

<ISA> … </ISA>
<GS> … </GS>
<TS_997>

<ST>
<ST01>997</ST01>
<ST02>0</ST02>

</ST>
<AK1>

<AK101>CT</AK101>
DataDirect XML Converters User’s Guide and Reference for .NET

64 Chapter 3 Analyzing EDI to XML Conversions
<AK102>128</AK102>
</AK1>
<AK2>

<AK201>831</AK201>
<AK202>00128001</AK202>

</AK2>
<AK5> … </AK5>
<AK2>

<AK201>831</AK201>
<AK202>00128002</AK202>

</AK2>
<AK3> … </AK3>
<AK4>

<AK401> … </AK401>
<AK402>782</AK402>
<AK403>6</AK403>
<AK404>ZZZZ</AK404>

</AK4>
<AK5> … </AK5>
<AK2> … </AK2>

<AK201>831</AK201>
<AK202>00128003</AK202>

<AK5> … </AK5>
<AK9>

<AK901>P</AK901>
<AK902>3</AK902>
<AK903>3</AK903>
<AK904>2</AK904>

</AK9>
<SE/>

</TS_997>
<GE/>
<IEA/>

</X12>
</Acknowledgement>

■ The X12 and ISA elements serve the same function as those in
the Receipt element.

■ The GS element represents the Functional Group Header
segment; its subelements (GS01, GS02, and so on) show the
DataDirect XML Converters User’s Guide and Reference for .NET

Managing Transmission Responses 65
values for the corresponding segment fields (Functional
Identifier Code, Application Sender’s Code, and so on).

■ The TS_997 element serves as a message wrapper for all
functional acknowledgement transaction messages. The TS
stands for transaction set, and 997 indicates the type of
message. In this case, 997 represents the X12 997 functional
acknowledgement. Functional acknowledgement transaction
message wrapper elements have different names in different
EDI dialects.

■ The ST element represents the Transaction Set Header.

■ The AK elements represent the

• Functional Group Response Header (AK1) and Functional
Group Response Trailer (AK9) segments. There is one pair
of AK1/AK9 segments for every group of transactions.

• Transaction Set Response Header (AK2) and Transaction
Set Response Trailer (AK5). These pairs of segments can
repeat, once for each transaction in the transaction set. In
this example, there are three AK2 segments because
there are three messages in the threemsgs.x12 EDI source
document.

If a message contains an error, the analysis report will also
contain elements representing these segments:

• AK3 (Data Segment Note). This segment identifies the
invalid segment’s position within the transaction, as well
as an error code that specifies the type of error.

• AK4 (Data Element Note). If the segment is determined to
be invalid because of bad data (a value with an improper
data type, for example), the AK4 subelements specify the
Data Element Syntax Error Code (AK403) and Copy of Bad
Data Element (AK404).

■ The SE, GE, and IEA segments are the same as those described
in “Receipt Element Example” on page 62.
DataDirect XML Converters User’s Guide and Reference for .NET

66 Chapter 3 Analyzing EDI to XML Conversions
Converting Response Messages to EDI

Since transmission responses are structured as XML, they need to
be converted to EDI before they can be returned to the EDI
sender. This example shows how to

■ Use the Analyze method to generate the analysis report and
convert the EDI data stream (in this case, a sample X12 EDI
document, threemsgs.x12) to XML

■ Locate the Receipt element in the analysis report

■ Convert the XML for the TA1 Transaction Acknowledgement
segment to EDI

To see a complete example application that converts both Receipt
and Acknowledgement responses to EDI, see “Example 14” on
page 106.

Invoking the Analyze Method

To get started, the EDI XML Converter is used to initiate the
conversion of the source EDI document, threemsgs.x12 to EDI:

try {
Source ediSource = new UriSource(uriString + "threemsgs.x12");
ConvertToXml toXml = factory.CreateConvertToXml("converter:EDI");

Next the Analyze method is used to generate the analysis report
and saves the output to report.xml:

Result reportResult = new UriResult("report.xml");
toXml.Analyze(ediSource, reportResult);

See “Receipt Element Example” on page 62 for a sample of the
analysis report, report.xml.
DataDirect XML Converters User’s Guide and Reference for .NET

Managing Transmission Responses 67
Converting the Source EDI

In this section of code, the analysis report is used as input to
convert the EDI stream to XML. Any errors in the EDI stream are
recorded in the analysis report, which is used by ConvertToXml
as a filter so that only valid EDI messages are converted to XML.
Here, the valid EDI is written to an XML document, twomsgs.xml.

Source reportSource = new UriSource(new FileInfo("report.xml").FullName);
Result xmlResult = new UriResult("twomsgs.xml");
toXml.Convert(ediSource, xmlResult, reportSource);

Locating Response Messages

The EDI analysis report is used again, this time as the source for
the EDI transmission response messages that have been
generated in the Receipt and Acknowledgement elements in the
XML report. It is these elements whose contents will be
converted to EDI for transmission back to the EDI sender. Here
the report is opened with an instance of XmlReader.

XmlReader rdr = XmlReader.Create("report.xml");

Once the XmlReader object is created, we can read through the
analysis report, skipping first to the Receipt element, then to the
X12 element:

while(rdr.Read()) {
if (rdr.NodeType == XmlNodeType.Element
 && rdr.LocalName == "Receipt")

break;
}
while(rdr.Read()) {

if (rdr.NodeType == XmlNodeType.Element
 && rdr.LocalName == "X12")

break;
}

(For a refresher of the Receipt element structure, see “Receipt
Element Example” on page 62.)
DataDirect XML Converters User’s Guide and Reference for .NET

68 Chapter 3 Analyzing EDI to XML Conversions
Converting the Receipt Element to EDI

Once the Receipt element is located in the analysis report, it can
be converted to EDI for transmission back to the EDI sender. Note
that the converter: property is specified as ED.

ConvertFromXml converter = factory.CreateConvertFromXml("converter:EDI");
Source responseSource = new XmlReaderSource(rdr);
Result receiptResult = new UriResult("receipt.x12");
converter.Convert(responseSource, receiptResult);

The resulting EDI is written to the file, receipt.x12, which contains
the following:

ISA+00+ +00+ +01+5151515151
+01+1515151515 +090818+1110+^+00403+000000000+0+P+*'
TA1+000032123+041201+1217+A+000'
IEA+0+000000000'

Notice that the IEA segment (Interchange Control Trailer), which
was represented in the original XML conversion of the source EDI
document as an empty element (<IEA/) has been automatically
computed by the EDI XML Converter and now includes values for
the Number of Included Functional Groups (IEA01) and
Interchange Control Number (IEA02) segments.

Sending Responses to the EDI Sender

When you send a response to an EDI sender, you typically must
provide each interchange with a unique identifier – for X12, for
example, this is the Interchange Control Number (ISA12)
segment; for EDIFACT, this is the Interchange Control Reference
(UNB05) segment.

You can perform this task as part of the application code that
extracts the Receipt or Acknowledgement element from the
analysis report; it is expected that the generation of a unique
identifier is handled elsewhere.
DataDirect XML Converters User’s Guide and Reference for .NET

Managing Transmission Responses 69
Example

This simple XSLT locates the Interchange Control Header (ISA)
segment, replaces the value of the Interchange Control Number
(ISA12) segment with 1000, and converts the node to EDI for
transmission to the EDI sender.

<?xml version='1.0'?>
<xsl:stylesheet version="1.0" xmlns:xsl=
"http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>
<xsl:param name="InterchangeControlID"/>

<xsl:template match="/">
<xsl:apply-templates select="/AnalyzeReport/Response/Receipt/X12"/>

</xsl:template>

<xsl:template match="*">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

<xsl:template match="ISA12">
<ISA12><xsl:value-of select="$InterchangeControlID"/></ISA12>

</xsl:template>

</xsl:stylesheet>
DataDirect XML Converters User’s Guide and Reference for .NET

70 Chapter 3 Analyzing EDI to XML Conversions
DataDirect XML Converters User’s Guide and Reference for .NET

71
4 Deploying XML Converters™ on
Microsoft® BizTalk® Server

Data inside a Microsoft® BizTalk® Server (BizTalk) application
always moves as XML. Because of this, .NET users often need to
integrate conversion operations in the context of BizTalk to
manage EDI or legacy formats.

This chapter describes how to deploy DataDirect XML Converters
for .NET on Microsoft BizTalk to help control the input and
output ports of BizTalk applications that need to convert data in
native formats to XML.

About Microsoft BizTalk Server
Microsoft BizTalk Server is a Business Process Manager (BPM)
enterprise solution that allows users to connect diverse software
and then both create and modify the process logic that uses that
software.
DataDirect XML Converters User’s Guide and Reference for .NET

72 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
The BizTalk Architecture

One of the key elements of the BizTalk architecture is processing
business messages in XML. BizTalk assumes, therefore, that
incoming messages are already in XML, or that they get
translated to XML upon reception.

Not all business data is XML – Electronic Data Interchange (EDI)
and comma-separated values (CSV) are two file formats
commonly found in both business-to-business (B2B) and
numerous small- and medium-size business applications. BizTalk
provides a mechanism to plug-in third-party components (like
DataDirect XML Converters) to convert input and output data
from and to XML.

Receiving and Sending Messages
In order to have a flexible architecture, BizTalk allows you to
configure a pipeline on input (receive) and output (send) ports
that provides a way to manipulate and transform the data before
it is stored in the MessageBox. BizTalk stores all messages in SQL
Server, as shown in the following Microsoft BizTalk Server
illustration.
DataDirect XML Converters User’s Guide and Reference for .NET

Receiving and Sending Messages 73
XmlConverters Disassembler

Pipeline processing deals with both message content and
message context. Message content is generally handled in the
decoding, disassembling, and validating stages, as shown in the
following Microsoft BizTalk Server illustration:

The job of the disassembler is to process an incoming message
from an adapter, disassembling it into many messages, and
parsing the message data. By definition, it expects that data is
being converted from a native format to XML. XML Converters
provides a disassembler implementation that can be used to
convert a variety of flat file formats into XML.

XmlConverters Assembler

When a message is ready to be sent from BizTalk, it undergoes a
complementary process in the send port. Maps are applied to
messages before the send pipeline is executed, allowing a
message to be transformed to a customer- or application-specific
format before being processed by the pipeline and sent through
the adapter. In the send pipeline, properties are demoted from
the context into the message, instead of being promoted into
the message context, as shown in the following Microsoft
BizTalk Server illustration.
DataDirect XML Converters User’s Guide and Reference for .NET

74 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
The job of the assembler is to process an outgoing message to an
adapter, and to serialize the message data. The DataDirect XML
Converters assembler implementation can be used to convert
XML into a variety of flat file formats.

Building a BizTalk Receive Pipeline
This section describes how to build a BizTalk receive pipeline. The
first step is registering DataDirect XML Converters components.

Registering DataDirect XML Converters
Components

In order to use DataDirect XML Converters in the BizTalk pipeline
visual editor, you need to register the component in Microsoft
Visual Studio.

To register DataDirect XML Converters components with BizTalk:

1 In Microsoft Visual Studio, right-click BizTalk Pipeline
Components toolbox and select Choose Items.
DataDirect XML Converters User’s Guide and Reference for .NET

Building a BizTalk Receive Pipeline 75
The Choose Toolbox Item dialog box appears.

2 In the Choose Toolbox Item dialog box, select the BizTalk
Pipeline Components tab and click the Browse button.
DataDirect XML Converters User’s Guide and Reference for .NET

76 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
The Open dialog box appears.

3 Navigate to the folder where you installed DataDirect XML
Converters, and select XmlConverters.dll and click the Open
button.
DataDirect XML Converters User’s Guide and Reference for .NET

Building a BizTalk Receive Pipeline 77
XML Converters assembler and XML Converters disassembler
appear in the list box.

4 Ensure that the check boxes are selected so that these
components are enabled.

Adding the Disassembler to the
Receive Pipeline

Once the registration of the DataDirect XML Converters
components is complete, you can manipulate the assembler and
disassembler components as you would any other BizTalk
components.
DataDirect XML Converters User’s Guide and Reference for .NET

78 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
In our case, we want to drag and drop the DataDirect XML
Converters disassembler component into the disassemble block in
the diagram that represents our receive pipeline, as shown in the
following illustration.
DataDirect XML Converters User’s Guide and Reference for .NET

Building a BizTalk Send Pipeline 79
Building a BizTalk Send Pipeline
The procedure in this section assumes that the XML Converters
components have already been registered in Microsoft Visual
Studio. See “Registering DataDirect XML Converters
Components” on page 74 for more information.

To create a send pipeline that uses the XML Converters
assembler:

1 In Microsoft Visual Studio, right-click on the BizTalk project in
the Solution Explorer and choose Add > New Item.
DataDirect XML Converters User’s Guide and Reference for .NET

80 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
The Add New Item dialog box appears.

2 Select Send Pipeline and then click the Add button.

The XML Converters assembler is now listed in the BizTalk
Pipeline Components Toolbox and can be added to the send
pipeline.

Example: Converting EDI X12 Into a Flat File
In this example, we design a BizTalk process that receives
purchase orders in EDI X12 850 format and forwards these
purchase orders to an order system that accepts only CSV flat file
format.

Create XML Schema

To create our BizTalk process, we will build a BizTalk map that
translates the purchase order into the order system flat file
structure. In order to accomplish this, we need one XML Schema
DataDirect XML Converters User’s Guide and Reference for .NET

Example: Converting EDI X12 Into a Flat File 81
that describes the incoming purchase order and another that
describes the outgoing order system flat file.

We can use Stylus Studio XML Enterprise Suite to create both
XML Schema.

Creating XML Schema from EDI

The Stylus Studio EDI to XSD document wizard lets you create
XML Schema from numerous EDI dialects and message types:

To run this wizard, select File > Document Wizards from the
Stylus Studio menu, and then select XML Editor > EDI to XSD.
DataDirect XML Converters User’s Guide and Reference for .NET

82 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
Creating XML Schema for a Flat File

To create XML Schema for a flat file has a few more steps:

1 Load an example of the order system flat file in Stylus Studio.

2 Open it using Stylus Studio’s built-in CSV converter, which
converts the sample CSV file to XML.

3 Create an XML Schema based on the converted XML – select
XML > Create Schema from XML Content from the Stylus
Studio menu.
DataDirect XML Converters User’s Guide and Reference for .NET

Example: Converting EDI X12 Into a Flat File 83
Once we have XML Schema describing the format of both the
purchase order and the order system document formats, we can
create a BizTalk map to represent the conversion process, as
shown in the following illustration:
DataDirect XML Converters User’s Guide and Reference for .NET

84 Chapter 4 Deploying XML Converters™ on Microsoft® BizTalk® Server
DataDirect XML Converters User’s Guide and Reference for .NET

85
5 XML Converters™ Examples

The DataDirect XML Converters API allows you to access
non-XML files and convert them to XML, and vice versa. The
converter: URIs used to access data sources can be invoked
programmatically, in an XSLT application, for example. This
facility allows you to treat non-XML data as XML, manipulate it
as needed, and, optionally, write it back to its source in its
original format.

This chapter describes demo.cs, a simple .NET program installed
in the DataDirect XML Converters \examples folder that
demonstrates some of the features of DataDirect XML
Converters and the Converters API.

This chapter also provides examples of using DataDirect XML
Converters that are not part of the \examples folder.

Overview of the demo.cs Example
The example file, demo.cs, runs several sample demonstrations
that show how the XML Converters API can be used to convert
data to and from XML stored in a number of different formats
using both DataDirect XML Converters and user-defined custom
XML conversions created using Stylus Studio. This section
describes the files associated with the demonstrations and how
to run it.
DataDirect XML Converters User’s Guide and Reference for .NET

86 Chapter 5 XML Converters™ Examples
Examples Summary

The examples included in demo.cs are summarized in the
following table.

Example Description

Example 1 Shows a simple conversion of a
comma-separated values (CSV) file to XML.

Example 2 Shows how to convert an XML file to CSV.

Example 3 Shows how to use a custom XML converter
to convert a fixed-width file to XML.

Example 4 Shows how to perform a conversion to XML
and then transform the result using XSLT.

Example 5 Shows how to use the result of an XSLT
transformation as input to an XML
conversion.

Example 6 Simple example showing how to use the EDI
XML Converter.

Example 7 Shows how to use a Standard Exchange
Format (SEF) extension file to convert EDI
messages using a proprietary format.

Example 8 Shows how to use the ConverterListener
to manage warnings and errors during the
conversion process.

Example 9 Shows how to generate an XML Schema
from a CSV file.

Example 10 Shows how to generate an XML Schema
from an EDI file.

Example 11 Shows how to use the XPath document()
function in an XSLTstylesheet object to take a
converter: URI as its argument.

Example 12 Shows how to convert an EDI file into
XPathDocument contained entirely in
memory.
DataDirect XML Converters User’s Guide and Reference for .NET

Overview of the demo.cs Example 87
Example 13 Shows how to convert an EDI file into an
XmlReader, which can then be used to read
the XML data entirely from memory in a
streaming fashion.

Example 14 Shows how to use the Analyze() method to
analyze an EDI stream for errors as part of
the conversion process.

Example Description
DataDirect XML Converters User’s Guide and Reference for .NET

88 Chapter 5 XML Converters™ Examples
Demonstration Files

The files required to run the demonstrations are summarized in
the following table. All of these files are installed in the \examples
directory where you installed the XML Converters.

File Description

831.x12 EDI file used in Example 6.

copier.xslt XSLT used in Example 4 and Example 5.

demo.cs The source for the demonstration; this file
contains the usage comments.

DemoApplication.
csproj

The Visual Studio project file for demo.cs.

DemoApplication.
sln

The Visual Studio solution file for demo.cs.

one.csv The input file for the first example.

proprietary.sef SEF file that defines non-standard X12
message types; used in Example 7.

proprietary.x12 Sample X12 with a non-standard message
type; used in Example 7.

three.conv The definition for the custom XML
conversion used in the third example.

three.txt The input file for the third example.

threemsgs.x12 The EDI input file used for Example 14.

two.xml The input file for the second example.
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 89
Running demo.cs
This section describes the requirements and procedure for
running the demonstration application, demo.cs.

How to Run the Demonstration

To start the demo.cs demonstration:

1 Start Microsoft Visual Studio 2005.

2 Open DemoApplication.sln.

3 Press Ctrl+F5 to run the project.
DataDirect XML Converters User’s Guide and Reference for .NET

90 Chapter 5 XML Converters™ Examples
Example 1

Example 1 converts a comma-separated values (CSV) file, one.csv,
to an XML file, one.xml, using the CSV XML Converter. The
conversion parameter for the new Converter object is specified as
a converter: URL that indicates which XML Converter to use to
convert the input file to the output file. Only two XML Converter
property settings are expressed; default values are used for all
properties unless you specify them in the converter: URL.

try {
 Source converterSource = new UriSource(exampleDir + "one.csv");
 Result converterResult = new UriResult(exampleDir + "one.xml");

 Converter toXml = factory.CreateConvertToXml("converter:CSV:sep=,
 :first=yes");
 toXml.Convert(converterSource, converterResult);

 Console.WriteLine("test 1 finished: one.csv -> one.xml");
 }
catch(Exception e) {
 Console.WriteLine("test 1 failed with exception: " + e);
 }

Both input and output streams are opened and closed by the
Converter object.
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 91
Example 2

Example 2 is similar to Example 1, but instead of converting a
non-XML file to XML, it does the opposite. It also shows how to
use the URI resolver to create both the input stream and output
stream:

try {
 ConverterResolver resolver = factory.CreateResolver();
 Uri inputUri = resolver.ResolveUri(uriBase, "two.xml");
 using (Stream inStream = (Stream) resolver.GetEntity(inputUri, null,
 typeof(Stream))) {

 Source converterSource = new InputStreamSource(inStream);

 using (Stream outStream = File.OpenWrite(exampleDir + "two.csv")) {

 Result converterResult = new OutputStreamResult(outStream);

 Converter fromXml = factory.CreateConvertFromXml
 ("converter:CSV:sep=,:first=yes");
 fromXml.Convert(converterSource, converterResult);
 }
 }

 Console.WriteLine("test 2 finished: two.xml -> two.csv");
}

catch(Exception e) {
 Console.WriteLine("test 2 failed with exception: " + e);

}

In this example, we need to close the input and output streams
since we, and not the Converter object, opened them.
DataDirect XML Converters User’s Guide and Reference for .NET

92 Chapter 5 XML Converters™ Examples
Example 3

Example 3 uses a custom XML conversion, three.conv, built using
Stylus Studio XML Enterprise Suite, to convert a fixed-width file,
three.txt, to XML. Here, we create our own Streams – because we
are converting a local text file, there is no need to use the URI
Resolver.

try {
 using (Stream inStream = File.OpenRead(exampleDir + "three.txt")) {
 using (Stream outStream = File.OpenWrite(exampleDir + "three.xml")){
 Source converterSource = new InputStreamSource(inStream);
 Result converterResult = new OutputStreamResult(outStream);

 String converter = "converter:" + exampleDir + "three.conv";

 Converter toXml = factory.CreateConvertToXml(converter);
 toXml.Convert(converterSource, converterResult);

 }

 }

 Console.WriteLine("test 3 finished: three.txt -> three.xml");
 }
catch(Exception e) {
 Console.WriteLine("test 3 failed with exception: " + e);
 }
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 93
Example 4

Examples 1, 2, and 3 performed simple conversion of one file
type to another – some type of converter (either a DataDirect
XML Converter or a user-defined custom XML conversion) was
given an input and converted it to another format.

In Example 4, the Converter converterResult will make the
Converter output available as an XmlReader. The XSLT
Transformer will read the data from the XmlReader. The
Converter will not actually process the input data until the XSLT
Transformer starts to read from the XmlReader. The Converter
will then begin converting the input data, as needed. If the
transformer terminates early, without reading all the data, the
Converter will also terminate without converting all the input
data.
DataDirect XML Converters User’s Guide and Reference for .NET

94 Chapter 5 XML Converters™ Examples
Here is the code for Example 4:
try {
 using(Stream inputStream = File.OpenRead(exampleDir + "one.csv"){
 InputStreamSource converterSource = new InputStreamSource(inputStream);

 XmlReaderResult converterResult = new XmlReaderResult();

 Converter toXml = factory.CreateConvertToXml("converter:///CSV:sep=,
 :first=yes");
 toXml.Convert(converterSource, converterResult);

 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(exampleDir + "Copier.xslt");
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 settings.IndentChars = "\t";
 XmlWriter writer = XmlWriter.Create(exampleDir + "four.xml", settings);
 xslt.Transform(converterResult.XmlReader, writer);
 converterResult.XmlReader.Close();
 }

 Console.WriteLine("test 4 finished: one.csv -> four.xml");
 }
catch(Exception e) {
 Console.WriteLine("test 4 failed with exception: " + e);
 }

XmlWriter writer is an XML document, four.xml. In this example,
we used a copy/identity transformation, but you could specify
any XSLT transformation here to perform any processing on the
intermediate result you required.
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 95
Example 5

In Example 5, output from an XSLT transformation is sent to a
converter, which takes the XML that is written to it (as a an
XmlWriter) and converts it to CSV. This process is summarized in
the following illustration.

Here is the code for Example 5:

try {

 UriResult converterResult = new UriResult(exampleDir + "five.csv");

 XmlWriterSource converterSource = new XmlWriterSource();

 ConvertFromXml fromXml =factory.CreateConvertFromXml("converter:CSV:
 sep=,:first=yes");
 XmlWriter xmlWriter = fromXml.GetXmlWriter(converterResult);

 XslCompiledTransform xslt = new XslCompiledTransform();
 xslt.Load(exampleDir + "Copier.xslt");
 xslt.Transform(exampleDir + "two.xml", xmlWriter);

 Console.WriteLine("test 5 finished: two.xml -> five.csv");
 }
catch(Exception e) {
 Console.WriteLine("test 5 failed with exception: " + e);
 }

To convert the transformation’s output to CSV, we have used an
instance of the ConvertFromXML object. This object uses the
XML Converters CSV converter.
DataDirect XML Converters User’s Guide and Reference for .NET

96 Chapter 5 XML Converters™ Examples
Example 6

Example 6 shows the use of an EDI XML Converter (converter:
EDI) to convert a file in the X12 dialect (831.x12) to XML
(831.x12.xml), and then back to EDI (831.x12.xml.fromxml).

 try{
 Source converterSource = new UriSource(exampleDir + "831.x12");
 Result converterResult = new UriResult(exampleDir + "831.x12.xml");
 Converter toXml = factory.CreateConvertToXml("converter:EDI");
 toXml.Convert(converterSource, converterResult);
 Console.WriteLine("test6 toXML finished: 831.x12 -> 831.x12.xml");
 }
 catch (Exception e)
 {
 Console.WriteLine("test 6 toXML failed with exception: " + e);
 }

 try{
 Source converterSource = new UriSource(exampleDir + "831.x12.xml");
 Result converterResult = new UriResult(exampleDir +
 "831.x12.fromxml");
 Converter fromXml = factory.CreateConvertFromXml("converter:EDI");
 fromXml.Convert(converterSource, converterResult);
 Console.WriteLine("test6 fromXML finished: 831.x12.xml ->
 831.x12.fromxml");
 }
 catch (Exception e)
 {
 Console.WriteLine("test 6 fromXML failed with exception: " + e);
 }
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 97
Example 7

This example shows how to use a Standard Exchange Format
(SEF) extension file to convert EDI messages using a proprietary
format. The SEF file used in this example adds 99 as a permitted
code value in the 353 element of segment BGN in transaction set
831.

The URL of the SEF file is specified in the user= parameter of the
converter: URL. It is also possible to specify the SEF file name as
a relative pathname. If XML Converters has been installed in a
directory PRODUCT_PATH, and the EDI converter: URL contains
user=relative.sef, then the SEF file will be found at
PRODUCT_PATH/lib/CustomEDI/relative.sef.

try{
 XmlUrlResolver resolver = new XmlUrlResolver();
 Uri sefUri = resolver.ResolveUri(uriBase, "proprietary.sef");

 String ediUri = "converter:EDI:user=" + sefUri;
 Source converterSource = new UriSource(exampleDir + "proprietary.x12");
 Result converterResult = new UriResult("proprietary.xml");
 Converter toXml = factory.CreateConvertToXml(ediUri);
 toXml.Convert(converterSource, converterResult);
 Console.WriteLine("test 7 toXML finished: proprietary.x12 ->
 proprietary.xml");
 }
catch (Exception e)
 {
 Console.WriteLine("test 7 toXML failed with exception: " + e);
 }
DataDirect XML Converters User’s Guide and Reference for .NET

98 Chapter 5 XML Converters™ Examples
Example 8

This example shows how to register a ConverterListener, which is
notified of warnings, errors, and fatal errors that occur during
conversion. Also included in this example is a simple
implementation of the three ConverterListener methods
(warning, error, and fatalError). This implementation appears at
the end of demo.cs.

This example uses the proprietary data file (proprietary.xml) as
“Example 7” on page 97, but it omits the proprietary.sef
extension file. This will result in a error that is reported to the
ConverterListener implementation.

Sample Application

try{
 Source converterSource = new UriSource(exampleDir + "proprietary.x12");
 Result converterResult = new UriResult("proprietary.xml");
 Converter toXml = factory.CreateConvertToXml("converter:EDI");

 ConverterListener listener = new DemoListener();
 toXml.Configuration.ConverterListener = listener;
 toXml.Convert(converterSource, converterResult);
 Console.WriteLine("test 8 toXML finished: proprietary.x12 ->
 proprietary.xml");
}
catch (Exception e)
{
 Console.WriteLine("test 8 toXML failed with exception: " + e);
}

DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 99
ConverterListener Implementation in demo.cs

public class DemoListener : ConverterListener {

 public void Warning(ConverterException e) {
 Console.WriteLine("Converter warning notification: " + e);

 return;
 }

 public void Error(ConverterException e) {
 Console.WriteLine("Converter error notification: " + e);

 return;
 }

 public void FatalError(ConverterException e) {
 Console.WriteLine("Converter fatal error notification: " + e);

 return;
 }
}

Error Listener Output

After running demo.cs, the program generates the following
output; note the error encountered after completing Example 7.

test 1 finished: one.csv -> one.xml
test 2 finished: two.xml -> two.csv
test 3 finished: three.txt -> three.xml
test 4 finished: one.csv -> four.xml
test 5 finished: two.xml -> five.csv
test 6 toXML finished: 831.x12 -> 831.x12.xml
test 6 fromXML finished: 831.x12.xml -> 831.x12.fromxml
test 7 toXML finished: proprietary.x12 -> proprietary.xml

Starting test 8. The ConverterListener will print a warning and an error.
Converter warning notification:
com.ddtek.xmlconverter.adapter.edi.EDIConverterException: [DDEW0063] WARNING
DataDirect XML Converters User’s Guide and Reference for .NET

100 Chapter 5 XML Converters™ Examples
Starting with 00402, the format of ISA11 changed. Adjusting 'U' to '^'.

In X12 prior to 004020, ISA11 was element I10 and had to have the value "U".
But from 004020 onwards, it is element I65 and is the repetition character.
This fix has been automatically made to the data stream.
Converter error notification:
com.ddtek.xmlconverter.adapter.edi.EDIConverterException: [DDEE0008] ERROR
Value 99 not in codelist 353.
 Dialect: X12
 Version: syntax=00403/004030;message=00403/004030;agency=004030;table=
004030
 Message: 831
 Segment: BGN (line 4)
 Position: BGN01
 Element: 353 (s) Transaction Set Purpose Code
 Value: "99"
 Native error: 7, in table: 723

The value for an element in the data stream cannot be found in the codelist
associated with the element. Turning off codelist validation with "tbl=no"
will eliminate the error.
test 8 toXML finished: proprietary.x12 -> error.xml
test 9 schema generator finished: one.csv -> one.xsd
test 10 schema generator finished: --> edi.xsd
test 11 finished: one.xml + one.csv -> eleven.xml
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 101
Example 9

This example shows how to use the DataDirect XML
Converters™ API to create an XML Schema based on a
comma-separated values (CSV) file. Note that an instance
document is required in order to generate XML Schema for CSV
and other file types. See “Instance Documents” on page 31 for
more information.

The XML Schema generator is used very much like an XML
Converter – the program provides the sample input file as a
Source object and the generated XML Schema is written to the
Result object.

See “XML Schema Generation” on page 28 for more information
on this topic.

try{
 Source sampleSource = new UriSource(exampleDir + "one.csv");
 Result xsdResult = new UriResult("one.xsd");
 SchemaGenerator generator =
 factory.CreateSchemaGenerator("converter:///CSV:sep=,:first=yes");
 generator.GetSchema(sampleSource, xsdResult);
 Console.WriteLine("test 9 schema generator finished: one.csv -> one.xsd");
 }
catch (Exception e)
 {
 Console.WriteLine("test 9 schema generator failed with exception: " + e);
 }
DataDirect XML Converters User’s Guide and Reference for .NET

102 Chapter 5 XML Converters™ Examples
Example 10

This example shows how to use the DataDirect XML Converters™
API to create an XML Schema based on an EDI file. The generated
XML Schema depends on the EDI dialect, version, and message
being converted, but not on the actual data in the EDI message.
This information can be provided

■ Using a sample EDI input (as shown in “Example 9” on page
101). See “Instance Documents” on page 31 for more
information.

■ As part of the converter: URL, as demonstrated in this
example. Also, see “URI Parameters That Affect XML Schema”
on page 31 for more information.

See “XML Schema Generation” on page 28 for more information
on this topic.

try{
 Result xsdResult = new UriResult("edi.xsd");
 String uri = "EDI:dialect=EDIFACT:version=D06B:message=INVOIC:tbl=no";
 SchemaGenerator generator = factory.CreateSchemaGenerator(uri);
 generator.GetSchema(xsdResult);
 Console.WriteLine("test 10 schema generator finished: --> edi.xsd");
 }
catch (Exception e)
 {
 Console.WriteLine("test 10 schema generator failed with exception: " + e);
 }
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 103
Example 11

This example shows how to use a document URI resolver (a .NET
XmlResolver) to enable the XPath document() function in an
XSLTstylesheet object to take a converter: URI as its argument.

The first statement uses CreateResolver() to get the XML
Converters URI resolver, which is able to resolve converter: URIs
for the document() function.

try {

XmlResolver resolver = factory.CreateResolver();

Next, the example creates a converter: URI like this:

converter:///CSV:sep=,:first=yes?file:///c:/examples/one.csv

String converterUrl = "converter:///CSV:sep=,:first=yes?" + exampleDir +
 "one.csv";

The XML Converter will read its input from "one.csv", convert it
to XML, return its document node to the document() function.

Previous examples used a converter: URI like this:

converter:///CSV:sep=,:first=yes

and the name of the input file was provided elsewhere. When
using the document() function, you must provide the converter:
URI and the input file URI all at once,separating them with a '?'
character as shown in this example.

Here is the complete code for Example 11:
try {

XmlResolver resolver = factory.CreateResolver();
String converterUrl = "converter:///CSV:sep=,:first=yes?" + exampleDir +

"one.csv";

String xsltString =
DataDirect XML Converters User’s Guide and Reference for .NET

104 Chapter 5 XML Converters™ Examples
@"<xsl:stylesheet version='1.0' xmlns:xsl=
'http://www.w3.org/1999/XSL/Transform'>

<xsl:output method='xml' indent='yes'/>
<xsl:template match='/'>

<root>
<xsl:copy-of select='.'/>
<xsl:copy-of select='document(""PUT THE URL HERE"")'/>

</root>
</xsl:template>

</xsl:stylesheet>";

xsltString = xsltString.Replace("PUT THE URL HERE", converterUrl);

XslCompiledTransform xslt = new XslCompiledTransform();
XsltSettings settings = new XsltSettings(true, false);
xslt.Load(XmlReader.Create(new StringReader(xsltString)), settings, null);
xslt.Transform(

XmlReader.Create(exampleDir + "one.xml"),
new XsltArgumentList(),
XmlWriter.Create(exampleDir + "eleven.xml"),
resolver);

Console.WriteLine("test 11 finished: one.xml + one.csv -> eleven.xml");
}
catch (Exception e) {

Console.WriteLine("test 11 failed with exception: " + e);
}
}

Example 12

This example shows how to use XML Converters™ to convert an
EDI file into an XPathDocument contained entirely in memory. In
the example, the toXml.Convert call starts the conversion. The
application can read results of the conversion with the
converterResult.XmlReader. The application can do anything it
chooses with the output data. In this example, it uses a new
XPathDocument(...) to read the results directly into an
XPathDocument object.
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 105
try{
 Source converterSource = new UriSource(uriString + "831.x12");

XmlReaderResult converterResult = new XmlReaderResult();
Converter toXml = factory.CreateConvertToXml("converter:EDI");

 toXml.Convert(converterSource, converterResult);
XPathDocument xpathdoc = new XPathDocument(converterResult.XmlReader);

 Console.WriteLine("test 12 finished: 831.x12 --> XPathDocument in memory");
}
catch (Exception e) {
Console.WriteLine("test 12 failed with exception: " + e);

}

Example 13

This example shows how to use an XML Converter to convert an
EDI file into an XmlReader, which can then be used to read the
XML data. XmlReader processes data entirely in memory in a
streaming fashion, allowing efficient processing of input files of
literally unlimited size.

Note that there is no call to Convert(...) in this example. The
GetXmlReader call is a convenience method which does the
convert and returns the XmlReader in one call. The example then
reads and counts all the parsing events from the XmlReader.

In a real application, the program would process those events as
they are read.

try{
 Source converterSource = new UriSource(uriString + "831.x12");

ConvertToXml toXml = factory.CreateConvertToXml("converter:EDI");
int eventCount = 0;

 using (XmlReader rdr = toXml.GetXmlReader(converterSource)) {
while(rdr.Read()) {

 eventCount++;
}

}

DataDirect XML Converters User’s Guide and Reference for .NET

106 Chapter 5 XML Converters™ Examples
Console.WriteLine("test 13 finished: 831.x12 --> XmlReader
containing " + eventCount + " events.");

}
catch (Exception e) {

Console.WriteLine("test 13 failed with exception: " + e);
}

}

Example 14

This example shows how to use the EDI Analyzer API to convert
an input EDI document, threemsgs.x12, to XML. The source EDI
contains three messages, one of which contains an error. This
example shows how to use the EDI analysis report generated by
the Analyze() method to filter the invalid message from the EDI
while converting the rest of the EDI stream to XML. Finally, it
shows how to convert the EDI analysis report’s Receipt and
Acknowledgement elements to EDI for transmission back to the
EDI sender.

For more information about using the EDI Analyzer API, see
Chapter 3, “Analyzing EDI to XML Conversions.”

try {
Source ediSource = new UriSource(uriString + "threemsgs.x12");
ConvertToXml toXml = factory.CreateConvertToXml("converter:EDI");

Result reportResult = new UriResult("report.xml");
toXml.Analyze(ediSource, reportResult);

Source reportSource = new UriSource(new FileInfo("report.xml")
.FullName);

Result xmlResult = new UriResult("twomsgs.xml");
toXml.Convert(ediSource, xmlResult, reportSource);

XmlReader rdr = XmlReader.Create("report.xml");

while(rdr.Read()) {
if (rdr.NodeType == XmlNodeType.Element
DataDirect XML Converters User’s Guide and Reference for .NET

Running demo.cs 107
&& rdr.LocalName == "Receipt")
break;

}

while(rdr.Read()) {
if (rdr.NodeType == XmlNodeType.Element

&& rdr.LocalName == "X12")
break;

}

ConvertFromXml converter = factory.CreateConvertFromXml
("converter:EDI");

Source responseSource = new XmlReaderSource(rdr);
Result receiptResult = new UriResult("receipt.x12");
converter.Convert(responseSource, receiptResult);

while(rdr.Read()) {
if (rdr.NodeType == XmlNodeType.Element

&& rdr.LocalName == "Acknowledgement")
break;

}

while(rdr.Read()) {
if (rdr.NodeType == XmlNodeType.Element

&& rdr.LocalName == "X12")
break;

}

Result ackResult = new UriResult("acknowledgement.x12");
converter.Convert(responseSource, ackResult);

rdr.Close();

Console.WriteLine("test 14 finished: threemsgs.x12 -->
 twomsgs.xml, receipt.x12, acknowledgement.x12");

}
catch (Exception e) {

Console.WriteLine("test 14 failed with exception: " + e);
}

}
DataDirect XML Converters User’s Guide and Reference for .NET

108 Chapter 5 XML Converters™ Examples
DataDirect XML Converters User’s Guide and Reference for .NET

Processing Conversion Results 109
Processing Conversion Results
You can use the OutputStreamResult class to write a Converter’s
output to a stream. Using this implementation, conversion
results are written as a whole (as an XML document, for
example) once the conversion is complete. This technique is
known as pushing results.

Sometimes it can be more efficient or desirable to treat
conversion results one-at-a-time – as XML fragments instead of
an entire XML document. This technique is known as pulling
results, and it can be accomplished using the standard
XmlStreamReader interface, as shown in the following example:

InputStreamSource source = new InputStreamSource(inputData);
Converter toXml = factory.CreateConvertToXml("converter:EDI:field=no");
using (XmlReader rdr = toXml.GetXmlReader(converterSource)) {
 while(rdr.Read()) {
 // process the XML event
 }
};

Loading SEF Files Programmatically
The SetEDIExtension() method allows you to reference a SEF file
programmatically. This method is a member of the
Configuration class. Following is its definition:

void SetEDIExtension(DDTek.XmlConverter.Source source)

DataDirect XML Converters reads the source object and parses
the data as a SEF file, creating an Extender object. All XML
Converters created using that Configuration object use that
Extender object as if it had been supplied with the user= option
in the URI.
DataDirect XML Converters User’s Guide and Reference for .NET

110 Chapter 5 XML Converters™ Examples
The source object may be one of the following:

UriSource
InputStreamSource
TextReaderSource

Using SEF Files Created with Stylus
Studio

In addition to custom segment and message definitions, SEF files
created using the Stylus Studio EDI to XML Module can contain a
converter: URI in a .PRIVATE section. This converter: URI can
contain XML Converters properties (val=no and len=yes, for
example).

If you specify such a SEF file in your application, XML Converters
uses the converter properties from that URI when performing the
XML conversion. That is, XML Converter properties specified in
the SEF become the new default values for the XML Converter
properties. This behavior is also true when the SEF file is loaded
with the user= URI property.

Using a SEF File for Multiple
Conversions

The Configuration object owns the Extender. If you want to use a
SEF file for multiple conversions, you can do so as follows:

ConverterFactory factory = new ConverterFactory();
factory.Configuration.SetEDIExtension (sefSource);

All Converter and SchemaGenerator objects created from that
factory have access to the loaded SEF file, but they do not parse
the SEF file each time they are created.
DataDirect XML Converters User’s Guide and Reference for .NET

Loading SEF Files Programmatically 111
If SetEDIExtension is called two times, then the first SEF file is
replaced by the second one. Any Converter or SchemaGenerator
objects already created will still use the first SEF file.

If you want to use a SEF file for one Converter or
SchemaGenerator object only, you can do so as follows:

ConverterFactory factory = new ConverterFactory();
Converter converter = factory.NewConvertToXML(…);
Converter.Configuration.SetEDIExtension (sefSource);
DataDirect XML Converters User’s Guide and Reference for .NET

112 Chapter 5 XML Converters™ Examples
DataDirect XML Converters User’s Guide and Reference for .NET

113
6 XML Converters™ Properties

XML Converters share certain properties (the line separator
property, for example), and each has properties that are unique
– the CSV XML Converter allows you to specify an escape
character, but the binary XML Converter does not, for example.

This chapter provides reference information for the line
separator property, which is common to most XML Converters,
and reference information for individual XML Converters.

■ “Line Separator Values” on page 114

■ “Base-64 XML Converter Properties” on page 115

■ “Binary XML Converter Properties” on page 116

■ “Comma-Separated Values (CSV) XML Converter Properties”
on page 117

■ “dBase XML Converter Properties” on page 119

■ “DIF XML Converter Properties” on page 121

■ “EDI XML Converter Properties” on page 122

■ “Java .properties File XML Converter Properties” on page 152

■ “JSON XML Converter Properties” on page 153

■ “OpenEdge .d Data Dump XML Converter Properties” on
page 154

■ “Pyx Format XML Converter Properties” on page 155

■ “Rich Text Format XML Converter Properties” on page 156

■ “SDI XML Converter Properties” on page 157

■ “SYLK XML Converter Properties” on page 158
DataDirect XML Converters User’s Guide and Reference for .NET

114 Chapter 6 XML Converters™ Properties
■ “Tab-Separated Values XML Converter Properties” on page
159

■ “Whole-line Text XML Converter Properties” on page 161

■ “Windows .ini File XML Converter Properties” on page 162

■ “Windows Write XML Converter Properties” on page 163

Line Separator Values
Most XML Converters allow you to specify some type of line
separator (referred to in the converter URI as newline). The
following table summarizes commonly occurring values. All
values are case-insensitive.

Table 6-1. Line Separator Values

Value Description

cr or mac The Macintosh standard.

crlf or dos The DOS and Windows standard.

lf or unix The Unix standard.

lfcr Not standard usage.

nel 0x85 (commonly found in mainframes).

null A null byte.

platform If another value has not been specified, the
line separator uses the platform value as
returned by the
System.getProperty("line.separator") method.

platform is the default.
DataDirect XML Converters User’s Guide and Reference for .NET

Base-64 XML Converter Properties 115
Base-64 XML Converter Properties
The following table shows XML Converters properties for
Base-64 encoded binary files as documented in RFC 1341.

XML Converter Name in URL

Base-64

Table 6-2. Properties for Base-64 XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

newline Line separator Used only when converting a Base-64 binary
file to XML, and not vice versa. The default is
crlf. See “Line Separator Values” on
page 114 for a list of values.
DataDirect XML Converters User’s Guide and Reference for .NET

116 Chapter 6 XML Converters™ Properties
Binary XML Converter Properties
You can convert binary files that have been encoded as a
sequence of digits in a base from 2 to 36, and vice versa. Use the
Base-64 XML Converter for base-64 encoded binary files. See
“Base-64 XML Converter Properties” on page 115 for more
information.

XML Converter Name in URL

Binary

Table 6-3. Properties for Binary Base-2 to Base-36 XML Converters

Name in URL Property Name Description

base Base The numeric base of the encoded file. The
default is 16 (hexadecimal). Base-2 is binary;
base-8 is octal; and base-10 is decimal.

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

newline Line separator Used when converting a binary encoded file
to XML, and vice versa. The default is crlf. See
“Line Separator Values” on page 114 for a
list of values.

space Byte separator Whether or not byte values should be
contiguous (no value) or separated with the
value specified for this property. For
example, if you set space=, the value 000FFF
would be output as 00,0F,FF.

wrap Wrap lines Whether you want to wrap lines (wrap=yes)
or output all values on a single line (wrap=
no).
DataDirect XML Converters User’s Guide and Reference for .NET

Comma-Separated Values (CSV) XML Converter Properties 117
Comma-Separated Values (CSV) XML
Converter Properties

You can use the CSV XML Converter to convert comma-separated
values files to XML and vice versa.

XML Converter Name in URL

CSV (comma-separated values)

Table 6-4. Properties for CSV XML Converters

Name in URL Property Name Description

collapse Collapse consecutive
separators

Whether or not you want to collapse
consecutive separators – that is, separators
that do not contain any data. Default is no.

double Doubling
embedded quote
escapes it

Whether or not doubling an embedded
quotation mark has the effect of escaping
the quoted string. Default is no.

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML.

escape Escape character This character escapes quotes and separators
so that they can be embedded in values. The
back slash (\) is the default.

first First row contains
field names

Generated field names depend on the values
in the first and number fields.

If first=yes and number=no, field names are
read from the first row. Any field names after
that are named column.nnn, where nnn is the
column number, starting from one and
including explicitly named columns in the
count. If number=yes, extra columns (those
after the first) are named just column.
DataDirect XML Converters User’s Guide and Reference for .NET

118 Chapter 6 XML Converters™ Properties
newline Line separator See “Line Separator Values” on page 114 for
a list of values.

number Number rows and
columns

If number=yes (no is the default), each row
will also have an attribute, named row, which
will contain the row number from the source
document, starting from one. Also, each
column, even those explicitly named, will
have a column attribute numbering the
column from one.

Any empty columns are omitted from the
output, but the numbering of subsequent
columns will reflect that a column(s) was
skipped.

quotes Quote character A list of characters the converter should
interpret as quotation characters. Double and
single quote marks (" ’) are the default
values.

root Root element name The value you want to use for the root
element name. Default is table.

row Row element name The value you want to use for the row
element name. Default is row.

sep Separator The separator value between each value. This
can be TAB, any single character (a comma
(,) is the default), or the %XX-escaped value
of the separator character (%2c, for
example).

Table 6-4. Properties for CSV XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

dBase XML Converter Properties 119
dBase XML Converter Properties
Properties are the same for all dBase XML Converters – dBase II,
dBase III, dBase III+, dBase IV, and dBase V.

XML Converter Names in URL
■ dBase_II

■ dBase_III

■ dBase_III_plus

■ dBase_IV

■ dBase_V

Table 6-5. Properties for dBase XML Converters

Name in URL Property Name Description

deleted Include deleted
records

Whether or not records marked with a
"deleted" attribute are included in the
output to XML and preserved in the
conversion from XML. Stylus Studio generates
the "deleted" attribute on output, and looks
for it on input when this property is set to
yes.

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

newline Line separator Used only to convert a dBase file to XML, not
vice versa. See “Line Separator Values” on
page 114 for a list of values.
DataDirect XML Converters User’s Guide and Reference for .NET

120 Chapter 6 XML Converters™ Properties
Datatypes Supported by Version

The following table identifies datatypes supported by dBase XML
Converters.

Table 6-6. Datatype Support for dBase XML Converters

Datatype Symbol dBase II dBase III dBase III+ dBase IV dBase V

binary B ✔

character C ✔ ✔ ✔ ✔ ✔

date D ✔ ✔ ✔ ✔

float F ✔ ✔

general G ✔

logical L ✔ ✔ ✔ ✔ ✔

memo M ✔ ✔ ✔ ✔

numeric N ✔ ✔ ✔ ✔ ✔
DataDirect XML Converters User’s Guide and Reference for .NET

DIF XML Converter Properties 121
DIF XML Converter Properties
You can use the Data Interchange Format (DIF) XML Converter to
convert DIF files to XML and vice versa.

XML Converter Name in URL

DIF (Data Interchange Format)

Table 6-7. Properties for the DIF XML Converter

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is cp850.

newline Line separator Used when converting a DIF file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

122 Chapter 6 XML Converters™ Properties
EDI XML Converter Properties
You can use the Electronic Data Exchange (EDI) XML Converter to
convert EDI files to XML and vice versa.

Properties are the same for most supported EDI dialects – ATIS,
EANCOM, EDIFACT, Edig@s, HIPAA, HL7, IATA Cargo-IMP, IATA
PADIS, NCPDP, TRADACOMS, and X12. Some properties are
dialect-specific.

TIP: DataDirect XML Converters support the Standard Exchange
Format (SEF) standard, which allows you to define extensions to
an EDI standard. See “Handling Proprietary EDI Formats” on page
23 for more information.

XML Converter Name in URL

EDI
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 123
Properties for EDI XML Converters

The following table describes properties for all EDI XML
Converters. Note that some properties (cexpand and hexpand,
for example) are dialect-specific.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description

atis Attempt to handle
X12 as ATIS

Whether or not XML Converters should scan
the first 100 segments of an X12 file to
determine if it is an ATIS file. If the file is an
ATIS file, ATIS rules are used; otherwise, X12
rules are used. Default is no.

auto Auto-fixup values
where possible

Automatically calculates values where
possible.

For X12, XML Converters counts segments
and fills in hash values for CTT, SE and IEA
segments.

For EDIFACT, XML Converters calculates
segment totals for UNE, UNT, and UNZ
segments. If the UNZ segment is missing, it is
created as needed.

The SE or UNT segments only need to be
mapped; all of their elements can be
automatically populated.

In any header or trailer fields containing
dates or times, segments are placed into the
correct format based on whether they are
defined as YYMMDD or CCYYMMDD for
dates, or whatever length for times. Default
values are filled in if they are missing.

See also “count” on page 126.

cent Window for century
cut-off

If the date is given in the file with a two-digit
year and the output requires a four-digit year,
this value is the cutoff so that the proper
century can be selected.
DataDirect XML Converters User’s Guide and Reference for .NET

124 Chapter 6 XML Converters™ Properties
cexpand Fully expand HL7
CE/CF/CNE/CWE
element

HL7 includes specialized composite elements
that contain coded values, the text version of
the code, and the lookup table for CE, CF,
CNE, and CWE elements. If you set
cexpand=yes, XML Converters attempts to
expand all of the fields in the composite
element.

The CNE and CWE elements also allow pulling
information from tables across versions of the
standard – an HL7 2.4 element could look up
information from an HL7 2.5 table, for
example. Each of these also has an ’alternate’
set of fields, so that codes can be included
both in the native (HL7, for example) and
foreign code list.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 125
chr Character repertoire
override

Allows XML Converters to override and alter
character encodings for EDIFACT-based
documents (like EANCOM and IATA PADIS).

You can use one or more of the following
options, connected with a "+" symbol (chr=
REPLACE+FINNISH, for example):

■ DEFAULT – The encoding specified in the
file is used. This option cannot be used
with any others.

■ EANCOM – Support for these extra
EANCOM characters to UNOA and UNOB
are added: #, @, [,], {, }, \, |, ‘, and ^.

■ SYMBOL – Forces all characters, including
special characters such as element and
segment separators that might otherwise
be permitted, to be validated against the
encoding.

■ REPLACE – Replaces any invalid characters
with the character specified by the invalid
property. An underscore ("_") is used if the
invalid property is not specified. If
REPLACE is not specified, XML Converters
throws an error.

■ FINNISH – Changes the meaning of certain
characters in the Finnish character set for
UNOA and UNOB (and adds UNOY and
UNOZ as synonyms for UNOA and UNOB
respectively).

See “FINNISH Character Set Overrides” on
page 142 for more information.

See “Explicit Character Overrides” on
page 143 for more information on this topic.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

126 Chapter 6 XML Converters™ Properties
clean Remove linefeeds
and nulls

Whether or not you want to remove linefeeds
and nulls from EDI converted to XML and vice
versa. Valid values are both (directions),
fromXML, toXML, and never.

See also “rtrim” on page 139.

component Component value
separator

When an element is a composite element, the
character that is used to separate the
component elements from each other within
the composite element. See “Using Special
Characters for Separators” on page 145 for
information about how to specify values for
this property.

continued Line continuation
character

Character appended to the segment
terminator when each segment in an EDI
message is split onto a new line. This
character indicates to the host system that
the end of the interchange has not been
reached. Appended to all segments in an
interchange but the last one.

The continued property takes the same values
as “element” on page 128 and “segment” on
page 140.

Note: This property is supported for all
dialects except Cargo-IMP.

count Enforce segment
maximum counts

Whether or not you want XML Converters to
enforce segment counts as they are defined
in the EDI repository. Valid values are:

■ yes – Repository counts are enforced.

■ no – Repository counts are not enforced.

■ multi – If the repository allows only one
instance, enforce it; otherwise, treat the
count as unlimited.

See also “auto” on page 123.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 127
decimal Decimal character Symbol used for the decimal character in the
converted file. Usually a period or comma.
See “Using Special Characters for Separators”
on page 145 for information about how to
specify values for this property.

decode Where to place
decoded data values

Allows you to specify where to place code list
value descriptions when converting EDI to
XML. Valid values are:

■ no – code list table values are not output
as XML:
<ISA15><!--I14: Interchange Usage

Indicator-->P</ISA15>

■ comment – adds the description as a
comment. For example, <!--Production
Data--> in the following code:
<ISA15><!--I14: Interchange Usage

Indicator-->P<!--Production Data--></ISA15>

■ attribute – adds the description as an
attribute:
<ISA15 decode="Production Data"><!--I14:

Interchange Usage Indicator-->P</ISA15>

■ text – adds the code as an attribute, and
the description as element value:
<ISA15 value="P">Production Data</ISA15>

Note that the value property must also be
set to attribute to generate this output.

Turn off this and Comment element types
(field) to disable all comment generation.
See also value .

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

128 Chapter 6 XML Converters™ Properties
dialect EDI dialect The EDI dialect of the file you are converting.
Valid values are: ATIS, CARGO, EANCOM,
EDIFACT, EDIG@S, HIPAA, HL7, IATA, and X12.

Use IATA to specify the PADIS dialect.

This property is used only for schema
generation. See “XML Schema Generation”
on page 28 for more information.

doc Include
xs:documentation

Whether or not include xs:documentation
comments in the XML Schema. Valid values
are yes (the default) and no.

This property is used only for schema
generation. See “XML Schema Generation”
on page 28 for more information.

eol Add linefeeds
between segments
on write

Allows you to put each segment on its own
line when converting XML to EDI. (Extra
linefeeds are ignored when converting EDI to
XML.) Valid values are:

■ yes (the default) – the value specified in
the Line separator (newline) property is
used to separate each segment. The
normal segment output character is also
generated.

■ no –linefeeds between segments are not
added

■ an integer between 1 and 1024 – specifies
the number of columns on which to wrap
a line. So, for example, eol=80 wraps the
line at 80 columns. If you specify an
integer, the last row is not padded out to
the value you specify.

element Element separator The character used to separate elements in a
segment. See “Using Special Characters for
Separators” on page 145 for information
about how to specify values for this property.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 129
empty How to handle
empty HL7 content

Controls how XML Converters manages
empty fields. Empty tokens at the first level
are never written to the XML file, regardless
of how this property is set.

In HL7 versions prior to 2.3, empty fields were
treated as present, but without a value; in
HL7 version 2.3 and later, empty fields are
indicated with a set of quotation marks. A
missing field – that is, a field for which there
is no value in the data stream – does not
display quotation marks.

Valid values for this property are:

■ auto – The HL7 version determines how
XML Converters treats empty fields:

■ HL7 2.2 and earlier – XML Converters
behaves as if empty=empty.

■ HL7 2.3 and later – XML Converters
behaves as if empty=quotes.

■ empty – All empty fields, with or without
quotation marks, are treated as present
but empty (use for HL7 2.2 and earlier).

■ quotes – If the field has quotes, it is
treated as empty, that is, the data stream
has a null value (’""’ is recognized as a
marker for an empty field, for example);
otherwise, it is treated as missing, that is,
there is no value in the data stream (use
for HL7 2.3 and later).

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

130 Chapter 6 XML Converters™ Properties
empty (cont’d) Consider the following examples for different
conversion scenarios:

■ HL7 to XML, empty=empty
- Empty top-level elements are not output
- Empty lower-level elements are output as
as empty XML elements
- Elements containing paired double-
quotes are passed through unchanged

■ HL7 to XML, empty=quotes
- Empty top-level elements are not output
- Empty lower-level elements are not
output
- Elements containing paired double-
quotes are output as empty XML elements

■ XML to HL7, empty = empty
- Empty elements are passed through as
empty
- Elements containing paired double-
quotes are passed through unchanged

■ XML to HL7, empty = quotes
- Empty elements are passed through as
paired double-quotes
- Elements containing paired double-
quotes are passed through unchanged

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 131
field Comment element
types

Creates a comment at the start of each
element that includes the element’s name
and number. For example, <!--I14:
Interchange Usage Indicator--> in the following
code:
<ISA15><!--I14: Interchange Usage
Indicator-->P<!--Production Data--></ISA15>

Turn off this and Comment code list (decode)
to disable all comment generation.

following Segment
name/segment
content separator

In TRADACOMS data streams, the default
character used to separate the segment name
and segment contents is the equal sign (=).
You can use the following= property to
override the default character.. See “Using
Special Characters for Separators” on page
145 for information about how to specify
values for this property.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

132 Chapter 6 XML Converters™ Properties
group Use message groups
if provided

Allows you to add grouping elements to XML
when converting EDI to XML. Grouping
elements can make EDI messages in the
converted XML easier to access with XPath for
some types of documents. Consider using this
property if your EDI documents use multiple
message groups.

Valid values for this property are:

■ yes – Wraps each message group with an
extra <GROUP></GROUP> element.

■ always – Wraps all the output associated
with an interchange (for example,
everthing from an ISA segment to its IEA
segment, inclusive) in an
<INTERCHANGE></INTERCHANGE>
element. <GROUP></GROUP> elements
are also used when group=always.

■ no – Grouping elements are not added to
the converted XML. This is the default.

This property can also be used when
generating XML Schema.

hexpand Expand HL7 hex
escapes

In HL7 data streams, \X is an escape sequence
used to include hex data in the stream. You
can use this property (hexpand=yes) to
expand the hex data. If the data is binary, an
exception is thrown. Valid values are yes and
no.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 133
hipaa Enable HIPAA
Auto-detection

Whether or not XML Converters should
determine if an X12 file is a HIPAA file. If the
file is a HIPAA file, HIPAA rules are used;
otherwise, X12 rules are used.

Valid values for hipaa= are:

■ yes – XML Converters determines whether
the X12 file is a HIPAA file.

■ no – XML Converters processes the file as
an X12 document, even if it is recognized
as a HIPAA document. This is the default.

■ loop – same as yes, but this value also
creates a nested loop structure for the
converted XML and generated XML
Schema which can simplify this output’s
use in XML mapping tools.

The hipaa property can be used with atis .

ignore Ignore specific
errors

Allows you to specify which, if any, errors you
want to ignore during XML conversion. The
syntax for this field is ignore=n1,n2,n3.... For
example, ignore=3,4,47 ignores errors 3, 4,
and 47.

Can be used with the opt property to allow
continued processing even when the data
stream is missing mandatory segments and
data elements.

indent Whether to indent
XML output

Controls whether or not the XML output will
be indented. Valid values are yes, no, and
blank (unspecified).

Note: If this value is unspecified, XML output
is indented unless decode and field are both
set to no.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

134 Chapter 6 XML Converters™ Properties
inter Interactive messages Certain EDI messages have alternate batch
and interactive forms, depending upon
whether they are used between systems that
have real-time connections. The inter=yes
setting causes the interactive form to be used,
if available. For example, in EDIFACT, this
would cause the normal envelope of
UNB/UNH/UNT/UNZ to be replaced by
UIB/UIH/UIT/UIZ.

This property is used only for schema
generation. See “XML Schema Generation”
on page 28 for more information.

invalid Invalid character
replacement

Used with REPLACE value for the chr property
to specify the character that should be used
to replace invalid characters. The default (if
invalid is not specified) is an underscore
("_")). Valid values are:

■ \u#### – To specify a Unicode value,
substituting the #### for the appropriate
value.

■ \d#### – To specify a decimal value,
substituting the #### for the appropriate
value.

See “Using Special Characters for Separators”
on page 145 for more information about how
to specify values for this property.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 135
ldate How to handle ’L’
HL7 date

Controls how XML Converters manages the L
value (which traditionally means "local
system" in HL7) if it is passed as either a date,
time, datetime, or timestamp. Valid values
are:

■ header – The L value is replaced with the
value of the MSH-7 element from the
header.

■ current – The L value is replaced with the
date and/or time that the message
processing started.

■ error – The L value is treated as a syntax
error.

■ pass – The L value is passed through
unchanged.

leading Ignore leading zeros
on numbers

Whether or not you want the XML Converter
engine to ignore leading zeros on numbers.

Setting ignore=yes means that leading zeros
on the value in the EDI and the value in the
codelist are compared without any leading
zeros. So with ignore=no, "012" does not
match "12"; but with ignore=yes these values
do match. This applies only to codelist
validation, not for handling of numbers.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

136 Chapter 6 XML Converters™ Properties
len Strict validation on
value lengths

For most EDI dialects, controls whether an
element’s content is checked against the
upper and lower length limits as defined by
the relevant EDI specification.

For Cargo-IMP, however, len= enables or
disables checking the entire message length
against the standard limit of 1600 characters.
Because Cargo-IMP requires fixed positions of
certain elements, element length checking is
always performed.

Valid values for len= are:

■ yes – length checking is enabled.

■ no – length checking is disabled. This is the
default.

long Use long element
names

Whether you want to use long or short
element and/or segment names in your XML
conversions – FTX03-TextReference or FTX03,
for example. Valid values for long= are:

■ elements – long names are used for
elements. (This was formerly achieved by
setting long=yes; yes has been deprecated
as of XML Converters release 5.0 for
naming consistency.)

■ segments – long names are used for
elements.

■ all – long names are used for both
elements and segments.

loop-prefix Prefix GROUP_...
tags with the
enclosing message
name

Allows you to prefix the name of a
GROUP_no tag with the message name it
appeared in. For example,
<INVOIC>…<GROUP_1> becomes
< INVOIC >…< INVOIC _GROUP_1>. This
property is set to no (loop-prefix=no) by
default.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 137
message Message type The type of EDI message being converted.
Valid values vary based on dialect and
version.

This property is used only for schema
generation. See “XML Schema Generation”
on page 28 for more information.

newline Line separator Used when converting EDI to XML, and XML
to EDI when the Add linefeeds between
segments on write property (eol) is set to yes.
The default is crlf. See “Line Separator
Values” on page 114 for a list of values.

opt Treat all segments
and elements as
optional

If set to yes, all mandatory segments and
mandatory data elements are treated as
optional. If set to no (the default), a missing
mandatory segment or mandatory data
element triggers an error.

You can use opt=no with the ignore property
to ignore errors for missing mandatory
segments (errors 39 and 9), missing
mandatory data elements (error 4), or both.
For example, opt=no and ignore=39,9 allows
processing to continue even if the data
stream is missing mandatory segments

Enabling this property can be useful if your
provider declines to provide segments and
elements that are considered mandatory
according to the EDI specification, but you are
aware of what the missing values are.

prefix Namespace prefix Namespace prefix to be added, with the
Namespace URI, to the root element. The
prefix alone is added to all elements.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

138 Chapter 6 XML Converters™ Properties
release Release (escape)
symbol

The release, or escape, character. It turns off
special processing of the next character.
Suppose your message uses within a text
description the same character that was used
to separate elements. This is the character
that would be used to tell the EDI processor
to treat that character as a normal character
and not as the end of the text. See “Using
Special Characters for Separators” on page
145 for information about how to specify
values for this property.

repeat Repeat symbol The repeat symbol for EDI dialects that use it.
See “Using Special Characters for Separators”
on page 145 for information about how to
specify values for this property.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 139
rtrim Trim trailing
delimiters

Typically, most trailing delimiters are removed
automatically. But in the conversion process,
new trailing delimiters are sometimes
created. The rtrim property controls how XML
Converters manages these trailing delimiters.
Valid values are:

■ no – Trailing delimiters are not trimmed.

■ yes – Trailing delimiters are trimmed as
long as performance is not affected.

■ always – Trailing delimiters are trimmed
regardless of the impact on performance.

You can also use this property to add
additional spaces, or padding:

■ pad1 – Add spaces at the top-most level
only.

■ pad2 – Add spaces to the first two levels
only – elements and composite elements
taht don’t contain other composites.

■ pad3 – Add spaces for every level of
element. This value can create many
empty elements (when converting to XML)
and many empty delimiters (when
converting to EDI).

See also “clean” on page 126.

seg Strict
segment-ordering
checking

Whether or not you want to check segment
ordering as defined by the message. If this
property is set to no, message and group
definitions are ignored, resulting in the
possibility that data is grouped incorrectly
(<GROUP_n> tags are never emitted, for
example). Valid values are yes and no; the
default is yes.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

140 Chapter 6 XML Converters™ Properties
segment Segment separator The character you want to use for segment
separators. See “Using Special Characters for
Separators” on page 145 for information
about how to specify values for this property.

setup Write setup
segment if
appropriate

Used to indicate whether or not to write the
file’s setup segment when writing EDI. Used
only if the EDI dialect supports an optional
setup segment (the EDIFACT or IATA UNA
segment, for example); otherwise, it is
ignored. Valid values are yes and no; the
default is yes.

strict Strict validation
mode

If strict=yes, checks that all mandatory
elements are present, and ensures that no
composite elements are in places where only
simple elements are allowed. Also checks for
extra elements at the end of segments that
are not part of the specification. The default
is strict=no.

strip Strip C-style
comments

Determines whether content in the incoming
EDI stream wrapped in C-style /* and */
comment delimiters is ignored. Default
setting is off (strip=no) since it can potentially
conflict with real EDI content. HL7 files used
with or generated by certain systems might
include this markup, for example.

tbl Force error if value
not in code list

Generates an error if the value for an element
is not in the codelist associated with that
element. If this property is off (no), values are
not checked for the presence of a codelist.

tertiary Subcomponent
(tertiary) separator

The character you want to use for
subcomponent separators. See “Using Special
Characters for Separators” on page 145 for
information about how to specify values for
this property.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 141
typ Strict datatype
content checking

Ensures that only characters that are
appropriate for a given field are included in
the value for that field. For example, this
property ensures that dates are valid and
numbers are well-formed.

uri Namespace URI Namespace URI to be added, with the
Namespace prefix, to the root element. If the
prefix is set, but the URI is not, the prefix is
ignored.

user Extension map file The URL of the SEF file containing custom
message type definitions. This property can
also be used when generating XML Schema.

val Enable validation When set to yes (the default), the version,
release, messages and segments of the EDI
file (input or output) is compared to the
relevant EDI repository. If the EDI file contains
a value that is not in the EDI repository, an
error is thrown.

If validation is disabled (val=no), processing
continues even if the EDI file contains a
version, release, message, or segment that is
not in the repository. When processing an
unknown version, release, message, or
segment, some checks cannot be performed
because the structure of the required data is
unknown.

For example, if a file is of a known version but
contains an unknown segment, data type
checking for that segment is not performed,
but checks on the remainder of the file are
performed as usual. Similarly, if a message
does not exist in the EDI repository, the file is
still processed, but segment order checking is
not performed.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

142 Chapter 6 XML Converters™ Properties
FINNISH Character Set Overrides

As described elsewhere, you can use the using the Character
repertoire override property (chr) to change the meaning of certain
characters for the Finnish character set for UNOA (UNOY) and

value Where to place
coded data values

Allows you to specify where you want to
place coded data values in XML output. Valid
values are:

■ text – outputs the coded data value (here,
00) in the text node:
<BGN01><!--353: Transaction Set Purpose

Code-->00</BGN01>

■ attribute – outputs the coded data value
as an attribute:
<BGN01 value="00"><!--353: Transaction Set

Purpose Code--></BGN01>

See also decode .

version Dialect version The version of the dialect specified by the
dialect property. Valid values vary based on
dialect.

This property is used only for schema
generation. See “XML Schema Generation”
on page 28 for more information.

Table 6-8. Properties for All EDI XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 143
UNOB (UNOZ). The following table shows which characters are
changed based on the character set in use.

Explicit Character Overrides

In addition to the modifiers you can specify using the Character
repertoire override property (chr), you can instruct the XML
Converters to take character encodings from the URI, instead of
from the EDIFACT-style UNB or UIB 001 element. If you choose to

Table 6-9. Character Encoding Overrides

Character From Character To Applicable Character Sets Unicode Name

[Ä UNOA/UNOY, UNOB/UNOZ Latin capital letter A with
diaeresis

\ Ö UNOA/UNOY, UNOB/UNOZ Latin capital letter O with
diaeresis

] Å UNOA/UNOY, UNOB/UNOZ Latin capital letter A with
ring above

^ Ü UNOA/UNOY, UNOB/UNOZ Latin capital letter U with
diaeresis

{ ä UNOB/UNOZ Latin small letter a with
diaeresis

| ö UNOB/UNOZ Latin small letter o with
diaeresis

} Å UNOB/UNOZ Latin small letter a with
ring above

~ ü UNOB/UNOZ Latin small letter u with
diaeresis
DataDirect XML Converters User’s Guide and Reference for .NET

144 Chapter 6 XML Converters™ Properties
do this, you may use the encodings described in the following
table:

These can also be combined with other chr= options. For
example, an EDI file might specify UNOA encoding, but with
lower-case text, because the sending system sent inconsistent
data. Using chr=UNOB+REPLACE, the data could be consumed, and
any non-UNOB characters would turn into '_' characters, allowing
processing to continue.

Table 6-10. Character Encoding Overrides

Property Name Description

UNOA or IATA UN/ECE level A (upper case only)

UNOB or IATA UN/ECE level B (same as UNOA but including lower case)

UNOC or IATC UN/ECE level C (ISO-8859-1 or Latin-1/Western European)

UNOD or IATD UN/ECE level D (ISO-8859-2 or Latin-2/Central European)

UNOE or IATE UN/ECE level E (ISO-8859-5 or Latin/Cyrillic)

UNOF or IATF UN/ECE level F (ISO-8859-7 or Latin/Greek)

UNOG or IATG UN/ECE level G (ISO-8859-3 or Latin-3/South European)

UNOH or IATH UN/ECE level H (ISO-8859-4 or Latin-4/North European)

UNOI or IATI UN/ECE level I (ISO-8859-6 or Latin/Arabic)

UNOJ or IATJ UN/ECE level J (ISO-8859-8 or Latin/Hebrew)

UNOK or IATK UN/ECE level K (ISO-8859-9 or Latin-5/Turkish)

UNOQ or IATQ UN/ECE level Q (ISO-8859-15 or Latin-9/)

UNOW or IATW UN/ECE level W (ISO 10646-1 octet with code extension technique to
support UTF-8)

UNOX or IATX UN/ECE level X (Code extension technique as defined by ISO 2022
utilizing the escape techniques in accordance with ISO 2375)

UNOY or IATY UN/ECE level Y (ISO 10646-1 octet without code extension
technique.); also Finnish UNOA

UNOZ or IATZ Finnish UNOB
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 145
XML Converters does no character checking for UNOX; rather it
depends on the native platform converter or the application to
ensure that the characters are valid. This is because there are too
many implementation-specific details, subsets, and proprietary
and local extensions, and it is not possible to account for them
all.

Using Special Characters for Separators

Most special characters or symbols cannot be entered directly
into a URL – you cannot specify that the colon (:) is the element
separator character by entering converter:EDI:element=::auto=
yes, for example. Instead, you must escape special characters
using the appropriate decimal or hex value. To specify a colon as
a element separator character, you would use
converter:EDI:element=\u3A:auto=yes, for example. Note that
not all EDI dialects use all special characters.

See Table 6-11, “Common Separator Characters,” on page 146
for a complete list of separator characters and their decimal and
hex values.

Which Properties Specify Separators?

The following properties can be used to specify separators for
EDI XML Converters:

■ “segment” on page 140
■ “element” on page 128
■ “component” on page 126
■ “release” on page 138
■ “decimal” on page 127
■ “tertiary” on page 140
■ “repeat” on page 138.
DataDirect XML Converters User’s Guide and Reference for .NET

146 Chapter 6 XML Converters™ Properties
Restrictions for Separator Characters

The values you set for separator properties apply only when
converting XML to EDI.

You cannot use letters, numbers, or spaces for separator
characters.

You must use unique values for each separator property you
choose to set.

Commonly Used Separator Characters

Commonly used separator characters and their escape values (in
decimal and hex) are shown in the following table.

Table 6-11. Common Separator Characters

Character Decimal Hex

~ \d126 \u007E

! \d33 \u0021

@ \d64 \u0040

\d35 \u0023

$ \d36 \u0024

% \d37 \u0025

^ \d94 \u005E

& \d38 \u0026

* \d42 \u002A

(\d40 \u0028

) \d41 \u0029

_ \d95 \u005F

+ \d43 \u002B

` \d96 \u0060

- \d45 \u002D
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 147
Control Characters

You can also use non-printable control characters as separators,
as shown in the following table.

= \d61 \u003D

[\d91 \u005B

] \d93 \u005D

} \d123 \u007B

{ \d125 \u007D

\ \d92 \u005C

| \d124 \u007C

’ \d39 \u0027

; \d59 \u003B

" \d34 \u0022

: \d58 \u003A

/ \d47 \u002F

. \d46 \u002E

, \d44 \u002C

? \d63 \u003F

> \d62 \u003E

< \d60 \u003C

Table 6-12. Control Characters

Character Decimal Hex Other

NUL \d0 \u0000

SOH \d1 \u0001

STX \d2 \u0002

Table 6-11. Common Separator Characters

Character Decimal Hex
DataDirect XML Converters User’s Guide and Reference for .NET

148 Chapter 6 XML Converters™ Properties
ETX \d3 \u0003

EOT \d4 \u0004

ENQ \d5 \u0005

ACK \d6 \u0006

BEL \d7 \u0007

BELL \d7 \u7000

BS \d8 \u0008

HT \d9 \u0009 \t

TAB \d9 \u0009 \t

LF \d10 \u000A \n

VT \d11 \u000B

FF \d12 \u000C \f

CR \d13 \u000D \r

SO \d14 \u000E

SI \d15 \u000F

DLE \d16 \u0010

DC1 (XON) \d17 \u0011

DC2 \d18 \u0012

DC3 (XOFF) \d19 \u0013

DC4 \d\0 \u0014

NAK \d21 \u0015

SYN \d22 \u0016

ETB \d23 \u0017

CAN \d24 \u0017

EM \d25 \u0019

SUB \d26 \u001a

ESC \d27 \u001b

FS \d28 \u001c

GS \d29 \u001d

Table 6-12. Control Characters

Character Decimal Hex Other
DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 149
RS \d30 \u001e

US \d31 \u001f

DEL \d127 \u007F

BPH \d130 \u0082

NBH \d131 \u0083

IND \d132 \u0084

NEL \d133 \u0085

SSA \d134 \u0086

ESA \d135 \u0087

HTS \d136 \u0088

HTJ \d137 \u0089

VTS \d138 \u008A

PLD \d139 \u008B

PLU \d140 \u008C

RI \d141 \u008D

SS2 \d142 \u008E

SS3 \d143 \u008F

DCS \d144 \u0090

PU1 \d145 \u0091

PU2 \d146 \u0092

STS \d147 \u0093

CCH \d148 \u0094

MW \d149 \u0095

SPA \d150 \u0096

EPA \d151 \u0097

SOS \d152 \u0098

SCI \d154 \u009A

CSI \d155 \u009B

ST \d156 \u009C

Table 6-12. Control Characters

Character Decimal Hex Other
DataDirect XML Converters User’s Guide and Reference for .NET

150 Chapter 6 XML Converters™ Properties
EDI Processing Instructions

You can specify EDI processing instruction (PI) values in the EDI
XML Converter URI as described in the following table.

Leave these values blank to assume the default values. XML
Converters will generate an error if a PI and URI switch have

OSC \d157 \u009D

PM \d158 \u009E

APC \d159 \u009F

NBS (NBSP) \d160 \u00A0

SHY \d173 \u00AD

Table 6-12. Control Characters

Character Decimal Hex Other

Table 6-13. Properties for EDI Processing Instructions

Processing
Instruction Name in URI Description Default

edi_component component Component value separator. :

edi_decimal decimal Decimal character. ,

edi_element element Element separator. +

edi_following following Segment name/segment
content

=

edi_invalid invalid Invalid character replacement _

edi_release release Release (escape) separator. ?

edi_repeat repeat Repeat symbol separator. ~

edi_segment segment Segment separator. ’

edi_tertiary tertiary Subcomponent (tertiary)
separator.

&

DataDirect XML Converters User’s Guide and Reference for .NET

EDI XML Converter Properties 151
conflicting values, or if either value conflicts with one of the
values encoded in a segment for these values.

The syntax of an EDI processing instruction is "<?" followed by
processing instruction name (edi_segment, for example),
followed by a space, and then the new special character.

Example

Suppose an X12 document had to be written so that the
segment terminator was a carriage return, the element
separator was an asterisk, and the component separator was the
greater-than symbol. The actual start of the file might end up
looking much like this:

<?xml version="1.0" encoding="utf-8"?>
<?edi_segment \r?>
<?edi_element *?>
<X12>

<ISA>
<ISA01><!--I01: Authorization Information Qualifier-->00</ISA01>
<ISA02><!--I02: Authorization Information--></ISA02>
<ISA03><!--I03: Security Information Qualifier-->00</ISA03>
<ISA04><!--I04: Security Information--></ISA04>
<ISA05><!--I05: Interchange ID Qualifier-->01</ISA05>
<ISA06><!--I06: Interchange Sender ID-->1515151515</ISA06>
<ISA07><!--I05: Interchange ID Qualifier-->01</ISA07>
<ISA08><!--I07: Interchange Receiver ID-->5151515151</ISA08>
<ISA09><!--I08: Interchange Date-->041201<!--2004-12-01--></ISA09>
<ISA10><!--I09: Interchange Time-->1217</ISA10>
<ISA11><!--I65: Repetition Separator-->U</ISA11>
<ISA12><!--I11: Interchange Control Version-->00403</ISA12>
<ISA13><!--I12: Interchange Control Number-->000032123</ISA13>
<ISA14><!--I13: Acknowledgment Requested-->0</ISA14>
<ISA15><!--I14: Usage Indicator-->P</ISA15>
<ISA16><!--I15: Component Element Separator-->></ISA16>

</ISA>
...
DataDirect XML Converters User’s Guide and Reference for .NET

152 Chapter 6 XML Converters™ Properties
Java .properties File XML Converter Properties
You can use the JavaProps XML Converter to convert Java
.properties files to XML and vice versa.

XML Converter Name in URL

JavaProps

Table 6-14. Properties for JavaProps XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is
ISO-8859-1.

newline Line separator Used when converting a file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

JSON XML Converter Properties 153
JSON XML Converter Properties
The following table shows properties for JSON (JavaScript Object
Notation) XML Converters.

XML Converter Name in URL

JSON

Table 6-15. Properties for JSON XML Converters

Name in URL Property Name Description

indent Indent The level of indent you want to use for the
converted XML. The default is 4.

newline Line separator The character that indicates the start of a
new line in the document to be converted.
The default is crlf. See “Line Separator
Values” on page 114 for a list of values.
DataDirect XML Converters User’s Guide and Reference for .NET

154 Chapter 6 XML Converters™ Properties
OpenEdge .d Data Dump XML Converter
Properties

You can use the DotD XML Converter to convert Progress
OpenEdge .d data dump files to XML and vice versa.

XML Converter Name in URL

DotD

Table 6-16. Properties for DotD XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

newline Line separator Used when converting a file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

Pyx Format XML Converter Properties 155
Pyx Format XML Converter Properties
You can use the Pyx XML Converter to convert Pyx format files to
XML and vice versa.

XML Converter Name in URL

Pyx

Table 6-17. Properties for Pyx XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

newline Line separator Used when converting a file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

156 Chapter 6 XML Converters™ Properties
Rich Text Format XML Converter Properties

XML Converter Name in URL

RTF

Table 6-18. Properties for RTF XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is cp850.

newline Line separator Used when converting a file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

SDI XML Converter Properties 157
SDI XML Converter Properties
You can use the SDI XML Converter to convert Super Data
Interchange Format (SDI) files to XML and vice versa.

XML Converter Name in URL

SDI (Super Data Interchange Format)

Table 6-19. Properties for SDI XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is cp850.

newline Line separator Used when converting SDI files to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

158 Chapter 6 XML Converters™ Properties
SYLK XML Converter Properties
You can use the SYLK XML Converter to convert Symbolic Link
Format (SYLK) files to XML and vice versa.

XML Converter Name in URL

SYLK (Symbolic Link Format)

Table 6-20. Properties for SYLK XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is cp850.

newline Line separator Used when converting SYLK files to XML,
and vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

Tab-Separated Values XML Converter Properties 159
Tab-Separated Values XML Converter
Properties

You can use the TAB XML Converter to convert tab-separated
values files to XML and vice versa.

XML Converter Name in URL

TAB (tab-separated values)

Table 6-21. Properties for Tab-Separated Values XML Converters

Name in URL Property Name Description

collapse Collapse consecutive
separators

Whether or not you want to collapse
consecutive separators – that is, separators
that do not contain any data. Default is no.

double Doubling
embedded quote
escapes it

Whether or not doubling an embedded
quotation mark has the effect of escaping
the quoted string. Default is no.

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML.

escape Escape character This character escapes quotes and separators
so that they can be embedded in values. The
backslash (\) is the default.

first First row contains
field names

Generated field names depend on the values
in the first and number fields.

If first=yes and number=no, field names are
read from the first row. Any field names
after that are named column.nnn, where
nnn is the column number, starting from one
and including explicitly named columns in
the count. If number=yes, extra columns
(those after the first) are named just column.
DataDirect XML Converters User’s Guide and Reference for .NET

160 Chapter 6 XML Converters™ Properties
newline Line separator See “Line Separator Values” on page 114 for
a list of values.

number Number rows and
columns

If number=yes (no is the default), each row
will also have an attribute, named row,
which will contain the row number from the
source document, starting from one. Also,
each column, even those explicitly named,
will have a column attribute numbering the
column from one.

Any empty columns are omitted from the
output, but the numbering of subsequent
columns will reflect that a column(s) was
skipped.

quotes Quote characters A list of characters the converter should
interpret as quotation characters. Double
and single quote marks (" ’) are the default
values.

root Root element name The value you want to use for the root
element name. Default is table.

row Row element name The value you want to use for the row
element name. Default is row.

sep Separator The separator value between each value.
This can be TAB, any single character (a
comma (,) is the default), or the
%XX-escaped value (%2c, for example).

Table 6-21. Properties for Tab-Separated Values XML Converters

Name in URL Property Name Description
DataDirect XML Converters User’s Guide and Reference for .NET

Whole-line Text XML Converter Properties 161
Whole-line Text XML Converter Properties
You can use the Line XML Converter to convert whole-line text
formatted files to XML and vice versa.

XML Converter Name in URL

Line

Table 6-22. Properties for the Whole-line Text XML Converter

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

line Line element name Value used for the line element name.
Default is line.

newline Line separator Used when converting a whole-line text file
to XML, and vice versa. The default is crlf.
See “Line Separator Values” on page 114 for
a list of values.

root Root element name Value used for the root element name.
Default is root.
DataDirect XML Converters User’s Guide and Reference for .NET

162 Chapter 6 XML Converters™ Properties
Windows .ini File XML Converter Properties
You can use the WinIni XML Converter to convert Windows .ini
files to XML and vice versa.

XML Converter Name in URL

WinIni

Table 6-23. Properties for WinIni XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is cp1252.

newline Line separator Used when converting a file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

Windows Write XML Converter Properties 163
Windows Write XML Converter Properties
You can use the WinWrite XML Converter to convert Windows
Write files to XML and vice versa.

XML Converter Name in URL

WinWrite

Table 6-24. Properties for WinWrite XML Converters

Name in URL Property Name Description

encoding Encoding The encoding for the input file when it is not
XML; or the encoding for the output file
when it is not XML. The default is utf-8.

newline Line separator Used when converting a file to XML, and
vice versa. The default is crlf. See “Line
Separator Values” on page 114 for a list of
values.
DataDirect XML Converters User’s Guide and Reference for .NET

164 Chapter 6 XML Converters™ Properties
DataDirect XML Converters User’s Guide and Reference for .NET

Index 165
Index

A

accessing data using Stylus Studio URL
schemes 20

API
examples 85

B
Base-64 XML Converter properties 115
binary XML Converter properties 116
BizTalk

deploying XML Converters on 71

C
Cargo-IMP files

XML Converter properties for 122
command line

analyze option 22
analyze switch 53
analyzing EDI 53
converter option 22
EDI analysis report 53
in option 22
out option 22
report option 22
report switch 53
schema option 23
specifying XML Converter properties 22
to option 22
usage 21

contacting Technical Support 14

control characters
for EDI XML Converters 147

conventions, typographical 13
conversion results

pulling 109
pushing 109

converter URI scheme
building a converter URI 41
description 39
displayed in Stylus Studio 42
parts of 39
syntax of 39
using with user-defined .conv files 43

converting EDI to XML
analyzing data streams for errors 47

CSV XML Converter properties 117
custom XML conversions

using with converter URIs 43
customizing file conversions 19

D

data
accessing data using Stylus Studio URL

schemes 20
dBase XML Converter properties 119
demo.cs example 85
DIF XML Converter properties 121
DotD XML Converter properties 154
DataDirect XML Converters User’s Guide and Reference for .NET

166 Index
E
EANCOM files

XML Converter properties for 122
EDI

analysis report 49
Analyze method 47
Analyze() method example 106
analyzing data streams for errors 47
analyzing EDI streams for errors 25
EDI Analyzer API example 106
transmission response messages 51

EDI XML Converters
exception handling for 27
proprietary EDI formats and 23
SEF support 23

EDIFACT files
XML Converter properties for 122

error handling
example 98
overview 25

errors
analyzing EDI data streams 47
analyzing EDI for errors 25
EDI analysis report 49
managing errors 25

examples 85
Analyze() method 106
converting CSV to XML 90
converting EDI in memory 104
converting X12 to XML 96
converting XML to CSV 91
converting XML to X12 96
converting XSLT output to CSV 95
creating an XML Schema from a CSV file

101
creating an XML Schema from EDI 102
demo.cs 85
EDI Analyzer API 106
error handling 98
streaming EDI 105
streaming XML 93
using a document URI resolver 103

using custom XML conversions 92
using SEF to convert EDI 97

exception handling 27

F
files

customizing file conversions 19
formats supported by XML Converters 17
generating XML Schema from 35

G
generating XML Schema

example 29, 37
file type summary 35
instance documents 31
overview 28
URI parameters 31

H

HL7 files
XML Converter properties for 122

I
IATA files

XML Converter properties for 122
instance documents

XML Schema generation and 31
DataDirect XML Converters User’s Guide and Reference for .NET

Index 167
J
JavaProps XML Converter properties 152
JSON XML Converter properties 153

L
Line XML Converter properties 161

M

Microsoft BizTalk
deploying XML Converters on 71

N
NCPDP files

XML Converter properties for 122

O
OpenEdge DotD XML Converter properties

154

P

PADIS files
XML Converter properties for 122

processing instructions
for EDI XML Converters 150

pulling conversion results 109
pushing conversion results 109

Pyx XML Converter properties 155

R
RTF XML Converter properties 156

S
SDI XML Converter properties 157
SEF

support in EDI XML Converters 23
separator characters

for EDI XML Converters 145
special characters

for EDI XML Converters 145
Standard Exchange Format. See SEF
streaming EDI

example 105
Stylus Studio

building a converter URI using 41
SupportLink 14
SYLK XML Converter properties 158

T

TAB XML Converter properties 159
Technical Support, contacting 14
TRADACOMS files

XML Converter properties for 122
DataDirect XML Converters User’s Guide and Reference for .NET

Index 168
U
URI parameters

XML Schema generation and 31
URI schemes

descriptions of 21
URL schemes

the converter URL scheme 20

W
WinIni XML Converter properties 162
WinWrite XML Converter properties 163

X

X12 files
XML Converter properties for 122

XML Converters
Base-64 XML Converter properties 115
binary XML Converter properties 116
building a converter URI using Stylus

Studio 41
Cargo-IMP file converter properties 122
command line usage 21
control characters for EDI XML Converters

147
CSV XML Converter properties 117
customizing 19
dBase XML Converter properties 119
deploying on Microsoft BizTalk 71
descriptions of 17
DIF XML Converter properties 121
DotD XML Converter properties 154
EANCOM file converter properties 122
EDIFACT file converter properties 122
error handling 25
examples 85
exception handling 27

file formats supported by 17
generating XML Schema with 28, 29
HL7 file converter properties 122
IATA file converter properties 122
JavaProps XML Converter properties 152
JSON XML Converter properties 153
line separator values used in 114
Line XML Converter properties 161
NCPDP file converter properties 122
OpenEdge DotD XML Converter

properties 154
overview 17
PADIS file converter properties 122
processing instructions for EDI XML

Converters 150
Pyx XML Converter properties 155
RTF XML Converter properties 156
SDI XML Converter properties 157
SEF support 23
separator characters for EDI XML

Converters 145
special characters for EDI XML Converters

145
SYLK XML Converter properties 158
TAB XML Converter properties 159
TRADACOMS file converter properties 122
WinIni XML Converter properties 162
WinWrite XML Converter properties 163
X12 file converter properties 122

XML Schema
generating

example 29
instance documents 31
overview 28
URI parameters 31

generation
file type summary 35

XML Schema generation
example 37
instance documents and 31
URI parameters and 31
DataDirect XML Converters User’s Guide and Reference for .NET

	Preface
	What are DataDirect XML Converters™?
	Using This Book
	Typographical Conventions
	Contacting Technical Support

	1 DataDirect XML Converters™ Overview
	Types of XML Converters
	XML Converters Can Be Customized

	Data Access
	URI Schemes
	Command Line Usage
	Usage Notes
	Example

	Handling Proprietary EDI Formats
	Creating a SEF File
	The SEF Specification
	Example: Using a SEF File

	Managing Errors
	EDI Analyzer
	ConverterListener Interface
	EDIConverterListener Interface
	EDIConverterException Interface

	XML Schema Generation
	Command Line Usage
	Example Scenario
	Instance Documents
	URI Parameters That Affect XML Schema
	XML Schema Generation Summary

	Example Applications
	Converting EDI to XML
	Creating XML Schemas from EDI

	2 XML Converters™ URI Schemes
	The converter: URI Scheme
	Converter URI Syntax
	Example

	Specifying XML Converter Properties
	Building a converter: URI
	Where Converter URIs are Displayed in Stylus Studio

	Invoking a Custom XML Conversion
	Invoking a Converter URI in XSLT

	3 Analyzing EDI to XML Conversions
	Overview
	Illustration
	Dialect Support
	Method Definition
	Command Line Interface

	EDI Analysis Report
	Document Root
	Interchanges Element
	Response Element

	Managing Transmission Responses
	Receipt Element Example
	Acknowledgement Element Example
	Converting Response Messages to EDI
	Sending Responses to the EDI Sender

	4 Deploying XML Converters™ on Microsoft® BizTalk® Server
	About Microsoft BizTalk Server
	The BizTalk Architecture

	Receiving and Sending Messages
	XmlConverters Disassembler
	XmlConverters Assembler

	Building a BizTalk Receive Pipeline
	Registering DataDirect XML Converters Components
	Adding the Disassembler to the Receive Pipeline

	Building a BizTalk Send Pipeline
	Example: Converting EDI X12 Into a Flat File
	Create XML Schema

	5 XML Converters™ Examples
	Overview of the demo.cs Example
	Examples Summary
	Demonstration Files

	Running demo.cs
	How to Run the Demonstration
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14

	Processing Conversion Results
	Loading SEF Files Programmatically
	Using SEF Files Created with Stylus Studio
	Using a SEF File for Multiple Conversions

	6 XML Converters™ Properties
	Line Separator Values
	Base-64 XML Converter Properties
	XML Converter Name in URL

	Binary XML Converter Properties
	XML Converter Name in URL

	Comma-Separated Values (CSV) XML Converter Properties
	XML Converter Name in URL

	dBase XML Converter Properties
	XML Converter Names in URL
	Datatypes Supported by Version

	DIF XML Converter Properties
	XML Converter Name in URL

	EDI XML Converter Properties
	XML Converter Name in URL
	Properties for EDI XML Converters
	Using Special Characters for Separators
	EDI Processing Instructions

	Java .properties File XML Converter Properties
	XML Converter Name in URL

	JSON XML Converter Properties
	XML Converter Name in URL

	OpenEdge .d Data Dump XML Converter Properties
	XML Converter Name in URL

	Pyx Format XML Converter Properties
	XML Converter Name in URL

	Rich Text Format XML Converter Properties
	XML Converter Name in URL

	SDI XML Converter Properties
	XML Converter Name in URL

	SYLK XML Converter Properties
	XML Converter Name in URL

	Tab-Separated Values XML Converter Properties
	XML Converter Name in URL

	Whole-line Text XML Converter Properties
	XML Converter Name in URL

	Windows .ini File XML Converter Properties
	XML Converter Name in URL

	Windows Write XML Converter Properties
	XML Converter Name in URL

	Index

