
DataDirect XML Converters® for Java™
User’s Guide and Reference

Release: 6.2

© 2013 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

These materials and all Progress® software products are copyrighted and all rights are reserved
by Progress Software Corporation. The information in these materials is subject to change without
notice, and Progress Software Corporation assumes no responsibility for any errors that may
appear therein. The references in these materials to specific platforms supported are subject to
change.

Apama, Business Empowerment, Business Making Progress, Corticon, Corticon (and design),
DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect Technologies,
DataDirect XML Converters, DataDirect XQuery, Dynamic Routing Architecture, Empowerment
Center, Fathom, Making Software Work Together, OpenEdge, Powered by Progress, PowerTier,
Progress, Progress Control Tower, Progress Dynamics, Progress Business Empowerment,
Progress Empowerment Center, Progress Empowerment Program, Progress OpenEdge,
Progress Profiles, Progress Results, Progress RPM, Progress Software Business Making
Progress, Progress Software Developers Network, ProVision, PS Select, RulesCloud,
RulesWorld, SequeLink, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia
(and design), and Your Software, Our Technology-Experience the Connection are registered
trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S.
and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama
Event Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen,
BusinessEdge, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Future
Proof, High Performance Integration, OpenAccess, ProDataSet, Progress Arcade, Progress
CloudEdge, Progress Cloudware, Progress ESP Event Manager, Progress ESP Event Modeler,
Progress Event Engine, Progress RFID, Progress Responsive Cloud, Progress Responsive
Process Management, Progress Software, PSE Pro, SectorAlliance, SeeThinkAct, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow,
WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered
trademark of Oracle and/or its affiliates. Any other marks contained herein may be trademarks of
their respective owners.

Third Party Acknowledgements: There are no products in the Progress DataDirect XML
Converters v6.2 release that include third party components covered by licenses that require
documentation notices be provided.

Table of Contents 3
Table of Contents

Preface . 9

What are DataDirect XML Converters®? 9

Using This Book . 10

Typographical Conventions. 11

About the Product Documentation . 12
HTML Version. 13
PDF Version . 14
Javadoc . 14

Contacting Technical Support . 15

1 DataDirect XML Converters® Overview. 17

Types of DataDirect XML Converters®. 17

Customizing DataDirect XML Converters® 20

Data Access . 21

URI Schemes . 22

Command-Line Usage . 23
Usage Notes . 23
Example . 24

Handling Proprietary EDI Formats . 25
Creating an SEF File . 25
The SEF Specification . 26
Example: Using an SEF File . 26

Managing Errors . 27
EDI Analyzer. 27
ConverterListener Interface . 28
DataDirect XML Converters® for Java™ User’s Guide and Reference

4 Table of Contents
EDIConverterListener Interface . 28
EDIConverterException Interface 29

XML Schema Generation . 30
Command-Line Usage . 31
Example Scenario . 31
Instance Documents . 33
Converter URI Properties . 33
XML Schema Generation Summary. 40

HTML/XHTML Documentation Generation. 41
Command Line Usage . 41
Converter URI Properties . 41
Example Scenario . 44

Sample Output Generation . 47
Command Line Usage . 47
Converter URI Properties . 47
Example Scenario . 49

Example Applications. 50
Converting EDI to XML . 50
Creating XML Schemas from EDI . 51

2 DataDirect XML Converters® URI Schemes 53

The converter: URI Scheme . 53

Converter URI Syntax . 54
Syntax Validation . 54
Example. 55

Specifying XML Converter Properties 56

Building a converter: URI . 56

Converter URIs in Stylus Studio® . 57

Invoking a Custom XML Conversion . 58

Invoking a Converter URI in Progress® DataDirect XQuery® . 59
DataDirect XML Converters® for Java™ User’s Guide and Reference

Table of Contents 5
More About Progress® DataDirect XQuery® 59

3 Analyzing EDI-to-XML Conversions 61

Overview . 61
Illustration . 62
Dialect Support . 65
Method Definition. 66
Command-Line Interface. 67

EDI Analysis Report . 68
Document Root . 69
Interchanges Element . 69
Response Element . 74

Managing Transmission Responses. 76
Receipt Element Example . 77
Acknowledgement Element Example 79
Converting Response Messages to EDI 82
Sending Responses to the EDI Sender 84

4 XML Converters® Examples 87

Overview of the demo.java Example . 87
Examples Summary . 88
Demonstration Files. 89

Running demo.java . 90
Before You Begin. 90
Running the Demonstration . 90
Example 1 . 91
Example 2 . 92
Example 3 . 93
Example 4 . 94
Example 5 . 96
Example 6 . 97
Example 7 . 98
Example 8 . 99
DataDirect XML Converters® for Java™ User’s Guide and Reference

6 Table of Contents
Example 9 . 102
Example 10 . 103
Example 11 . 104
Example 12 . 106
Example 13 . 107
Example 14 . 108

Processing Conversion Results . 110

Loading SEF Files Programmatically . 111
Using SEF Files Created with Stylus Studio 111
Using a SEF File for Multiple Conversions 112

5 DataDirect XML Converters® Properties 113

Line Separator Values. 115

Encoding Values . 116

Base-64 XML Converter Properties . 117

Binary XML Converter Properties . 118

Comma-Separated Values (CSV) XML Converter Properties . 120

dBase XML Converter Properties. 123

DIF XML Converter Properties . 125

EDI XML Converter Properties . 126
Using Special Characters for Separators 164
EDI Processing Instructions . 170
Stopping a Conversion If the Input Does Not Match What is
Expected . 172
Autofilling Segments and Elements 176

HTML Converter Properties . 180

Java .properties File XML Converter Properties 182

JSON XML Converter Properties . 183

OpenEdge .d Data Dump XML Converter Properties. 184

Pyx Format XML Converter Properties 185
DataDirect XML Converters® for Java™ User’s Guide and Reference

Table of Contents 7
Rich Text Format XML Converter Properties 186

SDI XML Converter Properties . 187

SYLK XML Converter Properties . 188

Tab-Separated Values XML Converter Properties 189

Whole-Line Text XML Converter Properties. 192

Windows .ini File XML Converter Properties 193

Windows Write XML Converter Properties 194

Index . 195
DataDirect XML Converters® for Java™ User’s Guide and Reference

8 Table of Contents
DataDirect XML Converters® for Java™ User’s Guide and Reference

9

Preface

This book is your guide and reference to the Progress®
DataDirect XML Converters® for Java™ and describes how to use
them to build Java applications that provide bi-directional access
to non-XML data.

This book provides information about the following topics:

■ The converter: URI scheme

■ Using DataDirect XML Converters to convert non-XML
sources (such as EDI and legacy file formats) to XML

■ Using DataDirect XML Converters to convert XML to
non-XML format (such as CSV and tab-delimited files)

■ Examples and tutorials that show how you can use
DataDirect XML Converters in your environment

■ DataDirect XML Converters properties reference

What are DataDirect XML Converters®?
DataDirect XML Converters® for Java™ are high-performance
Java components that provide bi-directional, programmatic
access to virtually any non-XML file including EDI, flat files, and
other legacy formats. DataDirect XML Converters allow
developers to seamlessly stream non-XML data as XML to
industry-leading XML processing components or to an
application. They support StAX, SAX, XMLReader, XMLWriter,
DOM, and Input/Output streaming interfaces. They can be
embedded directly for translation purposes or as part of a chain
of programs including XSLT and XQuery, or even inside XML
DataDirect XML Converters® for Java™ User’s Guide and Reference

10 Preface
pipelines. DataDirect XML Converters maximize developer
productivity and provide a fast, scalable solution for converting
between EDI and other legacy formats and XML.

Using This Book
This book describes DataDirect XML Converters and provides
information on how to use them to develop Java applications. It
is assumed that you are familiar with XML, Java, and related
technologies.

This book contains the following chapters:

■ Chapter 1, “DataDirect XML Converters® Overview” provides
an overview of the DataDirect XML Converters API and URI
schemes used for data integration.

■ Chapter 2, “DataDirect XML Converters® URI Schemes”
describes the converter: URI scheme and how to use Stylus
Studio® XML Enterprise Suite to build converter: URIs.

■ Chapter 3, “Analyzing EDI-to-XML Conversions” describes
how to use the DataDirect XML Converters API to analyze EDI
streams for errors, generate an analysis report in XML format,
and manage transmission response messages as part of the
conversion process.

■ Chapter 4, “XML Converters® Examples” describes demo.java,
a simple Java program installed with DataDirect XML
Converters, including how to run it, and detailed information
about the actions performed by the example applications it
contains. Other uses of the Java API are also illustrated.

■ Chapter 5, “DataDirect XML Converters® Properties”
describes values for the properties for DataDirect XML
Converters.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Typographical Conventions 11
For the latest information about DataDirect XML Converters, see
the README file in your software package or refer to the Web
site:

https://www.progress.com/xml-converters/xml

NOTE: This book refers the reader to Web URLs for more
information about specific topics, including Web URLs not
maintained by Progress DataDirect. Because it is the nature of
Web content to change frequently, Progress DataDirect can
guarantee that the URLs referenced in this book were correct at
the time of publishing.

Typographical Conventions
This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms that you may not be familiar
with, and is used occasionally for emphasis.

bold Emphasizes important information. Also indicates
button, menu, and icon names on which you can
act. For example, click Next.

UPPERCASE Indicates keys or key combinations that you can
use. For example, press the ENTER key.

monospace Indicates syntax examples, values that you specify,
or results that you receive.

monospaced
italics

Indicates names that are placeholders for values
you specify; for example, filename.

forward slash / Separates menus and their associated commands.
For example, Select File / Copy means to select
Copy from the File menu.

vertical rule | Indicates an OR separator to delineate items.
DataDirect XML Converters® for Java™ User’s Guide and Reference

https://www.progress.com/xml-converters/xml

12 Preface
About the Product Documentation
The DataDirect XML Converters library consists of the following
books:

■ DataDirect XML Converters for Java Installation Guide
describes the requirements and procedures for installing
DataDirect XML Converters.

■ DataDirect XML Converters for Java User’s Guide and
Reference provides information about using DataDirect XML
Converters to write applications that provide bi-directional,
programmatic access to non-XML files including EDI, flat files,
and other legacy formats.

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT], DISTINCT
is an optional keyword.

braces { } Indicates that you must select one item. For
example, {yes | no} means you must specify either
yes or no.

ellipsis . . . Indicates that the immediately preceding item can
be repeated any number of times in succession. An
ellipsis following a closing bracket indicates that
all information in that unit can be repeated.

Convention Explanation
DataDirect XML Converters® for Java™ User’s Guide and Reference

About the Product Documentation 13
HTML Version

An HTML version of the DataDirect XML Converters
documentation is placed on your system during a normal
installation of the product. This documentation is located in the
installdir\help directory. To use the help, you must have one of
the following browsers installed:

■ Internet Explorer 7.x or higher
■ Mozilla Firefox 8.x or higher
■ Safari 4.x or higher
■ Opera 8.x or higher

The HTML documentation is available on the Web site:

https://www.progress.com/documentation/datadirect-connectors

You can access the help system by navigating to the help
subdirectory of the product installation directory and opening
the following file from within your browser:

install_dir/help/help.htm

After the browser opens, the left pane displays the Table of
Contents, Index, and Search tabs for the entire documentation
library. When you have opened the main screen of the help
system in your browser, you can bookmark it in the browser for
quick access later.

NOTE: Security features set in your browser can prevent the Help
system from launching. A security warning message is displayed.
Often, the warning message provides instructions for unblocking
the Help system for the current session. To allow the Help system
to launch without encountering a security warning message, the
security settings in your browser can be modified. Check with
your system administrator before disabling any security features.
DataDirect XML Converters® for Java™ User’s Guide and Reference

https://www.progress.com/documentation/datadirect-connectors

14 Preface
PDF Version

The product documentation is also provided in PDF format. You
can view or print the documentation, and perform text searches
in the files. The PDF documentation is available on the Web site:

https://www.progress.com/documentation/datadirect-connectors

Javadoc

DataDirect XML Converters provides Javadoc for the XML
Converters packages. This system is installed when you install
DataDirect XML Converters.

Files for the DataDirect XML Converters Javadoc are written to
the \javadoc directory where you installed DataDirect XML
Converters.

The Javadoc documentation is available at the following URL:

http://media.datadirect.com/download/docs/xmlconverters/java/ja
vadoc/index.html
DataDirect XML Converters® for Java™ User’s Guide and Reference

https://www.progress.com/documentation/datadirect-connectors
http://media.datadirect.com/download/docs/xmlconverters/java/javadoc/index.html
http://media.datadirect.com/download/docs/xmlconverters/java/javadoc/index.html

Contacting Technical Support 15
Contacting Technical Support
Progress DataDirect offers a variety of options to meet your
technical support needs. Please visit our Web site for more
details and for contact information:

https://www.progress.com/support

The Progress DataDirect Web site provides the latest support
information through our global service network. The
SupportLink program provides access to support contact details,
tools, patches, and valuable information, including a list of FAQs
for each product. In addition, you can search our
Knowledgebase for technical bulletins and other information.

When you contact us for assistance, please provide the following
information:

■ Your customer number or the serial number that corresponds
to the product for which you are seeking support, or a case
number if you have been provided one for your issue. If you
do not have a SupportLink contract, the SupportLink
representative assisting you will connect you with our Sales
team.

■ Your name, phone number, email address, and organization.
For a first-time call, you may be asked for full customer
information, including location.

■ The Progress DataDirect product and the version that you are
using.

■ The type and version of the operating system where you
have installed your product.

■ Any database, database version, third-party software, or
other environment information required to understand the
problem.
DataDirect XML Converters® for Java™ User’s Guide and Reference

https://www.progress.com/support

16 Preface
■ A brief description of the problem, including, but not limited
to, any error messages you have received, what steps you
followed prior to the initial occurrence of the problem, any
trace logs capturing the issue, and so on. Depending on the
complexity of the problem, you may be asked to submit an
example or reproducible application so that the issue can be
re-created.

■ A description of what you have attempted to resolve the
issue. If you have researched your issue on Web search
engines, our Knowledgebase, or have tested additional
configurations, applications, or other vendor products, you
will want to carefully note everything you have already
attempted.

■ A simple assessment of how the severity of the issue is
impacting your organization.

January 2017, Release 6.2 of DataDirect XML Converters, Version
0001
DataDirect XML Converters® for Java™ User’s Guide and Reference

17
1 DataDirect XML Converters®

Overview

DataDirect XML Converters for Java is a library of Java classes
that provides programmatic bi-directional access to numerous
data sources such as EDI, CSV, and other legacy formats such as
XML through Java applications.

This chapter provides an overview of the DataDirect XML
Converters, including the types of file formats that are
supported, how they can be used to access data from other
sources, and examples of converting EDI to XML and XML
Schema generation from EDI.

Types of DataDirect XML Converters®

DataDirect XML Converters support numerous file formats, from
many EDI dialects to common formats such as CSV and
tab-delimited files. Most DataDirect XML Converters are
bidirectional, allowing you to convert from a native format to
XML and vice versa.
DataDirect XML Converters® for Java™ User’s Guide and Reference

18 Chapter 1 DataDirect XML Converters® Overview
Table 1-1 summarizes the types of file formats supported by the
DataDirect XML Converters and indicates which converters are
bidirectional.

Table 1-1. File Formats Supported by DataDirect XML Converters

File Type Description Bidirectional

Base-64 Converts any file, text or binary (such as an image), into
an XML document with a single element containing
the Base-64 encoded content of the input file.

Yes

Binary Similar to the Base-64 XML Converter, except with
hexadecimal output. Other options allow output in
other bases, such as decimal, octal, or binary.

Yes

CSV Converter for comma-separated values (CSV) files.
Supports multiple encodings and options to tune the
quote and escape characters. Supports multiple
delimiters including commas.

Yes

dBase Support for dBase II, III, III+, IV, and V formats. Yes

DIF Data Interchange Format (DIF) is a spreadsheet-based
file format. There are also XML Converters for Super
Data Interchange (SDI) and Symbolic Link (SYLK).

Yes

DotD Support for the Progress OpenEdge® text dump file
format.

Yes

EDI Automatically detects and parses ACORD AL3,
EANCOM, EDIFACT, Edig@s, HIPAA, HL7, IATA AHM780,
IATA Cargo-IMP, IATA PADIS, NCPDP SCRIPT, NCPDP
Telecommunication, TRADACOMS, and X12 EDI
message types, with options for custom message types
and message extensions to cover proprietary EDI-based
formats.

Yes

HTML Support for HTML to XML (XHTML) file conversion. Yes

JavaProps Support for the Java .properties file format, which is
used for program configuration, translation, and data
storage.

Yes

JSON Uses the algorithms on the JSON.org website to read
from XML and write to JSON (JavaScript Object
Notation), and vice-versa.

Yes
DataDirect XML Converters® for Java™ User’s Guide and Reference

Types of DataDirect XML Converters® 19
Line Reads in text one line at a time, wrapping an element
around each line and escaping any embedded &, >, or
< symbols.

Yes

Pyx Support for the PYX line-oriented notation for
expressing tree-oriented data.

Yes

RTF Converts rich-text format (RTF) into XML, and vice
versa.

Yes

SDI Super Data Interchange (SDI) is another popular
spreadsheet-based file format. There are also
DataDirect XML Converters for DIF and SYLK.

Yes

SYLK Symbolic Link (SYLK) is another popular
spreadsheet-based file format. There are also
DataDirect XML Converters for DIF and SDI.

Yes

TAB Tab-separated values format commonly associated with
Microsoft Excel spreadsheets.

Yes

WinIni Converter for Windows .ini configuration files. Yes

WinWrite Converter for Microsoft WinWrite files; renders
XHTML.

No

Custom Custom XML conversions (.conv files) created using
Stylus Studio.

No

Table 1-1. File Formats Supported by DataDirect XML Converters

File Type Description Bidirectional
DataDirect XML Converters® for Java™ User’s Guide and Reference

20 Chapter 1 DataDirect XML Converters® Overview
Customizing DataDirect XML Converters®

Each DataDirect XML Converter has properties that allow you to
customize the converter to suit your needs. Some converters, for
example, let you specify the line separator character, escape
character, root element name, and other aspects of the output
format. Default values are used for all properties that you do not
explicitly specify. You specify properties in the converter: URI
string that you use to invoke the converter.

See “URI Schemes” on page 22 to learn more about the
converter: URI. See Chapter 5 “DataDirect XML Converters®
Properties” on page 113 for a description of all supported
properties.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Data Access 21
Data Access
DataDirect XML Converters provide access to non-XML data
stored in EDI and flat file formats such as CSV, RTF, dBase, binary,
and others. The following figure illustrates the different ways
that you can use XML Converters to access XML and non-XML
data from Java applications and from XQuery or XSLT code.

Data access to non-XML data stored as EDI or in another file
format (CSV or tab-delimited, for example) is accomplished using
the converter: URI scheme. See “URI Schemes” on page 22 to
learn more about the URI schemes supported by DataDirect XML
Converters.
DataDirect XML Converters® for Java™ User’s Guide and Reference

22 Chapter 1 DataDirect XML Converters® Overview
URI Schemes
In Java, files and other data resources are referenced using the
file:, http:, ftp:, and a limited set of other URI schemes.

The DataDirect XML Converters Java API extends the
functionality of the basic URI to recognize and understand the
converter: URI scheme developed by Progress DataDirect. You can
use the converter: URI scheme in your Java, XQuery, and XSLT
code.

For example, the following URI scheme invokes the custom XML
conversion of the myConverter.conv file:

converter:myConverter.conv

The following URI scheme invokes the EDI XML Converter, using
the editeur.edi file as the EDI source to be converted:

converter:EDI?file:///m:/testing/editeur.edi

See Chapter 2 “DataDirect XML Converters® URI Schemes” on
page 53 for more information.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Command-Line Usage 23
Command-Line Usage
You can run DataDirect XML Converters from the command line.

To specify a native file to be converted to XML:

java -jar xmlconverters.jar /to [/analyze] [/report filename]
/converter name[:property_name=value ...] /in filename [/out filename]

To specify an XML file to be converted to a native format:

java -jar xmlconverters.jar /from /converter name[:property_name=value ...]
/in filename [/out filename]

Usage Notes

The following list provides some usage notes for running
DataDirect XML Converters from the command line:

■ The /to option specifies that you are converting a file from
its native format to XML; the /from option specifies that you
are converting an XML file to the file type specified in the
/converter option.

■ The XML Converter specified in the name argument for the
converter option accepts settings for properties specific to
that converter. For example, /converter EDI:newline=cr
indicates that the carriage return (cr) is to be used as the line
separator (newline) character.

■ property_name=value pairs cannot include blanks. For
example, newline=platform is valid and newline = platform is
not valid.

■ Use /analyze to analyze and convert an EDI stream; use
/report if you want to save the analysis report (by default,
the report is written to a temp file and deleted after the
conversion). The /analyze and /report options can only be
DataDirect XML Converters® for Java™ User’s Guide and Reference

24 Chapter 1 DataDirect XML Converters® Overview
used when converting EDI to XML (that is, when you are using
the /to option.

See Chapter 3, “Analyzing EDI-to-XML Conversions” for more
information.

■ Use /in - to read from the standard input.

■ To write to the standard output, omit the /out option.

■ You can use dashes (-) instead of forward slashes (/) to
separate options (for example, -to instead of /to).

■ To generate an XML Schema, replace the /to option with the
/schema option. See “XML Schema Generation” on page 30
for more information.

■ To generate HTML or XHTML documentation, replace the /to
option with the /html option. See “HTML/XHTML
Documentation Generation” on page 41 for more
information.

■ To generate sample output, replace the /to option with the
/sample option and specify either the /xml or /edi option to
determine the format for the output. See “Sample Output
Generation” on page 47 for more information.

Example

The following example uses the EDI XML Converter to convert
the input file (831.x12) to an XML file (my831.xml) using the
default values for the EDI XML Converter:

java -jar xmlconverters.jar /to /converter EDI /in ..\examples\831.x12
/out my831.xml

The 831.x12 sample file and others are in the
installdir\examples directory, where installdir is your product
installation directory. To learn more about the examples, see
“Example Applications” on page 50.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Handling Proprietary EDI Formats 25
Handling Proprietary EDI Formats
DataDirect XML Converters supports the Standard Exchange
Format (SEF). SEF allows you to specify an EDI structure, typically
one that differs from one of the EDI standards such as EDIFACT
or X12. You save this structure definition in an SEF file, which
you can then instruct the EDI XML Converter to use when
converting proprietary EDI to XML.

Creating an SEF File

You can create SEF files manually based on the SEF specification.
This process, however, can be difficult and error-prone. An easier
way is to use the Stylus Studio XML Enterprise EDI to XML
Module, which provides a visual editor to help you build SEF files
based on standard EDI dialects.
DataDirect XML Converters® for Java™ User’s Guide and Reference

26 Chapter 1 DataDirect XML Converters® Overview
When using the Stylus Studio EDI to XML Module, you can choose
as your starting point an EDI document (from which an EDI
dialect is inferred) or an EDI dialect. From there, you use the EDI
to XML Module editor’s tools to define the ways in which your
proprietary EDI structure differs from the EDI standard.

The SEF Specification

You can find the SEF specification on the following Web site:

https://www.progress.com/data-integration/data-sources/edi-stan
dards/sef

Example: Using an SEF File

See “Example 7” on page 98 for an example of using an SEF
extension file to define an XML Schema. See also “Loading SEF
Files Programmatically” on page 111 for information about
loading SEF files
DataDirect XML Converters® for Java™ User’s Guide and Reference

https://www.progress.com/data-integration/data-sources/edi-standards/sef

Managing Errors 27
Managing Errors
The DataDirect XML Converters API provides the following ways
to manage errors in your applications:

■ EDI Analyzer
■ ConverterListener Interface
■ EDIConverterListener Interface
■ EDIConverterException Interface

NOTE: These features are implemented only for the EDI XML
Converter.

EDI Analyzer

The EDI Analyzer API allows you to analyze an EDI stream for
errors that can cause the XML Converter to throw an exception
before converting the EDI stream to XML. A report generated by
the EDI Analyzer in XML format identifies and describes any
errors. The EDI Analyzer also automatically generates
Accept/Reject messages that can be forwarded to the EDI sender.

The EDI Analyzer API is supported for EDI-to-XML conversions
only (not vice versa).

See Chapter 3, “Analyzing EDI-to-XML Conversions” for more
information on the EDI Analyzer API.
DataDirect XML Converters® for Java™ User’s Guide and Reference

28 Chapter 1 DataDirect XML Converters® Overview
ConverterListener Interface

In an application, it is not always necessary for warnings and
errors to throw exceptions and stop the conversion process. You
may want to simply make the application aware that a problem
has occurred and allow it to recover (or not) from the warning or
the error.

The ConverterListener interface allows you to intercept warnings,
errors, and fatal errors and manage them separately. The default
action is to ignore warnings and to throw exceptions for errors
and fatal errors.

Processing can resume after both warnings and errors. For
example, if an exception is not thrown, processing continues. If
an error occurs, it is possible that other errors will cascade from
the first. Fatal errors can be reported, but on their return, a
ConverterException is always thrown by the EDI XML Converter
engine. The exception that is thrown is an instance of
ConverterException or one of its subclasses such as
ConverterArgumentException.

Example

See “Example 8” on page 99 for an example of registering a
ConverterListener.

EDIConverterListener Interface

The EDIConverterListener is a specialized version of
ConverterListener; its methods provide detailed information
about error conditions. The invalidCharacter() method, for
example, is called when a character does not match the specified
encoding in the EDI stream. Similarly, unknownCodeListValue() is
called when a codelist validation fails.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Managing Errors 29
EDIConverterException Interface

Typically, EDI-based conversions are more complex than other
types of conversions (those for CSV and tab-delimited files, for
example). By providing more contextual information about
where a problem has occurred, the EDI XML Converter allows
you to capture the error and return standard EDI messages back
to the sender of the message. For example, you can return
CONTRL (for EDIFACT), 997 (for X12), 999 (for HIPAA), or ACK
(for HL7).

The EDIConverterException is a specialized version of
ConverterException that contains extra information about the
context of errors in EDI files. When a ConverterException is
thrown while processing an EDI file, or when a ConverterListener
is registered and a warning(), error(), or fatalError() is called, the
exception that is thrown is probably EDIConverterException. This
exception contains the following methods to probe the context
of the specific error – GetContentData(), getControlData(),
getData(), and getError(). Processing can recover from both
warnings and errors; however, fatal errors always stop the
processing.

Error Diagnostics

Full context information is provided when an error is
encountered in the EDI file, including the error number
according to the local EDI dialect. For example, many EDIFACT
errors are recorded in the 0085 element codelist, and if an error
matches one of those, it is reported as such.
DataDirect XML Converters® for Java™ User’s Guide and Reference

30 Chapter 1 DataDirect XML Converters® Overview
XML Schema Generation
You can use the SchemaGenerator interface to create XML
Schemas that describe the structure of XML files that are read or
created by a ConvertToXML or ConvertFromXML object. You may
want to use the SchemaGenerator interface in the following
situations:

■ You have a fromXML converter: URI, and you want to know
the XML Schema that the input XML data must satisfy.

■ You have a toXML converter: URI, and you want to know the
XML Schema of the XML output.

■ You have a toXML converter: URI and a non-XML data file,
and you want to know the XML Schema of the XML output.

NOTE: This functionality is available only with certain XML
Converters. See “XML Schema Generation Summary” on
page 40 for more information.

The generated XML Schema depends on the type of file it is
generated from, and not on the actual data. For example, if you
are generating an XML Schema for an EDI file, the EDI XML
Converter is concerned only with the file’s dialect, version, and
message type/transaction set. You can specify this information by
providing a sample file input or by specifying the appropriate
properties in the converter: URI. See “Instance Documents” on
page 33 and “Converter URI Properties” on page 33 for more
information.
DataDirect XML Converters® for Java™ User’s Guide and Reference

XML Schema Generation 31
Command-Line Usage

To generate an XML Schema from the command line:

java -jar xmlconverters.jar /schema /converter name
[:property_name=value [:property_name=value ...]] /in filename
[/out filename]

Some converters (such as the EDI XML Converter) require that
you provide an instance document or that you specify sufficient
properties in the converter: URI. For the EDI XML Converter, for
example, you must provide the dialect, version, and message
type/transaction set.

Example Scenario

Your company routinely receives client data in EDI files. This data
must be converted to XML so that it can be transformed for
processing by an application. After application processing, the
resulting XML is again transformed to another format before
being converted back to EDI.

The following illustration shows the workflow:

In this illustration, the conversion block Convert EDI to XML
represents an instance of the EDI XML Converter, which is used
to convert the incoming EDI document, which may be an X12
DataDirect XML Converters® for Java™ User’s Guide and Reference

32 Chapter 1 DataDirect XML Converters® Overview
810 transaction set (Invoice). This XML conforms to the XML
Schema consistent with the X12 EDI transaction set from which it
was derived. Before the XML can be used by the application, it
must be transformed into the format expected by the application
– that is, it must conform to an XML Schema.

Suppose that XQuery, using the Progress® DataDirect XQuery®
implementation, for example, is used to perform this
transformation (see the preceding illustration). One way to
create an XQuery is to use a mapping tool. You can map nodes
from the XML Schema representing the EDI X12 810 transaction
set to the XML Schema representing the document format
expected by the XML processing application. You can use the EDI
XML Converter to create the XML Schema for the EDI X12 810
transaction set, as shown in the following illustration.

A similar mapping process is performed to create the second
XML-to-XML transformation (another XQuery), mapping XML
Schema nodes from the application format to the EDI X12 810
transaction set format to create an XQuery. This XQuery
transforms the XML data to a format that can be understood by
the EDI XML Converter.
DataDirect XML Converters® for Java™ User’s Guide and Reference

XML Schema Generation 33
See “Creating XML Schemas from EDI” on page 51 for an
example of using the EDI XML Converter to create an XML
Schema from an EDI document. To learn more about DataDirect
XQuery, see “More About Progress® DataDirect XQuery®” on
page 59.

Instance Documents

Some DataDirect XML Converters, such as those for CSV and Tab,
require an instance document to provide the converter with the
information it needs to generate an XML Schema. Other
converters (such as the EDI XML Converter) can use instance
documents, but they are not required. You can also provide
information using converter: URI properties to specify
characteristics of the generated XML Schema. Still others (Base64
and SDI, for example) use neither instance documents nor
converter: URI properties, relying instead on the built-in settings
of the converter for XML Schema generation.

See “XML Schema Generation Summary” on page 40 for more
information concerning instance document and converter: URI
property usage.

Converter URI Properties

This section describes how URI properties affect XML Schema
generation for the XML Converters that support it. The
DataDirect XML Converters that you can specify URI properties
for are:

■ CSV
■ EDI
■ Line
■ Tab
■ custom (built using Stylus Studio)
DataDirect XML Converters® for Java™ User’s Guide and Reference

34 Chapter 1 DataDirect XML Converters® Overview
CSV XML Converter URI Properties

The properties listed in Table 1-2 affect XML Schema generation
for both CSV and tab-delimited files.

Table 1-2. Properties for the CSV and Tab XML Converters

Property Description

first= Specifies whether elements subordinate to
the row element are named column (plus a
number to make it unique) or are given their
name based on the first row of data.

root= Specifies the name of the root element in the
converted XML; also specifies the name of the
root element in the generated XML Schema.

row= Specifies the name of the row element in the
converted XML; also specifies the name of the
row element in the generated XML Schema.
DataDirect XML Converters® for Java™ User’s Guide and Reference

XML Schema Generation 35
EDI XML Converter URI Properties

The properties listed in Table 1-3 affect XML Schema generation
for EDI files.

Table 1-3. Properties for the EDI XML Converter

Property Description

dialect= Specifies the EDI dialect.

Valid values:

AHM780, CARGO, EANCOM, EDIFACT,
EDIGAS, HIPAA, HL7, IATA, NCPDP, TELCO,
TRADACOMS, or X12

Use IATA to specify the PADIS dialect.

The dialect must be specified if an instance
document is not provided.

doc= Determines whether to include
xs:documentation comments in the XML
Schema.

■ yes – comments are included in the XML
schema.

■ no – comments are not included in the
XML schema.

The default is yes.
DataDirect XML Converters® for Java™ User’s Guide and Reference

36 Chapter 1 DataDirect XML Converters® Overview
hipaa= Determines whether the converter should
determine if an X12 file is a HIPAA file. If the
file is a HIPAA file, HIPAA rules are used;
otherwise, X12 rules are used.

Valid values:

■ yes – the converter determines whether
the X12 file is a HIPAA file.

■ no – the converter processes the file as an
X12 document, even if it is recognized as a
HIPAA document.

■ loop – same as yes, but this value also
creates a nested loop structure for the
converted XML and generated XML
Schema, which can simplify this output’s
use in XML mapping tools.

The default is no.

inter= Certain EDI messages have alternate batch
and interactive forms, depending upon
whether they are used between systems that
have real-time connections.

Valid values:

■ yes – the interactive form is used, if
available. For example, in EDIFACT, the
normal envelope of UNB/UNH/UNT/UNZ
would be replaced by UIB/UIH/UIT/UIZ.

■ no – the interactive form is not used.

The default is yes.

Table 1-3. Properties for the EDI XML Converter

Property Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

XML Schema Generation 37
long= Determines whether to use long or short
element and/or segment names in your XML
schema generation (FTX03-TextReference or
FTX03, for example).

Valid values:

■ elements – long names are used for
elements. (In previous versions, long=yes
could be used. For naming consistency,
long=yes has been deprecated.)

■ segments – long names are used for
segments.

■ all – long names are used for both
elements and segments.

■ none – abbreviated names are used for
both.

The default is none.

message= Varies based on the dialect and version.
Examples for EDIFACT include CONTRL and
ORDERS; examples for HL7 include ACK and
ADT_A01; examples for IATA PADIS include
SPORES and TKTRES; and so on.

If an instance document is not provided, this
property is required.

syntax= Sets the syntax level for the EDIFACT family of
EDI dialects (including Edig@s, IATA,
EANCOM, and NCPDP).

Valid values are 1, 2, 3 and 4.

The default varies based on the dialect and
version.

Table 1-3. Properties for the EDI XML Converter

Property Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

38 Chapter 1 DataDirect XML Converters® Overview
tbl= Determines whether the codelist tables are
created as enumerations in the generated
XSD output.

Valid values:

■ yes – codelist tables are created as
enumerations in the generated XSD
output.

■ no – codelist tables are not created as
enumerations in the generated XSD
output.

The default is no.

user= Specifies an SEF extension file. The structure
of the specified file is incorporated in the
generated XML Schema.

version= Varies based on the dialect. Examples for
EDIFACT include 921 and D07A; examples for
HL7 include 2.1 and 2.5; examples for IATA
PADIS include 99-1 and 99-2; and so on.

If an instance document is not provided, this
property is required.

Table 1-3. Properties for the EDI XML Converter

Property Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

XML Schema Generation 39
Line XML Converter URI Properties

The properties listed in Table 1-4 affect XML Schema generation
for whole-line text files:

Tab XML Converter URI Properties

See “CSV XML Converter URI Properties” on page 34.

Table 1-4. Properties for the Line XML Converter

Property Description

line= Specifies the name of the element that wraps
each line in the converted XML. Also specifies
the name of that element in the generated
XML Schema.

root= Specifies the name of the root element in the
converted XML. Also specifies the name of the
root element in the generated XML Schema.
DataDirect XML Converters® for Java™ User’s Guide and Reference

40 Chapter 1 DataDirect XML Converters® Overview
XML Schema Generation Summary

Table 1-5 summarizes information about the XML Schema
generation capabilities of the converters that support generating
an XML Schema, indicates whether an Instance document is
required, and indicates whether you can specify URI properties
that affect the XML schema generation.

Table 1-5. DataDirect XML Converters That Support Generating
an XML Schema

Converter Name
Instance Document
Required?

URI Properties that
Affect XML Schema?

Base64 No No

Binary No No

CSV Yes Yes

custom No via.conv file

dBase (all) Yes No

DIF No No

DotD No No

EDI (all) Optional1

1. Optional means that an instance document is used if provided, but one is
not required.

Yes

JavaProps No No

Line No Yes

SDI No No

Sylk No No

Tab Yes Yes

WinIni No No

WinWrite No No
DataDirect XML Converters® for Java™ User’s Guide and Reference

HTML/XHTML Documentation Generation 41
HTML/XHTML Documentation Generation
Using the EDI XML Converter, you can generate HTML/XHTML
documentation for all supported EDI dialects and transactions.

Command Line Usage

To generate HTML/XHTML documentation from the command
line, use the following syntax:

java -jar xmlconverters.jar /html /converter name [:property_name=value
[:property_name=value ...]] /in filename [/out filename]

The EDI XML Converter requires that you provide an instance
document or specify the following properties in the
converter URI: dialect, user, version, and
message type/transaction set.

Converter URI Properties

Table 1-6 describes the properties of the EDI XML Converter that
affect HTML/XHTML document generation. See “EDI XML
Converter Properties” on page 126 for a complete list of
properties supported by the EDI XML Converter.
DataDirect XML Converters® for Java™ User’s Guide and Reference

42 Chapter 1 DataDirect XML Converters® Overview
Table 1-6. Properties for the EDI XML Converter: HTML/XHTML Document
Generation

Property Description

dialect= Specifies the EDI dialect.

Valid values:

AHM780, CARGO, EANCOM, EDIFACT, EDIGAS,
HIPAA, HL7, IATA, NCPDP, TELCO, TRADACOMS,
or X12

Use IATA to specify the PADIS dialect.

If an instance document is not provided, this
property is required.

doc= Determines whether to include
xs:documentation comments in the XML Schema.

The default is yes.

hipaa= Determines whether the converter should
determine if an X12 file is a HIPAA file. If the file
is a HIPAA file, HIPAA rules are used; otherwise,
X12 rules are used.

Valid values:

■ yes – The converter determines whether the
X12 file is a HIPAA file.

■ no – The converter processes the file as an X12
document, even if it is recognized as a HIPAA
document.

■ loop – same as yes, but this value also creates
a nested loop structure for the converted XML
and generated XML Schema, which can
simplify this output’s use in XML mapping
tools.

The default is no.
DataDirect XML Converters® for Java™ User’s Guide and Reference

HTML/XHTML Documentation Generation 43
inter= Certain EDI messages have alternate batch and
interactive forms, depending on whether they
are used between systems that have real-time
connections.

Valid values:

■ yes – the interactive form is used, if available.
For example, in EDIFACT, this would cause the
normal envelope of UNB/UNH/UNT/UNZ to be
replaced by UIB/UIH/UIT/UIZ.

■ no – the alternate batch form is used.

The default is no.

long= Determines whether to use long or short element
and/or segment names in your XHTML document
generation (FTX03-TextReference or FTX03, for
example).

Valid values:

■ elements – long names are used for elements.

■ segments – long names are used for segments.

■ all – long names are used for both elements
and segments.

■ none – abbreviated names are used for both.

The default is none.

message= Varies based on the dialect and version. Examples
for EDIFACT include CONTRL and ORDERS;
examples for HL7 include ACK and ADT_A01;
examples for IATA PADIS include SPORES and
TKTRES; and so on.

If an instance document is not provided, this
property is required.

Table 1-6. Properties for the EDI XML Converter: HTML/XHTML Document
Generation

Property Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

44 Chapter 1 DataDirect XML Converters® Overview
Example Scenario

Suppose an insurance company implements a Web application
that allows its business partners to file claims through EDI
transactions. In addition to generating an error message when a
claim is submitted with missing information or information in the
incorrect format, the Web application uses the XML EDI
Converter to generate an HTML document that describes the
correct format of the information that is required.

syntax= Sets the syntax level for the EDIFACT family of
EDI dialects (including Edig@s, IATA, EANCOM,
and NCPDP).

Valid values are 1, 2, 3 and 4.

The default varies based on the dialect and
version.

tbl= Determines whether the codelist tables are
created as enumerations in the generated XSD
output.

The default is no.

user= Specifies an SEF extension file.

If an instance document is not provided, this
property is required.

version= Varies based on the dialect. Examples for
EDIFACT include 921 and D07A; examples for HL7
include 2.1 and 2.5; examples for IATA PADIS
include 99-1 and 99-2; and so on.

If an instance document is not provided, this
property is required.

Table 1-6. Properties for the EDI XML Converter: HTML/XHTML Document
Generation

Property Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

HTML/XHTML Documentation Generation 45
For example, the Web application can generate an HTML
document by executing the following command:

java -cp XMLConverters.jar com.ddtek.xmlconverter.CmdLine /html /converter
EDI:dialect=X12:message=997:version=006010:tbl=yes /out 006010-997.html

As shown in the following examples, the documentation that is
produced is divided into four sections: message, segments,
composites, and elements.

The first section describes the message looping structure and
contains hyperlinks to segments, composites, and elements.

Special types of loops, such as Interleaved or Unique loops, are
indicated. By default, loop names are shown.
DataDirect XML Converters® for Java™ User’s Guide and Reference

46 Chapter 1 DataDirect XML Converters® Overview
The second section shows the segments and contains hyperlinks
to composites and elements. If an element uses an internal code
list subset, that list is attached to the element.

The third section shows the composites and contains hyperlinks
to elements. If a dialect, such as HL7, has nested composites, they
are also listed.

The fourth section shows the elements and any associated code
lists.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Sample Output Generation 47
Sample Output Generation
Using the EDI XML Converter, you can generate sample output
for a specific transaction in either an XML or EDI format. You can
create a range of samples—from the minimum set of required
elements to a complete EDI transaction, including optional
elements. The EDI XML Converter can also generate random
values according to the field type and range, which allows you
to test transactions and simulate user data without opening up
actual data to a possible security risk.

Command Line Usage

To generate sample output from the command line, use the
following syntax:

java -jar xmlconverters.jar /sample converter:EDI [:property_name=value
[:property_name=value ...]] /in filename [/out filename]

The EDI XML Converter requires that you provide an instance
document or specify the following properties in the
converter URI: dialect, version, and message.

Converter URI Properties

Table 1-7 describes the properties of the EDI XML Converter that
affect sample output generation. See “EDI XML Converter
Properties” on page 126 for a complete list of properties
supported by the EDI XML Converter.
DataDirect XML Converters® for Java™ User’s Guide and Reference

48 Chapter 1 DataDirect XML Converters® Overview
Table 1-7. Properties for the EDI XML Converter: Sample Output Generation

Property Description

data= Controls whether sample data is generated with
XML and EDI sample output files.

Valid values:

■ none – No sample data is generated. Headers
and trailers are generated.

■ minimal – The minimum amount of data
required to validate the sample file is
generated.

■ random – Random strings are generated;
codelist values are selected randomly to fill the
data.

The default is none.

emit= Controls which optional segments are generated
in XML and EDI sample output files.

Valid values are:

■ none – Only mandatory segments and
elements are created.

■ segments – All segments are created, but only
mandatory elements within those segments
are populated with sample data.

■ elements – All segments and all elements are
created. Some elements may be populated
with sample data and some may be empty.

The default is none.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Sample Output Generation 49
Example Scenario

Suppose your company needs to transition from an earlier HIPAA
standard to the latest HIPAA standard. To fully test your system
before it goes into production, you need realistic test data.
Creating user data can be time-consuming. In addition,
duplicating the actual user data opens up that data to a possible
security risk. Instead, you can use the EDI XML Converter to
easily generate sample output and supply random values for
data in the output.

For example, suppose you execute the following command:

java -cp XMLConverters.jar com.ddtek.xmlconverter.CmdLine /sample /edi
/converter EDI:message=997:version=004010:dialect=X12:data=random

The sample output in EDI format that is produced would look
similar to the following example:

ISA+00+ +00+ +ZZ+ISENDER +ZZ+IRECEIVER8
 +100610+0336+U+00401+999999999+0+T+:'
GS+FA+ASENDER+ARECEIVER+20100210+1524+888888888+X+004010'
ST+997+777777777'
AK1+VA+1'
AK9+M+1+1+1'
SE+4+777777777'
GE+1+888888888'
IEA+1+999999999'
DataDirect XML Converters® for Java™ User’s Guide and Reference

50 Chapter 1 DataDirect XML Converters® Overview
Example Applications
This section shows two simple applications: one showing the
conversion of an EDI file to XML and another showing how to use
the API to create an XML Schema from an EDI file.

See Chapter 4 “XML Converters® Examples” on page 87 for more
application examples.

Converting EDI to XML

Here is a simple example application that reads EDI from one file
(myEdi.x12) and writes XML to another (myEdi.x12.xml).

import com.ddtek.xmlconverter.*;
import javax.xml.transform.stream.*;

public class ConverterOne {
 public static void main(String args[]) throws Throwable {

 System.out.println(args[0] + " --> " + args[1]);
 Converter toXML =
ConverterFactory.newInstance().newConvertToXML("converter:EDI");
 toXML.convert(new StreamSource(args[0]), new StreamResult(args[1]));
 }
}

This program can be invoked from a command line as shown:

java ConverterOne file:///c:/path/myEdi.x12 file:///c:/path/myEdi.x12.xml
DataDirect XML Converters® for Java™ User’s Guide and Reference

Example Applications 51
Creating XML Schemas from EDI

Here is a simple example that generates an XML Schema for
EDIFACT version D07A. The name of the message being
converted (in this case, ORDERS), is taken from the command
line, which might look like this:

java com.ddtek.example.CreateEdifactSchema ORDERS

In this example, the XML Schema is written to the console.

package com.ddtek.example;
import javax.xml.transform.stream.StreamResult;
import com.ddtek.xmlconverter.ConverterFactory;
import com.ddtek.xmlconverter.SchemaGenerator;
import com.ddtek.xmlconverter.exception.ConverterException;
public class CreateEdifactSchema {
 public static void main(String[] args) {
 String uri = "EDI:dialect=EDIFACT:version=D07A:long=elements:message="
 + args[0];
 try {
 ConverterFactory factory = new ConverterFactory();
 SchemaGenerator schema = factory.newSchemaGenerator(uri);
 StreamResult sr = new StreamResult(System.out);
 schema.getSchema(sr);
 catch (ConverterException ce) {
 ce.printStackTrace();
 }
 }

The previous example specified the dialect, version and message
directly in the EDI: URI using the dialect=, version= and
message= properties:

...
String uri = "EDI:dialect=EDIFACT:version=D07A:long=elements:message=" +
args[0];
...
DataDirect XML Converters® for Java™ User’s Guide and Reference

52 Chapter 1 DataDirect XML Converters® Overview
For some file types, such as EDI, you can supply a sample, or
instance, document from which the converter engine can read
this information. When you use an EDI instance document, the
schema generator generates an XML Schema for the
dialect/version/message in that instance document.

In the following example, the name of the EDI instance
document (data.edi) is derived from the command line, which
might look like this:

java com.ddtek.example.CreateAnySchema c:\myhome\data.edi

In this example, the XML Schema is written to the console:

package com.ddtek.example;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import com.ddtek.xmlconverter.ConverterFactory;
import com.ddtek.xmlconverter.SchemaGenerator;
import com.ddtek.xmlconverter.exception.ConverterException;
public class CreateAnySchema {
 public static void main(String[] args) {
 String uri = "EDI:long=elements";
 try {
 ConverterFactory factory = new ConverterFactory();
 SchemaGenerator schema = factory.newSchemaGenerator(uri);
 StreamSource ss = new StreamSource(args[0]);
 StreamResult sr = new StreamResult(System.out);
 schema.getSchema(ss, sr);
 } catch (ConverterException ce) {
 ce.printStackTrace();
 }
 }
}

DataDirect XML Converters® for Java™ User’s Guide and Reference

53
2 DataDirect XML Converters® URI
Schemes

You can use the converter: URI scheme to reach a variety of data
sources using DataDirect XML Converters. The converter: URI
scheme also can be used with user-defined custom XML
conversions created using Stylus Studio XML Enterprise Suite.

The converter: URI Scheme
The converter: URI scheme specifies one of the following
converter names:

■ One of the standard DataDirect XML Converters (for EDI or
tab-delimited files, for example) and settings for the
converter’s properties

■ A custom XML conversion created using Stylus Studio XML
Enterprise Suite

SEF files, which describe proprietary extensions to EDI standard
dialects and messages, can be passed as a property of the
converter: URI.
DataDirect XML Converters® for Java™ User’s Guide and Reference

54 Chapter 2 DataDirect XML Converters® URI Schemes
Converter URI Syntax
Although properties differ from one XML Converter to the next,
the syntax used to invoke an XML Converter is the same:

converter:name[:property_name=value]... [?URI]

When you specify a converter: URI, you identify:

■ The converter you want to use (EDI, CSV, dBase, and so on)

■ Options for the specified converter (separator and escape
characters, for example)

■ The file to be converted

■ The direction of the conversion (for example, from XML or to
XML)

Syntax Validation

The converter: URI syntax is validated at runtime. Exceptions are
thrown in the following situations:

■ If an unknown property is specified (for example,
converter:EDI:myproperty=yes)

■ If the converter: URI includes a dialect and a property that is
not valid for that dialect.

■ When a property that has values that represent a choice (for
example, yes|no|always) is used with an invalid value (for
example, auto=xyz). Note that valid values for booleans start
with y, n, t, f, 0, or 1.

If the converter: URI detects a valid property that does not apply
to the operation being performed, that property is ignored.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Converter URI Syntax 55
Example

The following converter: URI invokes the converter for
comma-separated values to convert the three.txt file located in
the \XMLConverters\examples\ directory to XML:

converter:CSV:newline=lf:first=yes?file:///c:/XMLConverters/examples/three.txt

The following instructions are sent to the converter engine from
this instance of the converter URI:

■ Use the Comma-Separated Values XML Converter
(converter:CSV).

■ The line separator in the source file is a line feed (newline=
lf).

■ The values in the first row of the source file are used to
supply field names (first=yes).

■ The source file is three.txt
(?file:///c:/XMLConverters/examples/three.txt).

In this example:

■ The name of the XML Converter is CSV. It could be any
converter – EDI, Base64, DIF, RTF, and so on.

■ Only the newline= and first= properties are specified. Default
values are used for all other converter properties.

■ The source file being converted is three.txt, which is located
in the /XMLConverters/examples directory. If you are using
the converter: URI programmatically, omit the ?URI property
because the source file is specified by the application.
DataDirect XML Converters® for Java™ User’s Guide and Reference

56 Chapter 2 DataDirect XML Converters® URI Schemes
Specifying XML Converter Properties
XML Converter properties that use default values do not have to
be specified in the converter URI. A comma is the default
separator character for the CSV XML Converter, for example. If
the particular file you are converting used another separator
character, you would need to specify it using the sep= property.

Although the basic format of the converter URI is the same from
one XML Converter to another, individual converters have
different properties. For example, the XML Converter for dBase
files has properties that the XML Converter for binary files does
not.

See Chapter 5, “DataDirect XML Converters® Properties” for a
complete description of properties for all DataDirect XML
Converters.

Building a converter: URI
If you have Stylus Studio XML Enterprise Suite, you can use Stylus
Studio to build the converter URIs for use in your Java
applications. Converter URIs can be long and complex because
properties and their values vary from one converter to another,
so using Stylus Studio to construct them can reduce errors in your
applicationsStylus Studio. Its GUI interface can make it easier to
specify the converter properties you need to include.

Otherwise, you must construct the converter URL manually,
taking care to specify both setting names and their values
correctly. See Chapter 5, “DataDirect XML Converters®
Properties”for a complete description of properties for all
DataDirect XML Converters.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Converter URIs in Stylus Studio® 57
Converter URIs in Stylus Studio®

Converter URIs are displayed in the following places in Stylus
Studio XML Enterprise Suite:

■ In the URI field of the EDI to XML Module editor. You can
also make changes to the converter URI here.

■ In the Project window (select Show Full URL Info from the
Project window shortcut menu)
DataDirect XML Converters® for Java™ User’s Guide and Reference

58 Chapter 2 DataDirect XML Converters® URI Schemes
■ In the URI field of the Select XML Converter dialog box, as
shown in the following illustration.

You can use any of these sources to capture the converter: URI
string for use in your Java applications. For more information,
refer to your Stylus Studio product documentation.

Invoking a Custom XML Conversion
The converter: URI scheme can be used to reference a custom
XML conversion (a .conv file) built using Stylus Studio XML
Enterprise Suite. The converter URI specifies only the location of
the .conv file; the custom XML conversion contains all the
information required to perform the XML conversion.

The following converter URI references a custom XML conversion
named myConverter.conv:

converter:///myConverter.conv?file:inventory.txt

It uses myConverter.conv to convert the file inventory.txt to a
format that is specified in the custom XML conversion when it
was built using Stylus Studio XML Enterprise Suite.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Invoking a Converter URI in Progress® DataDirect XQuery® 59
NOTE: Custom XML conversions are defined using Stylus Studio
XML Enterprise Suite.

Invoking a Converter URI in Progress®
DataDirect XQuery®

DataDirect XQuery®, an XQuery implementation, uses a
document URI resolver that enables the XQuery doc() function to
take a converter: URI as its argument.

Consider the following example, which uses the doc() function
to invoke the CSV XML Converter to convert the file request.csv
to XML:

doc("converter:CSV:first=yes?request.csv")

In this example, only one of the CSV XML Converter properties is
set (first=yes); default settings are used for all other properties.

More About Progress® DataDirect XQuery®

DataDirect XQuery is a high-performance, scalable, embeddable
XQuery implementation that plugs easily into any Java
architecture and accesses almost any data source without being
dependent on underlying servers or proprietary extensions to
XQuery.

For more information about DataDirect XQuery, visit the
following Web site:

https://www.progress.com/xquery/xml
DataDirect XML Converters® for Java™ User’s Guide and Reference

https://www.progress.com/xquery/xml

60 Chapter 2 DataDirect XML Converters® URI Schemes
DataDirect XML Converters® for Java™ User’s Guide and Reference

61
3 Analyzing EDI-to-XML
Conversions

This chapter describes the EDI Analyzer API and how to use it to
convert EDI to XML. It covers the following topics:

■ “Overview” on page 61
■ “EDI Analysis Report” on page 68
■ “Managing Transmission Responses” on page 76

Overview
The analyze method of the EDI Analyzer API analyzes an EDI
stream for warnings, errors, and fatal errors before converting
the EDI stream to XML. An XML report generated by the analyze
method identifies any errors in the EDI; this report is used by the
convert method to filter out interchanges, groups, and messages
that contain errors during conversion, allowing partial
processing of EDI streams that contain errors. The analysis report
also includes dialect-specific transmission response messages that
can be returned to the EDI sender.

This section covers the following topics:

■ “Illustration” on page 62
■ “Dialect Support” on page 65
■ “Method Definition” on page 66
■ “Command-Line Interface” on page 67
DataDirect XML Converters® for Java™ User’s Guide and Reference

62 Chapter 3 Analyzing EDI-to-XML Conversions
Illustration

The following illustration shows how to use the EDI Analyzer API
to analyze and convert methods to convert EDI to XML. It shows
EDI provided by an EDI sender (an EDI document, EDI data stored
on a file system, or EDI provided by a business partner’s Web
service, for example) being passed to an EDI receiver (a separate
business entity, a business partner, or an application).
Transmission response messages contained in the analysis report
can optionally be returned to the EDI sender.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Overview 63
EDI Analysis

First, the EDI data stream is analyzed by the analyze method for
any errors. Errors are classified as warnings, errors, and fatal
errors. Errors, along with other information about the EDI
stream and its transmission, are captured in an analysis report.
The analysis report is always generated by the analyze method,
regardless of whether the EDI stream is free of errors. The
analyze method does not throw an exception unless the input
stream or output stream could not be opened.

Some input data errors can make the input data file
unrecognizable to the convert method. In this case, the analysis
report contains a <FatalError> element that describes the fatal
error.

Analysis Report

The analysis report is an XML report generated by the analyze
method. It identifies any interchanges, groups, or messages that
contain errors and describes those errors. For some EDI dialects,
the analysis report also includes a Response element, with
Receipt and Acknowledgement sub-elements that you can use to
send transmission responses to the EDI sender.

You can write the analysis report to any output you choose – you
might want to review the report before converting the EDI to
XML. The analysis report must be available to the convert
method for the EDI to be converted to XML.

See “EDI Analysis Report” on page 68 for detailed information
about the report’s contents and structure.
DataDirect XML Converters® for Java™ User’s Guide and Reference

64 Chapter 3 Analyzing EDI-to-XML Conversions
EDI Conversion

The same EDI stream specified for the analyze method must be
specified for the convert method. Once the analysis is complete,
you pass the analysis report to the convert method. The convert
method uses the errors identified in the analysis report to filter
the EDI, preventing messages containing errors from being
converted to XML while allowing the rest of the messages to be
converted. When using convert without the analysis report, if an
error or fatal error occurs, the convert method throws an
exception and no useful XML output is generated. When convert
is used with the analysis report, it throws an exception in the
following situations:

■ If the input stream, output stream, or analysis report cannot
be opened

■ If the analysis report contains a <FatalError> element
indicating that the input data file is unrecognizable

Specifying EDI Stream and EDI Conversion
Settings

The EDI input stream specified for the analyze method must be
the same as that specified in the convert method for a given XML
conversion. When using a UriSource, you can use the same
UriSource object for both the analyze and convert methods. If
you use an InputStream source, you must rewind the input
stream after calling analyze, so that convert can reread the same
data.

Any conversion properties specified for the EDI stream in the
analyze method must also be specified for the EDI stream in the
convert method. These conversion properties are specified when
the Converter object was created using the
ConverterFactory.CreateConvertToXml(…) method. If you use the
same Converter object for both the analyze and convert
DataDirect XML Converters® for Java™ User’s Guide and Reference

Overview 65
methods, you ensure that the same conversion properties are
used for both.

To learn more about conversion properties, see “EDI XML
Converter Properties” on page 126.

Transmission Response Messages

Some EDI specifications provide message definitions for
notifying an EDI sender about the success of a transmission and
about messages that were successfully processed or rejected
because of errors. The analyze method automatically generates
transmission response messages, creating a Response element
with Receipt and Acknowledgement subelements in the EDI
analysis report. Each subelement holds a complete EDI message
in XML format that can be easily manipulated using XQuery and
then serialized to EDI to transmit the response to the EDI sender.

Communicating with the EDI sender is optional, and business
entities have different requirements for transmitting receipt
messages, acknowledgement messages, or both. See “Managing
Transmission Responses” on page 76 for more information.

Dialect Support

The analyze method is supported for all EDI dialects supported
by the EDI XML Converter. The analyze method is supported for
EDI to XML conversions only, and not vice versa.

Automatic generation of transmission response messages is
supported for the following EDI dialects:

■ EDIFACT
■ HIPAA
■ X12
DataDirect XML Converters® for Java™ User’s Guide and Reference

66 Chapter 3 Analyzing EDI-to-XML Conversions
NOTES:

■ EDIFACT-style messages that define a CONTRL message using
EANCOM, Edig@s, and IATA (PADIS) are also supported.

■ For X12 and HIPAA messages Versions 005010 and higher, you
can choose whether to generate the 999 type of transaction
message instead of the default 997 transaction message using
the xr= URI property.

See “Managing Transmission Responses” on page 76 for more
information.

Method Definition

The analyze method is defined as follows:

void ConvertToXML.analyze(Source source, Result result)

The Source and Result implementations are the same as those
supported by the Convert(Source, Result) method. In the case of
the analyze method, the Result object receives the EDI analysis
report. Once the analysis report has been created, use the
following method to convert the input data file:

void Convert(Source source, Result result, Source analyzeReportSource)

See “EDI Analysis Report” on page 68 for detailed information
about the report’s contents and structure. See “Example 14” on
page 108 for an implementation of the analyze method in a
simple Java application.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Overview 67
Command-Line Interface

The EDI Analyzer is supported through the command-line
interface using the /analyze and /report options as part of the
following command:

java -jar xmlconverters.jar

Table 3-1 provides a description of these options.

See “Command-Line Usage” on page 23 for general information
about using the command-line interface.

Table 3-1. EDI Analyzer Command-Line Options

Option Description

/analyze Analyzes the EDI data stream, identifying
invalid items (a segment with an error, for
example). Invalid items are skipped, and
the rest of the data stream is converted to
XML. Writes the analysis report to a temp
file, which is used during the conversion,
and then deleted.

/report <Uri> Saves the analysis report to the specified
URI. Allows later use of the transmission
response messages that are automatically
generated for some EDI dialects.

NOTE: The /report option cannot be used
alone. It must always be used with the
/analyze option.
DataDirect XML Converters® for Java™ User’s Guide and Reference

68 Chapter 3 Analyzing EDI-to-XML Conversions
Sending a Transmission Response

The /analyze option performs the EDI analysis and conversion as a
single operation. If you want to be able to send a transmission
response to the EDI sender, you must use the /report option and
specify a file name to make the analysis report’s Receipt and
Acknowledgement elements accessible for conversion back to
EDI.

See “Managing Transmission Responses” on page 76 for more
information.

EDI Analysis Report
The EDI analysis report is an XML document that is generated
automatically by the analyze method. It contains complete
information about the transmission, including information about

■ The dialect of the EDI data source
■ The interchanges, groups, and messages in the transmission
■ Errors
■ Dialect-specific accept/reject messages

The remainder of this section describes the structure of the
analysis report and provides details about the format and
content of each section in the report:

■ “Document Root” on page 69
■ “Interchanges Element” on page 69
■ “Response Element” on page 74
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI Analysis Report 69
Document Root

The document root of the EDI analysis report is named
AnalyzeReport. It has a single attribute that indicates the EDI
dialect of the input document. For example:

<AnalyzeReport dialect="X12">

The AnalyzeRoot element contains two subelements: the
Interchanges element and the Response element.

Interchanges Element

An interchange is an envelope for a set of EDI messages. The
AnalyzeReport element contains a sequence of Interchange
elements in which errors have been found. Interchange elements
are grouped by a single Interchanges element. For example:

 <Interchanges>
 <Interchange
 errors="false"
 firstSegment="1"
 implicit="false"
 lastSegment="11"
 sequence="1"
 warnings="true">

Each Interchange element defines the following attributes:

■ errors – whether errors were found in the interchange

■ firstSegment, lastSegment – the segment range for this
interchange

■ implicit – indicates if the interchange was missing, and,
therefore, inferred

■ sequence – the ordinal position in the input document

■ warnings – whether warnings were found in the interchange
DataDirect XML Converters® for Java™ User’s Guide and Reference

70 Chapter 3 Analyzing EDI-to-XML Conversions
Both errors and warnings are recorded using the Error element; a
severity attribute indicates the type of error: W for warning and E
for error. See “Errors” on page 71 for more information about
the Error element.

Segments

Each Interchange element contains a Segments element, which
includes header and trailer Segment elements, as well as a
Segment element for any segment containing errors.

<Segments>
 <Segment segnum="1" header="true" segname="ISA">

Each Segment element defines the following attributes:

■ segnum – the absolute ordinal number for the segment in the
entire EDI transmission

■ header – indicates whether the segment is a header or trailer
(=true) or data segment (=false)

■ segname – the segment name

SegmentData

Each Segment element contains a SegmentData subelement. The
specific contents of the SegmentData subelement varies based on
the dialect of the EDI source being converted to XML. For an X12
EDI document, for example, the SegmentData sublement would
contain an ISA element, with ISA01, ISA02, subelements, as
shown here:

<SegmentData>
 <ISA>
 <ISA01><!--I16: Number of Included Functional-->1</ISA01>
 <ISA02><!--I12: Interchange Control Number-->32123</ISA02>
 </ISA>
</SegmentData>
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI Analysis Report 71
Errors

Each Segment element can contain an Errors subelement. The
Errors subelement contains one or more Error subelements. For
example:

<Errors>
 <Error severity="E">
 <ErrorCode>DDEE0008</ErrorCode>
 <NativeErrorCode>7</NativeErrorCode>
 <NativeErrorTable>723</NativeErrorTable>
 <SegmentName>BGN</SegmentName>
 <SegmentNumber>4</SegmentNumber>
 <Value>99</Value>
 <Element>1</Element>
 <Repeat>1</Repeat>
 <Offset>3</Offset>
 <ElementName>353 (AN)</ElementName>
 <Dialect>X12</Dialect>
 <MessageVersion>004030</MessageVersion>
 <CodeListVersion>004030</CodeListVersion>
 <SystemVersion>00403</SystemVersion>
 <HeaderVersion>00403</HeaderVersion>
 <ControllingAgency>004030</ControllingAgency>
 <ErrorText>[DDEE0008] ERROR Value 99 not in codelist 353.
 Dialect: X12
 Version: 00403/004030
 Message: 831
 Segment: BGN (segment 4)
 Position: BGN01
 Element: 353 (s): Transaction Set Purpose Code
 Value: "99"
 Native error: 7, in table: 723

 The value for an element in the data stream cannot be found in the
 codelist associated with the element. Turning off codelist validation
 with "tbl=no" will eliminate the error.
 </ErrorText>
 </Error>
</Errors>
DataDirect XML Converters® for Java™ User’s Guide and Reference

72 Chapter 3 Analyzing EDI-to-XML Conversions
The Error element defines a single attribute: severity – E for error,
W for warning, F for fatal.

NOTE: If the file contains the <Error severity="F"> element, it will
also contain a <FatalError> element (the first child of the
<AnalyzeReport> element). In this case, the analysis report
cannot be used by the convert method.

Each Error element can contain the following subelements. If the
element is empty, it is omitted from the report.

■ ErrorCode – the vendor code

■ NativeErrorCode – internal use only

■ NativeErrorTable – internal use only

■ SegmentName – the name of the segment in which the error
occurred

■ SegmentNumber – the absolute ordinal position of the
segment relative to the entire EDI transmission

■ Value – the field value that triggered the error

■ InvalidCharacter – the invalid character that triggered the
error

■ Element – the absolute ordinal position of the message
element where the error occurred

■ Repeat – the iteration number in a loop where the error
occurred

■ Subelement – the particle where the error occurred

■ TriElement – the particle where the error occurred

■ Offset – the offset in characters from the start of the segment

■ ElementName – the name of the message element where the
error occurred

■ Dialect – the EDI dialect name
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI Analysis Report 73
■ SyntaxVersion – the EDI syntax version

■ MessageVersion – the EDI message version

■ CodeListVersion – the EDI codelist version

■ SystemVersion – the EDI system version

■ HeaderVersion – the EDI message header version

■ ControllingAgency – the agency controlling the EDI
specification

■ ErrorText – the complete error message

Groups

Each Interchange element also contains a Groups subelement,
which contains one or more Group elements. Each Group
element defines the following attributes:

■ sequence – the ordinal position within the interchange

■ implicit – indicates there was no group start segment, and,
therefore, it was inferred

■ firstSegment, lastSegment – the segment range for this
group

■ errors – regardless of whether errors were found in the
group

■ warnings – regardless of whether warnings were found in
the group

Segments

Each Group element contains a Segments element. See
“Segments” on page 70 for a description.
DataDirect XML Converters® for Java™ User’s Guide and Reference

74 Chapter 3 Analyzing EDI-to-XML Conversions
Messages

Each Group element contains a Messages element, which
contains one or more Message elements. Each Message element
defines the following attributes:

■ sequence – the ordinal position in the input document

■ implicit – indicates if the message was missing, and, therefore,
inferred

■ firstSegment, lastSegment – the segment range for this
message

■ errors – regardless of whether errors were found in the
message

■ warnings – regardless of whether warnings were found in the
message

Response Element

Transmission responses are supported for the following types of
EDI dialect messages:

■ Messages that use the EDIFACT syntax and define a CONTRL
message, such as EDIFACT, EANCOM, Edig@s, and IATA/PADIS

■ Messages that use the X12 syntax and define a 997 or 999
message, such as X12 or HIPAA

For these EDI dialects, the analyze method generates a Response
element in the EDI analysis report. The Response element
contains Receipt and Acknowledgement subelements:

<Response>
 <Receipt>...</Receipt>
 <Acknowledgement>...</Acknowledgement>
</Response>
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI Analysis Report 75
The Receipt and Acknowledgement elements each contain a
complete EDI message in XML format. Receipt element messages
indicate only that the transmission from the EDI sender was
received; they contain no information about the content of the
transmission. Acknowledgement element messages contain
information for each interchange, group, and message that was
received, including whether it was accepted without errors,
rejected, or partially accepted.

Receipt and Acknowledgement elements can be easily
manipulated using XQuery and then serialized to EDI for
consumption by the EDI sender.

For EDI dialects for which transmission responses are not
supported, the analysis report contains an empty Response
element.

See “Managing Transmission Responses” on page 76 for more
information.
DataDirect XML Converters® for Java™ User’s Guide and Reference

76 Chapter 3 Analyzing EDI-to-XML Conversions
Managing Transmission Responses
Some EDI specifications define the interchanges and messages to
be used to notify the EDI sender about transmission status, from
initial receipt of the transmission to the errors, if any,
encountered in the EDI data stream received from the EDI sender.
For example:

■ HIPAA and X12 use the TA1 interchange to indicate whether a
transmission was accepted, accepted with errors, or rejected.
The 997 or 999 transaction sets, as set by the xr=URI property,
are used to report errors encountered during EDI processing.

■ EDIFACT uses the CONTRL message to indicate acceptance or
rejection of a transmission, and also to report errors
encountered during EDI processing.

NOTE: This also includes EDI dialects that use the EDIFACT
syntax such as EANCOM, Edig@s, and IATA/PADIS.

As described in “Response Element” on page 74, the analyze
method generates dialect-specific transmission responses as
Receipt and Acknowledgement elements in the EDI analysis
report.

This section covers the following topics:

■ “Receipt Element Example” on page 77
■ “Acknowledgement Element Example” on page 79
■ “Converting Response Messages to EDI” on page 82
■ “Sending Responses to the EDI Sender” on page 84
DataDirect XML Converters® for Java™ User’s Guide and Reference

Managing Transmission Responses 77
Receipt Element Example

Here is an example of the Receipt element from the analysis
report created using the analyze method to convert the sample
file threemsgs.x12 to XML:

 <Receipt>
 <X12>
 <ISA>
 <ISA01>00</ISA01>
 <ISA03>00</ISA03>
 <ISA05>01</ISA05>
 <ISA06>5151515151</ISA06>
 <ISA07>01</ISA07>
 <ISA08>1515151515</ISA08>
 <ISA11>^</ISA11>
 <ISA12>00403</ISA12>
 <ISA13>0</ISA13>
 <ISA14>0</ISA14>
 <ISA15>P</ISA15>
 <ISA16>*</ISA16>
 </ISA>
 <TA1>
 <TA101>32123</TA101>
 <TA102>041201</TA102>
 <TA103>1217</TA103>
 <TA104>A</TA104>
 <TA105>000</TA105>
 </TA1>
 <IEA/>
 </X12>
 </Receipt>
DataDirect XML Converters® for Java™ User’s Guide and Reference

78 Chapter 3 Analyzing EDI-to-XML Conversions
The specific structure of the Receipt element varies based on the
dialect, and contents, of the EDI stream being converted. In this
example:

■ The X12 element specifies the EDI dialect of the EDI data
stream that was converted to XML.

■ The ISA element represents the Interchange Control Header
segment; its subelements (ISA01, ISA02, and so on) show the
values for the corresponding segment fields (Authorization
Information Qualifier, Authorization Information, and so on).

■ The TA1 element represents the Transaction
Acknowledgement segment; its subelements (TA101, TA102,
and so on) show the values for the corresponding segment
fields (Interchange Control Number, Interchange Date, and so
on).

■ The IEA element represents the Interchange Control Trailer
segment; it is empty because the values for this segment are
computed automatically by DataDirect XML Converters when
the Receipt element is converted to EDI for transmission back
to the EDI sender.

Other EDI segments that are computed when the XML is
converted to EDI include the Transaction Set Trailer (SE) and
Function Group Trailer (GE).
DataDirect XML Converters® for Java™ User’s Guide and Reference

Managing Transmission Responses 79
Acknowledgement Element Example

Following is an example of the Acknowledgement element from
the same analysis report created using the analyze method to
convert the sample file threemsgs.x12 to XML. Note that is has
been abbreviated for formatting considerations.

 <Acknowledgement>
 <X12>
 <ISA> … </ISA>
 <GS> … </GS>
 <TS_997>
 <ST>
 <ST01>997</ST01>
 <ST02>0</ST02>
 </ST>
 <AK1>
 <AK101>CT</AK101>
 <AK102>128</AK102>
 </AK1>
 <AK2>
 <AK201>831</AK201>
 <AK202>00128001</AK202>
 </AK2>
 <AK5> … </AK5>
 <AK2>
 <AK201>831</AK201>
 <AK202>00128002</AK202>
 </AK2>
 <AK3> … </AK3>
 <AK4>
 <AK401> … </AK401>
 <AK402>782</AK402>
 <AK403>6</AK403>
 <AK404>ZZZZ</AK404>
 </AK4>
 <AK5> … </AK5>
 <AK2> … </AK2>
 <AK201>831</AK201>
 <AK202>00128003</AK202>
DataDirect XML Converters® for Java™ User’s Guide and Reference

80 Chapter 3 Analyzing EDI-to-XML Conversions
 <AK5> … </AK5>
 <AK9>
 <AK901>P</AK901>
 <AK902>3</AK902>
 <AK903>3</AK903>
 <AK904>2</AK904>
 </AK9>
 <SE/>
 </TS_997>
 <GE/>
 <IEA/>
 </X12>
 </Acknowledgement>

In this example:

■ The X12 and ISA elements serve the same function as those in
the Receipt element.

■ The GS element represents the Functional Group Header
segment; its subelements (GS01, GS02, and so on) show the
values for the corresponding segment fields (Functional
Identifier Code, Application Sender’s Code, and so on).

■ The TS_997 element serves as a message wrapper for
transaction messages. The TS represents transaction set, and
997 indicates the type of message.

NOTES:

• Acknowledgement transaction message wrapper elements
have different names in different EDI dialects. For
example, in EDIFACT-style messages, the acknowledgment
transaction message uses the CONTRL message.

• The type of transaction message that is generated for X12
(997 or 999) depends on the xr= URI property. See Table
5-9, “Properties for the EDI XML Converter,” on page 127
for details about setting the xr= URI property. The
preceding example shows a functional acknowledgement
transaction message as indicated by the TS_997 element.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Managing Transmission Responses 81
Similarly, the TS_999 element is the message wrapper for
X12 implementation acknowledgement transaction
messages.

■ The ST element represents the Transaction Set Header.

■ The AK elements represent the following items:

• Functional Group Response Header (AK1) and Functional
Group Response Trailer (AK9) segments. There is one pair
of AK1/AK9 segments for each group of transactions.

• Transaction Set Response Header (AK2) and Transaction
Set Response Trailer (AK5). These pairs of segments can
repeat once for each transaction in the transaction set. In
this example, there are three AK2 segments because
there are three messages in the threemsgs.x12 EDI source
document.

If a message contains an error, the analysis report can also
contain elements representing the following segments:

• AK3 (Data Segment Note). This segment identifies the
invalid segment’s position within the transaction, as well
as an error code that specifies the type of error.

• AK4 (Data Element Note). If the segment is determined to
be invalid because of bad data (a value with an improper
data type, for example), the AK4 subelements specify the
Data Element Syntax Error Code (AK403) and Copy of Bad
Data Element (AK404).

■ The SE, GE, and IEA segments are the same as those described
in “Receipt Element Example” on page 77.

NOTE: The Acknowledgement element can also include a TA1
element, as controlled by a combination of the ISA14 element in
the incoming transaction set and the ta1= URI property. If a TA1
element is generated, it appears immediately before the ISA
element.
DataDirect XML Converters® for Java™ User’s Guide and Reference

82 Chapter 3 Analyzing EDI-to-XML Conversions
Converting Response Messages to EDI

Because transmission responses are structured as XML, they need
to be converted to EDI before they can be returned to the EDI
sender. This example takes you through the following tasks:

■ Use the analyze method to generate the analysis report and
convert the EDI data stream (in this case, a sample X12 EDI
document, threemsgs.x12) to XML.

■ Locate the Receipt element in the analysis report.

■ Convert the XML for the TA1 Transaction Acknowledgement
segment to EDI.

To see a complete example application that converts both Receipt
and Acknowledgement responses to EDI, see “Example 14” on
page 108.

Invoking the analyze Method

The EDI XML Converter is used to initiate the conversion of the
source EDI document, threemsgs.x12 to EDI:

InputStream inStream = null;
 try {
 Source ediSource = new StreamSource(exampleURI + "threemsgs.x12");
 ConvertToXML toXml = factory.newConvertToXML("converter:EDI");

Next, the analyze method is used to generate the analysis report
and save the output to report.xml:

Result reportResult = new StreamResult("report.xml");
toXml.analyze(ediSource, reportResult);

See “Receipt Element Example” on page 77 for a sample of the
analysis report, report.xml.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Managing Transmission Responses 83
Converting the Source EDI

The analysis report is used as input to convert the EDI stream to
XML. Any errors in the EDI stream are recorded in the analysis
report, which is used by ConvertToXML as a filter so that only
valid EDI messages are converted to XML. Here, the valid EDI is
written to an XML document, twomsgs.xml.

Source reportSource = new StreamSource("report.xml");
Result xmlResult = new StreamResult("twomsgs.xml");
toXml.convert(ediSource, xmlResult, reportSource);

Locating Response Messages

The EDI analysis report is used again, this time as the source for
the EDI transmission response messages that have been
generated in the Receipt and Acknowledgement elements in the
XML report. The content of these elements are converted to EDI
for transmission back to the EDI sender. Here, the report is
opened with an instance of XMLStreamReader.

inStream = new FileInputStream("report.xml");
XMLStreamReader rdr =
 XMLInputFactory.newInstance().createXMLStreamReader(inStream);

Once the XMLStreamReader object is created, we can read
through the analysis report, skipping first to the Receipt
element, then to the X12 element:

do {
 rdr.next();
 } while(rdr.getEventType() != XMLStreamConstants.START_ELEMENT
 || !rdr.getName().getLocalPart().equals("Receipt"));
 do {
 rdr.next();
 } while(rdr.getEventType() != XMLStreamConstants.START_ELEMENT
 || !rdr.getName().getLocalPart().equals("X12"));

For a refresher of the Receipt element structure, see “Receipt
Element Example” on page 77.
DataDirect XML Converters® for Java™ User’s Guide and Reference

84 Chapter 3 Analyzing EDI-to-XML Conversions
Converting the Receipt Element to EDI

Once the Receipt element is located in the analysis report, it can
be converted to EDI for transmission back to the EDI sender. Note
that the converter: property is specified as EDI.

ConvertFromXML converter = factory.newConvertFromXML("converter:EDI");
Source responseSource = new XMLStreamReaderSource(rdr);
Result receiptResult = new StreamResult("receipt.x12");
converter.convert(responseSource, receiptResult);

The resulting EDI is written to the file, receipt.x12, which contains
the following:

ISA+00+ +00+ +01+5151515151
+01+1515151515 +090818+1110+^+00403+000000000+0+P+*'
TA1+000032123+041201+1217+A+000'
IEA+0+000000000'

Notice that the IEA segment (Interchange Control Trailer), which
was represented in the original XML conversion of the source EDI
document as an empty element (<IEA/) has been automatically
computed by the EDI XML Converter and now includes values for
the Number of Included Functional Groups (IEA01) and
Interchange Control Number (IEA02) segments.

Sending Responses to the EDI Sender

Typically, when you send a response to an EDI sender, you must
provide each interchange with a unique identifier. For X12, for
example, this is the Interchange Control Number (ISA12)
segment; for EDIFACT, this is the Interchange Control Reference
(UNB05) segment.

You can perform this task as part of the application code that
extracts the Receipt or Acknowledgement element from the
analysis report; it is expected that the generation of a unique
identifier is handled elsewhere.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Managing Transmission Responses 85
Example

This simple XQuery locates the Interchange Control Header (ISA)
segment, replaces the value of the Interchange Control Number
(ISA12) segment with 1000, and converts the node to EDI for
transmission to the EDI sender.

declare option ddtek:serialize "method=EDI";
copy $temp := /AnalyzeReport/Response/Acknowledgement/X12
modify replace value of node $temp/ISA/ISA12 with 1000
return $temp
DataDirect XML Converters® for Java™ User’s Guide and Reference

86 Chapter 3 Analyzing EDI-to-XML Conversions
DataDirect XML Converters® for Java™ User’s Guide and Reference

87
4 XML Converters® Examples

The DataDirect XML Converters® API allows you to access
non-XML files and convert them to XML, and vice versa. The
converter: URIs used to access data sources can be invoked
programmatically, in an XQuery application, for example. This
facility allows you to treat non-XML data as XML, manipulate it
as needed, and, optionally, write it back to its source in its
original format.

This chapter describes demo.java, a simple Java program
installed in the DataDirect XML Converters \examples directory
that demonstrates some of the features of DataDirect XML
Converters and the Converters API.

This chapter also provides examples of using DataDirect XML
Converters that are not part of the \examples directory.

Overview of the demo.java Example
The example file, demo.java, runs several sample demonstrations
that show how the XML Converters API can be used to convert
data to and from XML stored in a number of different formats
using both DataDirect XML Converters and user-defined custom
XML conversions created using Stylus Studio. This section
describes the files associated with the demonstrations and how
to run it.
DataDirect XML Converters® for Java™ User’s Guide and Reference

88 Chapter 4 XML Converters® Examples
Examples Summary

The examples included in demo.java are summarized in the
following table.

Example Description

Example 1 Shows a simple conversion of a comma-separated
values (CSV) file to XML.

Example 2 Shows how to convert an XML file to CSV.

Example 3 Shows how to use a custom XML converter to convert a
fixed-width file to XML.

Example 4 Shows how to perform a conversion to XML and then
transform the result.

Example 5 Shows how to use the result of a transformation as
input to an XML conversion.

Example 6 Simple example showing how to use the EDI XML
Converter.

Example 7 Shows how to use a Standard Exchange Format (SEF)
extension file to convert EDI messages using a
proprietary format.

Example 8 Shows how to use the ConverterListener to manage
warnings and errors during the conversion process.

Example 9 Shows how to generate an XML Schema from a CSV
file.

Example 10 Shows how to generate an XML Schema from an EDI
file.

Example 11 Shows how to use the XPath document() function in an
XSLTstylesheet object to take a converter: URI as its
argument.

Example 12 Shows how to convert an EDI file into an
org.w3c.dom interface node contained entirely in
memory.

Example 13 Shows how to convert an EDI file into an
XMLStreamReader, which can then be used to read
the XML data entirely from memory in a streaming
fashion.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Overview of the demo.java Example 89
Demonstration Files

The files required to run the demonstrations are summarized in
the following table. The files are installed in the
installdir\examples directory, where installdir is your product
installation directory.

Example 14 Shows how to use the analyze() method to analyze an
EDI stream for errors as part of the conversion process.

Example Description

File Description

831.x12 EDI file used in Example 6.

copier.xslt XSLT used in Example 4 and Example 5.

demo.bat The demonstration driver batch file.

demo.class The demonstration class file.

demo.java The source for the demonstration; this file
contains the usage comments.

demo.sh The demonstration driver file for UNIX.

one.csv The input file for the first example run by
demo.bat.

proprietary.sef The SEF file that defines non-standard X12
message types; used in Example 7.

proprietary.x12 Sample X12 with a non-standard message
type; used in Example 7.

three.conv The definition for the custom XML
conversion used in the third example run by
demo.bat.

three.txt The input file for the third example run by
demo.bat.

threemsgs.x12 The EDI input file used for Example 14.

two.xml The input file for the second example run by
demo.bat.
DataDirect XML Converters® for Java™ User’s Guide and Reference

90 Chapter 4 XML Converters® Examples
Running demo.java
This section describes the requirements and procedure for
running the demonstration application, demo.java.

Before You Begin

To recompile the files in the demonstration application, ensure
that J2SE 5 or later is installed on your machine, and that its \bin
directory is included in your system’s PATH.

Running the Demonstration
1 Open a console window.

2 Change to the installdir\examples directory.

3 Run demo.bat (or demo.sh, if you installed DataDirect XML
Converters on a UNIX/Linux machine).
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 91
Example 1

Example 1 converts a comma-separated values (CSV) file, one.csv,
to an XML file, one.xml, using the CSV XML Converter. The
conversion parameter for the new Converter object is specified
as a converter: URL that indicates which XML Converter to use to
convert the input file to the output file. Only two XML Converter
property settings are expressed; default values are used for all
properties unless you specify them in the converter: URL.

try {
 Source converterSource = new StreamSource(exampleDir + "one.csv");
 Result converterResult = new StreamResult("one.xml");

 ConvertToXML toXml = factory.newConvertToXML("converter:CSV:sep=,:first=yes");
 toXml.convert(converterSource, converterResult);

 System.out.println("test 1 finished: one.csv -> one.xml");
 }
catch(Exception e) {
 System.out.println("test 1 failed with exception: " + e);
 }

Both input and output streams are opened and closed by the
Converter object.
DataDirect XML Converters® for Java™ User’s Guide and Reference

92 Chapter 4 XML Converters® Examples
Example 2

Example 2 is similar to Example 1, but instead of converting a
non-XML file to XML, it does the opposite. It also shows how to
use the URI resolver to create both the input stream and output
stream:

StreamSource converterSource = null;
FileOutputStream streamResult = null;
 try {
 ConverterResolver resolver = factory.newResolver();
 converterSource = (StreamSource)resolver.resolve("two.xml", exampleDir);
 streamResult = new FileOutputStream("two.csv");
 Result converterResult = new StreamResult(streamResult);

In this example, we need to close the input and output streams
because we opened them, not the Converter object.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 93
Example 3

Example 3 uses a custom XML conversion, three.conv, built using
Stylus Studio XML Enterprise Suite, to convert a fixed-width file,
three.txt, to XML. Here, we create our own Streams. Because we
are converting a local text file, there is no need to use the URI
Resolver.

try {
 Source converterSource = new StreamSource(exampleDir + "three.txt");
 Result converterResult = new StreamResult("three.xml");

 String customConversion = "converter:" + exampleDir + "three.conv";

 Converter toXml = factory.newConvertToXML(customConversion);
 toXml.convert(converterSource, converterResult);

 System.out.println("test 3 finished: three.txt -> three.xml");
 }
catch(Exception e) {
 System.out.println("test 3 failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

94 Chapter 4 XML Converters® Examples
Example 4

Examples 1, 2, and 3 performed a simple conversion of one file
type to another – some type of converter (either a DataDirect
XML Converter or a user-defined custom XML conversion) was
given an input and converted it to another format.

Example 4 generates conversion output as SAX events (in this
case, a CSV file, one.csv, is converted to XML using the DataDirect
XML Converter). These SAX events are then sent to the
transformer’s ContentHandler. The process is summarized in the
following illustration.

Here is the code for Example 4:

try {
 Source converterSource = new StreamSource(exampleDir + "one.csv");

 ConvertToXML toXml = factory.newConvertToXML("converter:///CSV:sep=,
 :first=yes");

 SAXSource converterResult = toXml.getSAXSource(converterSource);

 StreamSource xsltSource = new StreamSource(exampleDir + "copier.xslt");
 StreamResult xsltResult = new StreamResult("four.xml");

 TransformerFactory transformerFactory = TransformerFactory.newInstance();
 Transformer xslt = transformerFactory.newTransformer(xsltSource);

 xslt.transform(converterResult, xsltResult);

 System.out.println("test 4 finished: one.csv -> four.xml");
 }
catch(Exception e) {
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 95
 System.out.println("test 4 failed with exception: " + e);
 e.printStackTrace(System.out);
 }

XMLWriter StreamResult is an XML document, four.xml. In this
example, we used a copy/identity transformation, but you could
specify any XSLT transformation here to perform any processing
on the intermediate result you required.
DataDirect XML Converters® for Java™ User’s Guide and Reference

96 Chapter 4 XML Converters® Examples
Example 5

In Example 5, output from an XSLT transformation is sent to a
converter, which takes the XML that is written to it (as a
saxSource) and converts it to CSV. This process is summarized in
the following illustration.

Here is the code for Example 5:

try {
 StreamResult converterResult = new StreamResult("five.csv");
 SAXSource converterSource = new SAXSource();

 Converter fromXml = factory.newConvertFromXML("converter:CSV:sep=,
 :first=yes");
 fromXml.convert(converterSource, converterResult);

 SAXResult xsltResult = new SAXResult();
 xsltResult.setHandler(converterSource.getXMLReader().getContentHandler());

 StreamSource xsltSource = new StreamSource(exampleDir + "copier.xslt");
 StreamSource xsltInput = new StreamSource(exampleDir + "two.xml");

 TransformerFactory transformerFactory = TransformerFactory.newInstance();
 Transformer xslt = transformerFactory.newTransformer(xsltSource);
 xslt.transform(xsltInput, xsltResult);
 System.out.println("test 5 finished: two.xml -> five.csv");
 }
catch(Exception e) {
 System.out.println("test 5 failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 97
To convert the transformation’s output to CSV, we have used an
instance of the ConvertFromXML object. This object uses the
XML Converters CSV converter.

Example 6

Example 6 shows the use of an EDI XML Converter (converter:
EDI) to convert a file in the X12 dialect (831.x12) to XML
(831.x12.xml), and then back to EDI (831.x12.xml.fromxml).

try{
 Source converterSource = new StreamSource(exampleDir + "831.x12");
 Result converterResult = new StreamResult("831.x12.xml");
 Converter toXml = factory.newConvertToXML("converter:EDI");
 toXml.convert(converterSource, converterResult);
 System.out.println("test6 toXML finished: 831.x12 -> 831.x12.xml");
 }
catch (Exception e)
 {
 System.out.println("test 6 toXML failed with exception: " + e);
 }

try{
 Source converterSource = new StreamSource("831.x12.xml");
 Result converterResult = new StreamResult("831.x12.fromxml");
 Converter fromXml = factory.newConvertFromXML("converter:EDI");
 fromXml.convert(converterSource, converterResult);

System.out.println("test6 fromXML finished: 831.x12.xml -> 831.x12.fromxml");
 }
catch (Exception e)
 {
 System.out.println("test 6 fromXML failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

98 Chapter 4 XML Converters® Examples
Example 7

This example shows how to use a Standard Exchange Format
(SEF) extension file to convert EDI messages using a proprietary
format. The SEF file used in this example adds 99 as a code value
in the 353 element of segment BGN in transaction set 831.

The URL of the SEF file is specified in the user= property of the
converter: URI. You can specify the SEF file name as a relative
path. For example, if DataDirect XML Converters are installed in a
directory named DD_XML_CONVERTERS and the EDI converter:
URI contains user=relative.sef, the SEF file can be found at
DD_XML_CONVERTERS/lib/CustomEDI/relative.sef.

try{
 String sefUrl = new File(exampleDir
 +"proprietary.sef").toURI().toString();
 String ediUrl = "converter:EDI:user=" + sefUrl;
 Source converterSource = new StreamSource(exampleDir + "proprietary.x12");
 Result converterResult = new StreamResult("proprietary.xml");
 Converter toXml = factory.newConvertToXML(ediUrl);
 toXml.convert(converterSource, converterResult);
 System.out.println("test 7 toXML finished: proprietary.x12 ->
 proprietary.xml");
 }
catch (Exception e)
 {
 System.out.println("test 7 toXML failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 99
Example 8

This example shows how to register a ConverterListener, which
is notified of warnings, errors, and fatal errors that occur during
conversion. Also included in this example is a simple
implementation of the three ConverterListener methods
(warning, error, and fatalError). This implementation appears at
the end of demo.java.

This example uses the proprietary data file (proprietary.xml) as
“Example 7” on page 98, but it omits the proprietary.sef
extension file. This will result in a error that is reported to the
ConverterListener implementation.

Sample Application

try{
 Source converterSource = new StreamSource(exampleDir + "proprietary.x12");
 Result converterResult = new StreamResult("proprietary.xml");
 Converter toXml = factory.newConvertToXML("converter:EDI");

 ConverterListener listener = new DemoListener();
 toXml.getConfiguration().setConverterListener(listener);
 toXml.convert(converterSource, converterResult);
 System.out.println("test 8 toXML finished: proprietary.x12 ->
 proprietary.xml");
 }
catch (Exception e)
 {
 System.out.println("test 8 toXML failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

100 Chapter 4 XML Converters® Examples
ConverterListener Implementation in
demo.java

public static class DemoListener implements ConverterListener {

 public void warning(ConverterException e) throws ConverterException {
 System.out.println("Converter warning notification: " + e);
 return;
 }

 public void error(ConverterException e) throws ConverterException {
 System.out.println("Converter error notification: " + e);
 return;
 }

 public void fatalError(ConverterException e) throws ConverterException {
 System.out.println("Converter fatal error notification: " + e);
 return;
 }
}

Error Listener Output

After running demo.java, the program generates the following
output. Notice the error that is encountered after completing
Example 7.

test 1 finished: one.csv -> one.xml
test 2 finished: two.xml -> two.csv
test 3 finished: three.txt -> three.xml
test 4 finished: one.csv -> four.xml
test 5 finished: two.xml -> five.csv
test 6 toXML finished: 831.x12 -> 831.x12.xml
test 6 fromXML finished: 831.x12.xml -> 831.x12.fromxml
test 7 toXML finished: proprietary.x12 -> proprietary.xml
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 101
Starting test 8. The ConverterListener will print a warning and an error.

Converter warning notification:
com.ddtek.xmlconverter.adapter.edi.EDIConverterException: [DDEW0063] WARNING
Starting with 00402, the format of ISA11 changed. Attempting to adjust 'U' to
'^'.
 Segment: ISA (segment 1)

In X12 prior to 004020, ISA11 was element I10 and had to have the value "U".
But from 004020 onwards, it
is element I65 and is the repetition character. The default automatic fixups
will mske this change to the
data stream unless explicitly disabled.
Converter error notification:
com.ddtek.xmlconverter.adapter.edi.EDIConverterException: [DDEE0008] ERROR
Value 99 not in codelist 353.
 Dialect: X12
 Version: 00403/004030
 Message: 831
 Segment: BGN (segment 4)
 Position: BGN01
 Element: 353 (s): Transaction Set Purpose Code
 Value: "99"
 Native error: 7, in table: 723

The value for an element in the data stream cannot
be found in the codelist associated with the element.
Turning off codelist validation with "tbl=no" will
eliminate the error.
test 8 toXML finished: proprietary.x12 -> error.xml

test 9 schema generator finished: one.csv -> one.xsd
test 10 schema generator finished: --> edi.xsd
test 11 finished: one.xml + one.csv -> eleven.xml
test 12 finished: 831.x12 --> DOM in memory.org.
test 13 finished: 831.x12 --> XMLStreamReader containing 220 events.
test 14 finished: threemsgs.x12 --> twomsgs.xml, receipt.x12,
acknowledgement.x12
DataDirect XML Converters® for Java™ User’s Guide and Reference

102 Chapter 4 XML Converters® Examples
Example 9

This example shows how to use the Converter API to create an
XML Schema based on a comma-separated values (CSV) file.

NOTE: An instance document is required to generate an XML
Schema for CSV and other file types. See “Instance Documents”
on page 33 for more information.

The XML Schema generator is used in the same way as an XML
Converter – the program provides the sample input file as a
Source object and the generated XML Schema is written to the
Result object.

See “XML Schema Generation” on page 30 for more information
on this topic.

try{
 Source sampleSource = new StreamSource(exampleDir + "one.csv");
 Result xsdResult = new StreamResult("one.xsd");
 SchemaGenerator generator =
 factory.newSchemaGenerator("converter:///CSV:sep=,:first=yes");
 generator.getSchema(sampleSource, xsdResult);
 System.out.println("test 9 schema generator finished: one.csv -> one.xsd");
 }
catch (Exception e)
 {
 System.out.println("test 9 schema generator failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 103
Example 10

This example shows how to use the Converter API to create an
XML Schema based on an EDI file. The generated XML Schema
depends on the EDI dialect, version, and message being
converted, but not on the actual data in the EDI message. This
information can be provided in the following ways:

■ Using a sample EDI input (as shown in “Example 9” on page
102). See “Instance Documents” on page 33 for more
information.

■ As part of the converter: URI, as demonstrated in this
example. Also, see “Converter URI Properties” on page 33 for
more information.

See “XML Schema Generation” on page 30 for more
information.

try{
 Result xsdResult = new StreamResult("edi.xsd");
 String uri = "EDI:dialect=EDIFACT:version=D06B:message=INVOIC:tbl=no";
 SchemaGenerator generator = factory.newSchemaGenerator(uri);
 generator.getSchema(xsdResult);
 System.out.println("test 10 schema generator finished: --> edi.xsd");
 }
catch (Exception e)
 {
 System.out.println("test 10 schema generator failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

104 Chapter 4 XML Converters® Examples
Example 11

This example shows how to use a document URI resolver
(com.ddtek.xmlconverter.ConverterResolver, the XML Converter
implementation of javax.xml.transform.URIResolver) to enable
the XPath document() function in an XSLTstylesheet object to
take a converter: URI as its argument.

The first statement uses newResolver() to get the URI resolver,
which is able to resolve converter: URIs for the document()
function.

Next, the example creates a converter: URI like this:

converter:///CSV:sep=,:first=yes?file:///c:/examples/one.csv

The XML Converter reads its input from the one.csv file, converts
it to XML, and returns its document node to the document()
function.

Previous examples used a converter: URI like this:

converter:///CSV:sep=,:first=yes

and the name of the input file was provided elsewhere. When
using the document() function, you must provide the
converter: URI and the input file URI, separating them with a
question mark (?) as shown in this example.

Here is the complete code for Example 11:
try {

 URIResolver resolver = factory.newResolver();
 String converterUri = "converter:///CSV:sep=,:first=yes?" + exampleDir +
 "one.csv";

 String xsltString =
 "<xsl:stylesheet version='1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>"
 + " <xsl:output method='xml' indent='yes'/>"
 + " <xsl:template match='/'>"
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 105
 + " <root>"
 + " <xsl:copy-of select='.'/>"
 + " <xsl:copy-of select='document(\"" + converterUri +
"\")'/>"
 + " </root>"
 + " </xsl:template>"
 + " </xsl:stylesheet>";

 StreamSource xsltSource = new StreamSource(new StringReader(xsltString));
 Transformer xslt =
 TransformerFactory.newInstance().newTransformer(xsltSource);
 xslt.setURIResolver(resolver);

 StreamSource xmlSource = new StreamSource(exampleDir + "one.xml");
 StreamResult transformedResult= new StreamResult(exampleDir +
 "eleven.xml");
 xslt.transform(xmlSource, transformedResult);
 System.out.println("test 11 finished: one.xml + one.csv -> eleven.xml");
 }
 catch (Exception e) {
 System.out.println("test 11 failed with exception: " + e);
 }
}
}

DataDirect XML Converters® for Java™ User’s Guide and Reference

106 Chapter 4 XML Converters® Examples
Example 12

This example shows how to use XML Converters™ to convert an
EDI file into an org.w3c.dom interface node contained entirely in
memory. In the example, the toXml.convert call performs the
conversion and leaves the resulting DOM in the converterResult
object.

try{
 Source converterSource = new StreamSource(exampleURI + "831.x12");
 DOMResult converterResult = new DOMResult();
 Converter toXml = factory.newConvertToXML("converter:EDI");
 toXml.convert(converterSource, converterResult);
 Node resultDocument = converterResult.getNode();

 System.out.println("test 12 finished: 831.x12 --> DOM in memory.org.");
 }
 catch (Exception e) {
 System.out.println("test 12 failed with exception: " + e);
 }
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 107
Example 13

This example shows how to use DataDirect XML Converters to
convert an EDI file into an XMLStreamReader, which can then be
used to read the XML data. XMLStreamReader processes data
entirely in memory in a streaming fashion, allowing efficient
processing of input files of unlimited size.

Notice that there is no call to convert(...) in this example. The
getXMLStreamReader call is a convenience method that
performs the conversion and returns the XMLStreamReader in
one call. The example then reads and counts all the parsing
events from the XMLStreamReader.

In a real application, the program would process those events as
they are read.

try{
 Source converterSource = new StreamSource(exampleURI + "831.x12");
 ConvertToXML toXml = factory.newConvertToXML("converter:EDI");
 XMLStreamReader rdr = toXml.getXMLStreamReader(converterSource);
 int eventCount = 0;
 while(rdr.hasNext()) {
 rdr.next();
 eventCount++;
 }

 System.out.println("test 13 finished: 831.x12 -->
 XMLStreamReader containing " + eventCount + " events.");
 }
 catch (Exception e) {
 System.out.println("test 13 failed with exception: " + e);
 }
 }
}

DataDirect XML Converters® for Java™ User’s Guide and Reference

108 Chapter 4 XML Converters® Examples
Example 14

This example shows how to use the EDI Analyzer API to convert
an input EDI document, threemsgs.x12, to XML. The source EDI
contains three messages, one of which contains an error. This
example shows how to use the EDI analysis report generated by
the analyze() method to filter the invalid message from the EDI
while converting the rest of the EDI stream to XML. Finally, it
shows how to convert the EDI analysis report’s Receipt and
Acknowledgement elements to EDI for transmission back to the
EDI sender.

For more information about using the EDI Analyzer API, see
Chapter 3, “Analyzing EDI-to-XML Conversions.”

InputStream inStream = null;
try {
 Source ediSource = new StreamSource(exampleURI + "threemsgs.x12");
 ConvertToXML toXml = factory.newConvertToXML("converter:EDI");

 Result reportResult = new StreamResult("report.xml");
 toXml.analyze(ediSource, reportResult);

 Source reportSource = new StreamSource("report.xml");
 Result xmlResult = new StreamResult("twomsgs.xml");
 toXml.convert(ediSource, xmlResult, reportSource);

 inStream = new FileInputStream("report.xml");
 XMLStreamReader rdr = XMLInputFactory.newInstance()
 .createXMLStreamReader(inStream);

 do {
 rdr.next();
 } while(rdr.getEventType() != XMLStreamConstants.START_ELEMENT
 || !rdr.getName().getLocalPart().equals("Receipt"));

 do {
 rdr.next();
 } while(rdr.getEventType() != XMLStreamConstants.START_ELEMENT
 || !rdr.getName().getLocalPart().equals("X12"));
DataDirect XML Converters® for Java™ User’s Guide and Reference

Running demo.java 109
 ConvertFromXML converter = factory.newConvertFromXML ("converter:EDI");
 Source responseSource = new XMLStreamReaderSource(rdr);
 Result receiptResult = new StreamResult("receipt.x12");
 converter.convert(responseSource, receiptResult);

 do {
 rdr.next();
 } while(rdr.getEventType() != XMLStreamConstants.START_ELEMENT
 || !rdr.getName().getLocalPart().equals("Acknowledgement"));

 do {
 rdr.next();
 } while(rdr.getEventType() != XMLStreamConstants.START_ELEMENT
 || !rdr.getName().getLocalPart().equals("X12"));

 Result ackResult = new StreamResult("acknowledgement.x12");
 converter.convert(responseSource, ackResult);

 System.out.println("test 14 finished: threemsgs.x12 -->
 twomsgs.xml, receipt.x12, acknowledgement.x12");

 catch (Exception e) {
 System.out.println("test 14 failed with exception: " + e);
 }
 finally {
 if (inStream != null)
 try {inStream.close();} catch(IOException e) {}
 }
}

DataDirect XML Converters® for Java™ User’s Guide and Reference

110 Chapter 4 XML Converters® Examples
Processing Conversion Results
You can use the OutputResult class to write a Converter’s output
to a stream. Using this implementation, conversion results are
written as a whole (as an XML document, for example) once the
conversion is complete. This technique is known as pushing
results.

Alternatively, you can treat conversion results one-at-a-time as
XML fragments instead of an entire XML document. This
technique is known as pulling results, and it can be accomplished
using the public XMLStreamReader interface, as shown in the
following example:

try{
 Source converterSource = new StreamSource(exampleURI + "831.x12");
 ConvertToXML toXml = factory.newConvertToXML("converter:EDI");
 XMLStreamReader rdr = toXml.getXMLStreamReader(converterSource);
 int eventCount = 0;
 while(rdr.hasNext()) {
 rdr.next();
 eventCount++;
 }

 System.out.println(
 "test 13 finished: 831.x12 --> XMLStreamReader containing " + eventCount
 + " events.");

 catch (Exception e) {
 System.out.println("test 13 failed with exception: " + e);
 }
}

DataDirect XML Converters® for Java™ User’s Guide and Reference

Loading SEF Files Programmatically 111
Loading SEF Files Programmatically
The setEDIExtension() method allows you to reference a SEF file
programmatically. This method is a member of the
Configuration class. It is defined as:

void setEDIExtension(javax.xml.transform.stream.StreamSource source)
 throws ConverterException

Because a SEF file can be used by the XML Schema generator, the
following instance method was added to the SchemaGenerator
class to provide access to the Configuration object:

Configuration getConfiguration()

DataDirect XML Converters reads the source object and parses
the data as a SEF file, creating an Extender object. All XML
Converters created using that Configuration object use that
Extender object as if it had been supplied with the user= option
in the URI.

DataDirect XML Converters uses a byte stream if the source
object contains one. If the source object does not contain a byte
stream, DataDirect XML Converters uses a character stream, if
present. If neither a byte stream nor a character stream is
available, DataDirect XML Converters uses a systemId. If none of
these is present in the source object, DataDirect XML Converters
throws an exception.

Using SEF Files Created with Stylus
Studio

In addition to custom segment and message definitions, SEF files
created using the Stylus Studio EDI to XML Module can contain a
converter: URI in a .PRIVATE section. This converter: URI can
contain properties (val=no and len=yes, for example).
DataDirect XML Converters® for Java™ User’s Guide and Reference

112 Chapter 4 XML Converters® Examples
If you specify such a SEF file in your application, DataDirect XML
Converters uses the converter properties from that URI when
performing the XML conversion. That is, the values specified for
the properties in the SEF become the new default values for the
properties. This behavior is also true when the SEF file is loaded
with the user= URI property.

Using a SEF File for Multiple
Conversions

The Configuration object owns the Extender. If you want to use a
SEF file for multiple conversions, you can do so as follows:

ConverterFactory factory = new ConverterFactory();
factory.getConfiguration().setEDIExtension (StreamSource sef);

All Converter and SchemaGenerator objects created from that
factory have access to the loaded SEF file, but they do not parse
the SEF file each time they are created.

If setEDIExtension is called two times, then the first SEF file is
replaced by the second one. Any Converter or SchemaGenerator
objects already created will still use the first SEF file.

If you want to use a SEF file for one Converter or
SchemaGenerator object only, you can do so as follows:

ConverterFactory factory = new ConverterFactory();
Converter converter = factory.newConvertToXML(…);
Converter.getConfiguration().setEDIExtension (StreamSource sef);
DataDirect XML Converters® for Java™ User’s Guide and Reference

113
5 DataDirect XML Converters®
Properties

DataDirect XML Converters share some properties (the line
separator property, for example), and each has properties that
are unique. For example, the CSV XML Converter allows you to
specify an escape character, but the binary XML Converter does
not.

This chapter contains reference information for the DataDirect
XML Converters including information about the line separator
property and encoding values, which are common to most
DataDirect XML Converters.

■ “Line Separator Values” on page 115

■ “Encoding Values” on page 116

■ “Base-64 XML Converter Properties” on page 117

■ “Binary XML Converter Properties” on page 118

■ “Comma-Separated Values (CSV) XML Converter Properties”
on page 120

■ “dBase XML Converter Properties” on page 123

■ “DIF XML Converter Properties” on page 125

■ “EDI XML Converter Properties” on page 126

■ “Autofilling Segments and Elements” on page 176

■ “Java .properties File XML Converter Properties” on page 182

■ “JSON XML Converter Properties” on page 183

■ “OpenEdge .d Data Dump XML Converter Properties” on
page 184
DataDirect XML Converters® for Java™ User’s Guide and Reference

114 Chapter 5 DataDirect XML Converters® Properties
■ “Pyx Format XML Converter Properties” on page 185

■ “Rich Text Format XML Converter Properties” on page 186

■ “SDI XML Converter Properties” on page 187

■ “SYLK XML Converter Properties” on page 188

■ “Tab-Separated Values XML Converter Properties” on
page 189

■ “Whole-Line Text XML Converter Properties” on page 192

■ “Windows .ini File XML Converter Properties” on page 193

■ “Windows Write XML Converter Properties” on page 194
DataDirect XML Converters® for Java™ User’s Guide and Reference

Line Separator Values 115
Line Separator Values
Most DataDirect XML Converters allow you to specify a line
separator character, a character that signifies the end of a line of
text. The line separator character is specified in the converter URI
using the newline= property.

The following table provides a list of commonly used values. All
values are case-insensitive.

Table 5-1. Line Separator Values

Value Result (Hexadecimal)

platform The default from
System.getProperty("line.separator")

cr CR (0D)

lf LF (0A)

unix LF (0A)

crlf CR, LF (0D, 0A)

dos CR, LF (0D, 0A)

windows CR, LF (0D, 0A)

lfcr LF, CR (0A, 0D)

nel NEL (85) (Unicode newline)

lsep LSEP (2028) (Unicode line separator)

psep PSEP (2029) (Unicode paragraph separator)

null NUL (0)
DataDirect XML Converters® for Java™ User’s Guide and Reference

116 Chapter 5 DataDirect XML Converters® Properties
Encoding Values
Most DataDirect XML Converters allow you to specify the type of
encoding to perform during the conversion. The following table
describes the types of encoding you can specify. These values are
derived from the character sets available from the
currently-running JVM, with a few additions. There are several
more values that are available when the XMLConverters.jar
library is used.

Table 5-2. Encoding Values

Value Description

raw The byte values 0x00 to 0xFF are mapped to char
values \u0000 to \u00FF. In addition, char values have
the high-order 8 bits stripped, producing byte
values.

ebcdic Use this value if your local JVM does not support an
EBCDIC codepage to allow the data to be sent and
returned as EBCDIC. It is based on one of the many
internationalized EBCDIC standards, but has an
additional property that allows each codepoint to be
mapped to exactly one codepoint on the 8-bit plane.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Base-64 XML Converter Properties 117
Base-64 XML Converter Properties
The following table lists properties for the Base-64 XML
Converter, which can be used for Base-64 encoded binary files as
documented in RFC 1341.

XML Converter Name in URI

Base-64

Table 5-3. Properties for the Base-64 XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is utf-8.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used only when converting a Base-64 binary
file to XML, and not vice versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

118 Chapter 5 DataDirect XML Converters® Properties
Binary XML Converter Properties
You can convert binary files that have been encoded as a
sequence of digits in a base from 2 to 36, and vice versa.

Use the Base-64 XML Converter for base-64 encoded binary files.
See “Base-64 XML Converter Properties” on page 117 for more
information.

The following table lists the properties for the Binary Base-2 to
Base-36 XML Converter.

XML Converter Name in URI

Binary

Table 5-4. Properties for the Binary Base-2 to Base-36 XML Converter

Name in URI Property Name Description

base Base Specifies the numeric base of the encoded
file.

The default is 16 (hexadecimal); Base-2 is
binary; Base-8 is octal; and Base-10 is
decimal.

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is utf-8.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting a binary encoded file
to XML, and vice versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Binary XML Converter Properties 119
space Byte separator Determines whether byte values are
contiguous (no value) or separated with the
value specified for this property. For
example, if you set space=, the value 000FFF
would be output as 00,0F,FF.

wrap Wrap lines Determines whether to wrap lines.

Valid values:

■ yes – lines are wrapped.

■ no – outputs all values on a single line.

The default is yes.

Table 5-4. Properties for the Binary Base-2 to Base-36 XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

120 Chapter 5 DataDirect XML Converters® Properties
Comma-Separated Values (CSV) XML
Converter Properties

You can use the CSV XML Converter to convert comma-separated
values files to XML and vice versa.

The following table lists the properties for the CSV XML
Converter.

XML Converter Name in URI

CSV

Table 5-5. Properties for the CSV XML Converter

Name in URI Property Name Description

collapse Collapse consecutive
separators

Determines whether to collapse consecutive
separators (separators that do not contain
any data).

Valid values:

■ yes – consecutive separators are collapsed.

■ no – consecutive separators are not
collapsed.

The default is no.

double Doubling
embedded quote
escapes it

Determines whether doubling an embedded
quotation mark has the effect of escaping
the quoted string.

Valid values:

■ yes – doubling an embedded quotation
mark escapes the quoted string.

■ no – doubling an embedded quotation
mark does not escape the quoted string.

The default is no.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Comma-Separated Values (CSV) XML Converter Properties 121
encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default is cp1252.

escape Escape character Specifies the escape character to be used to
escape quotes and separators so that they
can be embedded in values.

The back slash (\) is the default.

first First row contains
field names

Generated field names depend on the values
in the first and number fields.

If first=yes and number=no, field names are
read from the first row. Any field names after
that are named column.nnn, where nnn is the
column number, starting from 1 and
including explicitly named columns in the
count. If number=yes, extra columns (those
after the first) are named column.

multiline= Multiline Determines whether a line separator in a
quoted string is considered part of the
content of a field.

Valid values:

■ yes – a line separator in a quoted string is
considered part of the content of that
field.

■ no – a line separator in a quoted string is
not considered part of the content of a
field and terminates the row, even if it is
encountered in the middle of a quoted
string.

The default is no.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a list
of commonly used values.

Table 5-5. Properties for the CSV XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

122 Chapter 5 DataDirect XML Converters® Properties
number Number rows and
columns

Determines whether rows and columns
contain a numbering attribute.

Valid values:

■ yes – each row contains an attribute
named row that contains the row number
from the source document, starting from
1. Also, each column, even those explicitly
named, have a column attribute
numbering the column from 1.

■ no – empty columns are omitted from the
output, but the numbering of subsequent
columns reflects if one or more columns
were skipped.

The default is no.

quotes Quote character Specifies a list of characters that the
converter should interpret as quotation
marks.

The default is double quotes (") and single
quotes (’).

root Root element name Specifies the root element name.

The default is table.

row Row element name Specifies the row element name.

The default is row.

sep Separator Specifies the separator value to appear
between each value. This can be TAB, a single
character (a comma (,) is the default), or the
%XX-escaped value of the separator
character (%2c, for example).

Table 5-5. Properties for the CSV XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

dBase XML Converter Properties 123
dBase XML Converter Properties
Properties are the same for all dBase XML Converters: dBase II,
dBase III, dBase III+, dBase IV, and dBase V.

The following table lists the properties for the dBase XML
Converters.

XML Converter Names in URI

■ dBase_II
■ dBase_III
■ dBase_III_plus
■ dBase_IV
■ dBase_V

Table 5-6. Properties for the dBase XML Converters

Name in URI Property Name Description

deleted Include deleted
records

Determines whether records marked with a
"deleted" attribute are included in the
output to XML and preserved in the
conversion from XML.

Valid values:

■ yes – records marked with a "deleted"
attribute are included in the output to
XML.

NOTE: Stylus Studio looks for this on input.

■ no – records marked with a "deleted"
attribute are not included in the output to
XML.

The default is yes.
DataDirect XML Converters® for Java™ User’s Guide and Reference

124 Chapter 5 DataDirect XML Converters® Properties
The following table lists the data types supported by the dBase
XML Converters for each dBase version.

encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default is utf-8.

newline Line separator Specifies the line separator. See “Line
Separator Values” on page 115 for a list of
commonly used values. This property is used
only to convert a dBase file to XML, not vice
versa.

Table 5-6. Properties for the dBase XML Converters

Name in URI Property Name Description

Table 5-7. Data Type Support for the dBase XML Converters

Data Type Symbol dBase II dBase III dBase III+ dBase IV dBase V

binary B X

character C X X X X X

date D X X X X

float F X X

general G X

logical L X X X X X

memo M X X X X

numeric N X X X X X
DataDirect XML Converters® for Java™ User’s Guide and Reference

DIF XML Converter Properties 125
DIF XML Converter Properties
You can use the Data Interchange Format (DIF) XML Converter to
convert DIF files to XML and vice versa.

The following table lists the properties for the DIF XML
Converter.

XML Converter Name in URI

DIF

Table 5-8. Properties for the DIF XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default is cp850.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a list
of commonly used values. This property is
used when converting a DIF file to XML and
vice versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

126 Chapter 5 DataDirect XML Converters® Properties
EDI XML Converter Properties
You can use the Electronic Data Exchange (EDI) XML Converter to
convert EDI files to XML and vice versa.

Properties are the same for most supported EDI dialects; however,
some properties are dialect-specific (cexpand and hexpand, for
example).

TIP: DataDirect XML Converters supports the Standard Exchange
Format (SEF) standard, which allows you to define extensions to
an EDI standard. See “Handling Proprietary EDI Formats” on
page 25 for more information.

The following table lists properties for the EDI XML Converter.

XML Converter Name in URI

EDI
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 127
Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description

auto Auto-fixup values
where possible

Automatically fills in values of segments and
elements where possible.

Valid values:

■ never — never autofill values of segments
and elements.

■ toXML — autofill values of segments and
elements only when converting from an
EDI format to XML.

■ fromXML — autofill values of segments
and elements only when converting from
XML to an EDI format.

■ both — autofill values of segments and
elements when converting from an EDI
format to XML or vice versa.

See “Autofilling Segments and Elements” on
page 176 for a list of which segments and
elements are autofilled

See also “noautofill” on page 149.

bom Inserting a BOM
while writing EDI to
the Writer class

Inserts a BOM while writing EDI to the Writer
class in Java with UTF-8 or UTF-16 encoding.

Valid values:

■ yes — inserts a BOM while writing.

■ no — begins writing without inserting a
BOM.

The default is no.

cent Window for century
cut-off

If the date is given in the file with a 2-digit
year and the output requires a 4-digit year,
this value is the cutoff so that the proper
century can be selected.
DataDirect XML Converters® for Java™ User’s Guide and Reference

128 Chapter 5 DataDirect XML Converters® Properties
cexpand Fully expand HL7
CE/CF/CNE/CWE
element

HL7 includes specialized composite elements
that contain coded values, the text version of
the code, and the lookup table for CE, CF,
CNE, and CWE elements.

Valid values:

■ yes — the converter attempts to expand all
fields in the composite element.

■ no — the converter does not expand fields
in the composite element.

The CNE and CWE elements also allow pulling
information from tables across versions of the
standard. For example, an HL7 2.4 element
could look up information from an HL7 2.5
table. These elements also have an
"alternate" set of fields so that codes can be
included in the native (HL7, for example) and
foreign code list.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 129
chr Character repertoire
override

Allows the converter to override and alter
character encodings for EDIFACT-based
documents (such as EANCOM and
IATA PADIS).

You can use one or more of the following
values, concatenated with a "+" symbol (chr=
REPLACE+FINNISH, for example):

■ DEFAULT – the encoding specified in the
file is used. This value cannot be used with
any others.

■ EANCOM – support for these extra
EANCOM characters to UNOA and UNOB
are added: #, @, [,], {, }, \, |, ‘, and ^.

■ SYMBOL – forces all characters, including
special characters such as element and
segment separators, that might otherwise
be permitted to be validated against the
encoding.

■ REPLACE – replaces invalid characters with
the character specified by the invalid
property. An underscore ("_") is used if the
invalid property is not specified. If
REPLACE is not specified, the converter
throws an error.

■ FINNISH – changes the meaning of certain
characters in the Finnish character set for
UNOA and UNOB (and adds UNOY and
UNOZ as synonyms for UNOA and UNOB
respectively). See “FINNISH Character Set
Overrides” on page 162 for more
information.

See “Explicit Character Overrides” on
page 163 for more information.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

130 Chapter 5 DataDirect XML Converters® Properties
clean Remove linefeeds
and nulls

Determines whether to remove linefeeds and
nulls from EDI that is converted to XML and
vice versa.

Valid values:

■ both – removes line feeds and nulls when
converting from XML and to XML.

■ fromXML – removes line feeds and nulls
when converting from XML.

■ toXML – removes line feeds and nulls
when converting to XML.

■ never – never removes line feeds or nulls.

The default is both.

See also “rtrim” on page 152.

component Component value
separator

Specifies the character that is used to
separate component elements from each
other within a composite element. This
property affects EDI-to-XML conversion and
vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

compress Compression
method for EDI
output

For ACORD AL3 only. Determines whether the
run-length encoding (RLE) compression
method is used for EDI output.

Valid values:

■ none – no compression is used.

■ rle – RLE compression is used.

The default is none.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 131
continued Line continuation
character

Specifies the character that is appended to
the segment terminator when each segment
in an EDI message is split onto a new line. This
character indicates to the server that the end
of the interchange has not been reached. The
character is appended to all segments in an
interchange, except the last one.

This property affects EDI-to-XML conversion
and vice versa.

This property accepts the same values as
“element” on page 136 and “segment” on
page 153.

NOTE: This property is supported for all
dialects except Cargo-IMP.

count Enforce segment
maximum counts

Determines whether the converter enforces
segment counts as they are defined in the EDI
repository.

Valid values:

■ yes – repository counts are enforced.

■ no – repository counts are not enforced.

■ multi – if the repository allows only one
instance, it is enforced; otherwise, it treats
the count as unlimited.

See also “auto” on page 127.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

132 Chapter 5 DataDirect XML Converters® Properties
data Generate EDI
content

Controls whether sample data is generated
with XML and EDI sample output files.

Valid values:

■ minimal – the minimum amount of data
required to validate the sample file is
generated.

■ none – no sample data is generated.
Headers and trailers are generated.

■ random – random strings are generated;
codelist values are selected randomly to fill
the data.

The default is none.

See also “emit” on page 136.

decimal Decimal character Specifies the symbol used for the decimal
character in the converted file (usually a
period or comma). This property affects
EDI-to-XML conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 133
decname Use DEC mode for
all names in these
segments

For ACORD AL3 only. AL3 fields can be broken
up in two different ways:

■ DEC names are used to break the field into
two smaller fields.

■ The first character of the field name is
used to denote the field type.

Use this property to specify the segments in
which the field name should be treated as a
DEC name.

A valid value is a list of one or more segment
names. Multiple segment names must be
separated by a comma.

The default is 5SNG.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

134 Chapter 5 DataDirect XML Converters® Properties
decode Where to place
decoded data values

Specifies where to place code list value
descriptions when converting EDI to XML.

Valid values are:

■ no – code list table values are not output
as XML:
<ISA15><!--I14: Interchange Usage
Indicator-->P</ISA15>

■ comment – adds the description as a
comment. For example, <!--Production
Data--> in the following code:
<ISA15><!--I14: Interchange Usage
Indicator-->P<!--Production
Data--></ISA15>

■ attribute – adds the description as an
attribute:
<ISA15 decode="Production
Data"><!--I14: Interchange Usage
Indicator-->P</ISA15>

■ text – adds the code as an attribute, and
the description as an element value:
<ISA15 value="P">Production
Data</ISA15>

NOTE: The value property must also be set
to attribute to generate this output.

Turn off this and Comment element types
(field) to disable all comment generation.

See also “value” on page 160.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 135
delimiter Delimiters to be
used for quoted
strings in flatfiles

Specifies the delimiter to use for quoted
strings in flat files.

The default is Q, which means you can use
either single quotes (’) or double quotes (").
To specify a specific character, use the
Unicode value. For example, a value of 0x22
specifies double quotes and a value of 0x27
specifies single quotes.

dialect EDI dialect Overrides the dialect that is detected by the
converter of the file you are converting. This
property affects EDI-to-XML conversion and
vice versa.

Valid values:

■ AHM780
■ AL3
■ CARGO
■ EANCOM
■ EDIFACT
■ EDIG@S
■ HIPAA
■ HL7
■ IATA
■ NCPDP
■ TELCO
■ TRADACOMS
■ X12

Use IATA to specify the PADIS dialect.

See “XML Schema Generation” on page 30
for more information about how this
property affects XML Schema generation. See
“HTML/XHTML Documentation Generation”
on page 41 for information about how this
property affect HTML/XHTML documentation
generation.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

136 Chapter 5 DataDirect XML Converters® Properties
doc Include
xs:documentation

Determines whether to include
xs:documentation comments in the XML
Schema.

Valid values:

■ yes – xs:documentation comments are
included in the XML schema.

■ no – xs:documentation comments are not
included in the XML schema.

The default is yes.

This property is used only for schema
generation. See “XML Schema Generation”
on page 30 for more information.

element Element separator Specifies the character that is used to
separate elements in a segment. This property
affects EDI-to-XML conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

emit Level of sample data
generated

Controls which optional segments are
generated in XML and EDI sample output
files.

Valid values:

■ none – only mandatory and elements are
created.

■ segments – all segments are created, but
only mandatory elements within those
segments are populated with sample data.

■ elements – all segments and all elements
are created.

The default is none.

See also “data” on page 132.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 137
empty How to handle
empty HL7 content

Controls how the converter manages empty
fields. Empty tokens at the first level are
never written to the XML file, regardless of
how this property is set.

In HL7 versions prior to 2.3, empty fields were
treated as present, but without a value; in
HL7 version 2.3 and later, empty fields are
indicated with a set of double quotes. A
missing field (a field for which there is no
value in the data stream) does not display
quotes.

Valid values for this property are:

■ auto – the HL7 version determines how the
converter treats empty fields:

■ For HL7 2.2 and earlier, the converter
behaves as if empty=empty.

■ For HL7 2.3 and later, the converter
behaves as if empty=quotes.

■ empty – all empty fields, with or without
quotes, are treated as present, but empty
(use for HL7 2.2 and earlier).

■ quotes – if the field has quotes, it is
treated as empty (null value). For example,
’""’ is recognized as a marker for an
empty field; otherwise, it is treated as
missing, that is, there is no value in the
data stream (use for HL7 2.3 and later).

The default is auto.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

138 Chapter 5 DataDirect XML Converters® Properties
empty (cont’d) Consider the following examples for different
conversion scenarios:

■ HL7 to XML, empty=empty
- Empty top-level elements are not output.
- Empty lower-level elements are output as
as empty XML elements.
- Elements containing paired double-
quotes are passed through unchanged.

■ HL7 to XML, empty=quotes
- Empty top-level elements are not output.
- Empty lower-level elements are not
output.
- Elements containing paired double-
quotes are output as empty XML elements.

■ XML to HL7, empty = empty
- Empty elements are passed through as
empty.
- Elements containing paired double-
quotes are passed through unchanged.

■ XML to HL7, empty = quotes
- Empty elements are passed through as
paired double-quotes.
- Elements containing paired double-
quotes are passed through unchanged.

encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default depends on the dialect of EDI and
information encoded in the particular EDI
file.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 139
eol Add linefeeds
between segments
on write

Allows you to put each segment on its own
line when converting XML to EDI. (Extra
linefeeds are ignored when converting EDI to
XML.)

Valid values are:

■ yes – the value specified in the line
separator property (newline=) is used to
separate each segment. The normal
segment output character is also
generated.

■ no –linefeeds between segments are not
added.

■ integer between 1 and 1024 – specifies the
number of columns on which to wrap a
line. So, for example, eol=80 wraps the
line at 80 columns. If you specify an
integer, the last row is not padded out to
the value you specify.

The default is yes.

field Comment element
types

Creates a comment at the start of each
element that includes the element’s name
and number. For example, <!--I14:
Interchange Usage Indicator--> in the
following code:

<ISA15><!--I14: Interchange Usage
Indicator-->P<!--Production
Data--></ISA15>

Turn off this and Comment code list (decode)
to disable all comment generation.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

140 Chapter 5 DataDirect XML Converters® Properties
following Segment
name/segment
content separator

In TRADACOMS data streams, the default
character used to separate the segment name
and segment contents is the equal sign (=).
You can use the following= property to
override the default character. This property
affects EDI-to-XML conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

group Use message groups
if provided

Allows you to add grouping elements to XML
when converting EDI to XML. Grouping
elements can make EDI messages in the
converted XML easier to access with XPath for
some types of documents. You may want to
use this property if your EDI documents use
multiple message groups.

Valid values:

■ yes – wraps each message group with an
extra <GROUP></GROUP> element.

■ always – wraps all output associated with
an interchange (for example, everything
from an ISA segment to its IEA segment,
inclusive) in an
<INTERCHANGE></INTERCHANGE>
element. <GROUP></GROUP> elements
are also used.

■ no – grouping elements are not added to
the converted XML.

The default is no.

This property can also be used when
generating XML Schema.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 141
hexpand Expand HL7 hex
escapes

In HL7 data streams, \X is an escape sequence
used to include hexadecimal data in the
stream.

Valid values

■ yes – expands the hexadecimal data. If the
data is binary, an exception is thrown.

■ no – does not expand the hexadecimal
data.

The default is no.

hipaa Enable HIPAA
Auto-detection

Determines whether the converter should
determine if an X12 file is a HIPAA file.

Valid values:

■ yes – the converter determines whether
the X12 file is a HIPAA file. If the file is a
HIPAA file, HIPAA rules are used. If not,
X12 rules are used.

■ no – the converter processes the file as an
X12 document, even if it is recognized as a
HIPAA document.

■ loop – same as yes, but this value also
creates a nested loop structure for the
converted XML and generated XML
Schema, which can simplify this output’s
use in XML mapping tools.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

142 Chapter 5 DataDirect XML Converters® Properties
ignore Ignore specific
errors

Allows you to specify which errors, if any, to
ignore during XML conversion. The syntax for
this field is ignore=n1,n2,n3.... For
example, ignore=3,4,47 ignores errors 3, 4,
and 47.

This property can be used with the opt
property to allow processing to continue even
when the data stream is missing mandatory
segments and data elements.

indent Whether to indent
XML output

Controls whether the XML output is
indented.

Valid values:

■ yes – XML output is indented.

■ no – XML output is not indented.

blank (unspecified) – XML output is indented
unless decode and field are both set to no.

The default is blank (unspecified).

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 143
inter Interactive messages Certain EDI messages have alternate batch
and interactive forms, depending on whether
they are used between systems that have
real-time connections.

Valid values:

■ yes – the interactive form is used, if
available. For example, in EDIFACT, the
normal envelope of UNB/UNH/UNT/UNZ
would be replaced by UIB/UIH/UIT/UIZ.

■ no – the alternate batch form is used.

The default is no.

This property is used only for schema
generation. See “XML Schema Generation”
on page 30 for information on how this
property affects XML Schema generation. See
“HTML/XHTML Documentation Generation”
on page 41 for information about how this
property affects HTML/XHTML
documentation generation.

intra Check
intra-segment
constraints

Controls whether intra-segment validation is
performed for EDIFACT and X12 files.

Valid values:

■ yes – Intra-segment validation is
performed.

■ no – Intra-segment validation is not
performed.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

144 Chapter 5 DataDirect XML Converters® Properties
invalid Invalid character
replacement

Used with the chr =REPLACE property to
specify which character is used to replace
invalid characters. This property affects
EDI-to-XML conversion and vice versa.

Valid values:

■ \u#### – To specify a Unicode value,
substituting the #### for the appropriate
value.

■ \d#### – To specify a decimal value,
substituting the #### for the appropriate
value.

The default is an underscore ("_").

See “Using Special Characters for Separators”
on page 164 for more information about how
to specify values for this property.

iso Format date and
time in the XML
output

Formats the date and time in the XML output.

Valid values:

■ yes – date and time are formatted
according to the ISO 8601 date and time
formats.

■ no – date and time are not formatted.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 145
ldate How to handle ’L’
HL7 date

Controls how the converter manages the L
value (traditionally means "local system" in
HL7) if it is passed as a date, time, datetime,
or timestamp.

Valid values:

■ header – The L value is replaced with the
value of the MSH-7 element from the
header.

■ current – The L value is replaced with the
date and/or time that the message
processing started.

■ error – The L value is treated as a syntax
error.

■ pass – The L value is passed through
unchanged.

leading Ignore leading zeros
on numbers

Determines whether the converter ignores
leading zeros on numbers.

Valid values:

■ yes – leading zeros on the value in the EDI
and the value in the codelist are compared
without any leading zeros. For example, a
value of "012" matches a value of "12."
This applies only to codelist validation, not
to handling of numbers.

■ no – leading zeroes are not ignored.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

146 Chapter 5 DataDirect XML Converters® Properties
len Strict validation on
value lengths

For most EDI dialects, controls whether an
element’s content is checked against the
upper and lower length limits as defined by
the relevant EDI specification.

For Cargo-IMP, however, len= enables or
disables checking the entire message length
against the standard limit of 1600 characters.
Because Cargo-IMP requires fixed positions of
certain elements, element length checking is
always performed.

Valid values:

■ yes – length checking is enabled.

■ no – length checking is disabled.

The default is no.

long Use long element
names

Determines whether to use long or short
element and/or segment names in your XML
conversions (FTX03-TextReference or FTX03,
for example).

Valid values are:

■ elements – long names are used for
elements. (In previous versions, long=yes
could be used. For naming consistency,
long=yes has been deprecated.)

■ segments – long names are used for
segments.

■ all – long names are used for both
elements and segments.

■ none – abbreviated names are used for
both.

The default is none.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 147
loop-prefix Prefix GROUP_...
tags with the
enclosing message
name

Allows you to prefix the name of a
GROUP_no tag with the message name it
appeared in. For example,
<INVOIC>…<GROUP_1> becomes
< INVOIC >…< INVOIC _GROUP_1>.

The default is no.

loopnames Use named loops You can name loops (segment groups). Loop
names appear in both auto-reply messages,
XML output, and HTML/XHTML generated
documentation.

Valid values:

■ yes – naming for loops is turned on.

■ no – naming for loops is turned off.

The default is no.

match Get field count
based on input row
length

For ACORD AL3 only. Determines how the
field count is determined.

Valid values:

■ yes – preserves partial fields at the end of
segments by not trimming spaces even
from ZZZZZ elements.

■ no – the repository determines segment
size.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

148 Chapter 5 DataDirect XML Converters® Properties
message Message type The type of EDI message being converted.

Valid values vary based on dialect and
version.

See “XML Schema Generation” on page 30
for information about how this property
affects XML Schema generation. See
“HTML/XHTML Documentation Generation”
on page 41 for information about how this
property affects HTML/XHTML
documentation generation.

NOTE: Normally, you do not need to specify
this property, but it is automatically gathered
from the incoming stream. If you want to
force the incoming message to be processed
as another message, you can use this property
to specify the alternate message. This does
not mean that the conversion will fail if the
incoming message does not equal this value;
rather, it forces the incoming message to be
processed as if the incoming message were
this value. For an example code that would
stop processing if the incoming message was
not the message that was expected, see
??????.

newline Line separator Used when converting EDI to XML, and XML
to EDI when the Add linefeeds between
segments on write property (eol) is set to yes.
See “Line Separator Values” on page 115 for
a list of commonly used values.

The default is crlf.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 149
noautofill Segments and/or
elements to not
auto-fill

Specifies segments and elements that you do
not want the converter to autofill (see “auto”
on page 127).

This property accepts a comma-separated list
of segments or elements.

■ To specify segments, type the segment
name followed by an asterisk
(noautofill=UNB*, for example).

■ To specify elements, use the short form of
the element name (noautofill=UIZ01,
for example).

See “Autofilling Segments and Elements” on
page 176 for a list of which segments and
elements are autofilled

nochange Unchanged fields
with how many ?’s

For ACORD AL3 only. The ACORD standard
provides two ways of marking fields that you
want left at their current value on the
receiving system.

Valid values:

■ single – marks only the first character of a
field with a question mark (?).

■ fill – marks all characters in a field with a
question mark (?).

The default is single.

numpad Pad numbers with
alternate characters

Specifies an alternate character to pad
numbers in fixed-width fields if syntactically
valid.

NOTE: In a flat file conversion using the
GENERIC converter, numbers may get padded
with the NUL character (0x00). In this case,
specify numpad=NUL.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

150 Chapter 5 DataDirect XML Converters® Properties
opt Treat all segments
and elements as
optional

Determines whether mandatory segments
and elements are treated as optional, which
can be useful if your provider declines to
provide segments and elements that are
considered mandatory according to the EDI
specification and you know which segments
and elements are missing.

Valid values:

■ yes – all mandatory segments and
mandatory data elements are treated as
optional.

■ no – a missing mandatory segment or
mandatory data element triggers an error.

NOTE: You can use opt=no with the ignore
property to ignore errors for missing
mandatory segments (errors 39 and 9),
missing mandatory data elements (error 4), or
both. For example, opt=no and ignore=39,9
allows processing to continue even if the data
stream is missing mandatory segments.

The default is no.

prefix Namespace prefix Specifies the namespace prefix to be added,
with the Namespace URI, to the root element.
The prefix is added to all elements.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 151
release Release (escape)
symbol

Specifies the release, or escape, character. It
turns off special processing of the next
character. Suppose your text message uses the
same character that also was used to separate
elements. The specified character is used to
instruct the EDI processor to treat that
character as a normal character and not as
the end of the text. This property affects
EDI-to-XML conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

reorder Sort and nest
groups by inferred
level

For ACORD AL3 only. Data segments in AL3
files can be in any sequence. This property
controls the sequence of the data stream.

Valid values:

■ as-is – the sequence of the data stream is
not changed.

■ nest – the data stream is scanned for
segment levels and the stream is sorted
based on the implied message structure.

■ sort – the data stream is sorted based on
information in the segment header.

The default is as-is.

repeat Repeat symbol Specifies the repeat symbol for EDI dialects
that use it. This property affects EDI-to-XML
conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

152 Chapter 5 DataDirect XML Converters® Properties
rtrim Trim trailing
delimiters

Typically, most trailing delimiters are removed
automatically. But in the conversion process,
new trailing delimiters are sometimes
created. This property controls how the
converter manages these trailing delimiters.

Valid values:

■ no – trailing delimiters are not trimmed.

■ yes – trailing delimiters are trimmed as
long as performance is not affected.

■ always – trailing delimiters are trimmed
regardless of the impact on performance.

You can also use this property to add
additional spaces or padding:

■ pad1 – add spaces at the top-most level
only.

■ pad2 – add spaces to the first two levels
only (elements and composite elements
that do not contain other composites).

■ pad3 – add spaces for every level of
element. This value can create many
empty elements (when converting to XML)
and many empty delimiters (when
converting to EDI).

See also “clean” on page 130.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 153
seg Strict
segment-ordering
checking

Determines whether to check segment
ordering as defined by the message.

Valid values:

yes – checks segment ordering.

no – message and group definitions are
ignored, which can cause data to be grouped
incorrectly (<GROUP_n> tags are never
emitted, for example).

The default is yes.

segment Segment separator Specifies the character to use for segment
separators. This property affects EDI-to-XML
conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

154 Chapter 5 DataDirect XML Converters® Properties
setup Write setup
segment if
appropriate

When converting EDI to XML for EANCOM,
EDIFACT, Edig@s, IATA, and NCPDP SCRIPT,
you can generate UNA segments in the XML.
This segment is also recognized when
converting XML back to EDI as an alternative
to using the segment= URI option.

Valid values:

■ both – converts UNA segments in EDIFACT
to XML and vice versa. Also generates an
XML Schema for UNA when the schema
generator is used.

■ default – as opposed to turning the
emitting of a setup segment on or off
explicitly, the converter uses the default
value for the dialect. For example, for
EDIFACT, the default segment is "from
XML." For other dialects, the converter
may generate the header segment in both
directions.

■ toXML – converts UNA segments in
EDIFACT to XML and generates an XML
Schema when the schema generator is
used.

■ fromXML – converts UNA elements in XML
to UNA segments in EDI.

■ never – does not convert UNA segments to
XML, or vice versa.

The default is both.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 155
sign Use explicit ’+’ sign
to denote positive
numbers

For ACORD AL3 only. When writing AL3, the
default for denoting a positive number is the
space character. This property explicitly sets
the plus sign (+) to denote positive characters.

Valid values:

■ yes – the plus sign (+) is used to denote
positive numbers.

■ no – the space character is used to denote
positive numbers.

The default is no.

strict Strict validation
mode

Determines whether to perform strict
validation checking.

Valid values:

■ yes – checks that all mandatory elements
are present and ensures that no composite
elements are in places where only simple
elements are allowed. It also checks for
extra elements at the end of segments
that are not part of the specification.

■ no – does not perform strict validation.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

156 Chapter 5 DataDirect XML Converters® Properties
strip Strip C-style
comments

Determines whether content in the incoming
EDI stream that is wrapped in C-style /* and
*/ comment delimiters is ignored.

Valid values:

■ yes – ignores C-style comment delimiters.

■ no – does not ignore C-style comment
delimiters.

The default is no.

NOTE: The default setting is no because
ignoring the delimiters can result in a conflict
with real EDI content. HL7 files used with or
generated by certain systems may include this
markup, for example.

syntax Force the syntax
level of the
EDIFACT-style input

Determines the syntax level of the input.

Valid values:

■ yes – allows EDIFACT-style input to be
overridden from the assumed value in the
UNB0101/0001 element. Also, it is
especially useful when the input stream
does not contain a UNB or UIB segment
and one must be created.

■ no – does not allow EDIFACT-style input to
be overridden.

The default is no.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 157
ta1 Include TA1
segment

Allows inclusion of the TA1 segment in the
999 reply.

Valid values:

■ no – does not generate the TA1 segment
in the reply.

■ yes – always generates the TA1 segment in
the reply.

■ auto – uses the ISA14 setting from the
incoming interchange to determine
whether to add the TA1 segment in the
reply.

The default is no.

tbl Force error if value
not in code list

Determines whether the converter checks the
value of an element for its presence in the
codelist associated with that element.

Valid values:

■ yes – values are checked for their presence
in the codelist. If they are not found in the
codelist, an error is generated.

■ no – values are not checked for their
presence in a codelist.

The default is no.

terminate Stop reading the
input

Specifies a character that stops the reading of
the input during conversion. If the converter
encounters the specified character, the input
streaming stops at that character. This can be
useful to define the end-of-file marker so
that no data after this point will be read. This
property only applies when reading from EDI
and not for parsing XML.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

158 Chapter 5 DataDirect XML Converters® Properties
tertiary Subcomponent
(tertiary) separator

Specifies the character to use for
subcomponent separators. This property
affects EDI-to-XML conversion and vice versa.

See “Using Special Characters for Separators”
on page 164 for information about how to
specify values for this property.

toobig Proper tuning of
large segments

For some dialects, such as HL7, it is common
to have large segments that can contain more
than 100 elements. Normally, the error
recovery algorithm is applied when large
segments are encountered, and the converter
assumes that separators are specified
incorrectly or that the input is corrupt. This
property specifies a limit on the number of
elements.

typ Strict datatype
content checking

Ensures that only characters that are
appropriate for a given field are included in
the value for that field. For example, this
property ensures that dates are valid and
numbers are well-formed.

unbounded Upper limit on
maxOccurs, or
unbounded

Determines whether an upper threshold is
enforced on maxOccurs. For example, if
unbounded=50, all occurrences of maxOccurs
in an XML schema that have a value of 50 or
higher are changed to unbounded.

Valid values:

■ A positive integer greater than 1 – sets the
upper threshold on maxOccurs.

■ unbounded – does not set an upper
threshold on maxOccurs.

The default is unbounded.

uri Namespace URI Specifies a namespace URI to be added, with
the Namespace prefix, to the root element. If
the prefix is set, but the URI is not, the prefix
is ignored.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 159
user Extension map file Specifies the URL of the SEF file containing
custom message type definitions. This
property can also be used when generating
an XML Schema.

val Enable validation Determines whether validation is enabled.

Valid values:

■ yes – validation is enabled. The version,
release, messages and segments of the EDI
file (input or output) is compared to the
relevant EDI repository. If the EDI file
contains a value that is not in the EDI
repository, an error is thrown.

■ no – validation is disabled. Processing
continues even if the EDI file contains a
version, release, message, or segment that
is not in the repository. When processing
an unknown version, release, message, or
segment, some checks cannot be
performed because the structure of the
required data is unknown.

For example, if a file is of a known version but
contains an unknown segment, data type
checking for that segment is not performed,
but checks on the remainder of the file are
performed as usual. Similarly, if a message
does not exist in the EDI repository, the file is
still processed, but segment order checking is
not performed.

The default is yes.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

160 Chapter 5 DataDirect XML Converters® Properties
value Where to place
coded data values

Allows you to specify where to place coded
data values in XML output.

Valid values:

■ text – outputs the coded data value (here,
00) in the text node:
<BGN01><!--353: Transaction Set
Purpose Code-->00</BGN01>

■ attribute – outputs the coded data value
as an attribute:
<BGN01 value="00"><!--353:
Transaction Set Purpose
Code--></BGN01>

See also “decode” on page 134.

version Dialect version Overrides the version of the input file that is
detected by the converter. This property
affects EDI-to-XML conversion and vice versa.

Valid values vary based on the specified
dialect (see“dialect” on page 135).

See “XML Schema Generation” on page 30
for more information about how this
property affects XML Schema generation. See
“HTML/XHTML Documentation Generation”
on page 41 for more information about how
this property affects HTML/XHTML
documentation generation.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 161
xr Type of transaction
message to be
generated

Specifies the type of transaction message to
be generated. For example, if set to a value of
999, a 999 response message is generated
instead of generating the 997 response
message.

Valid values:

■ 997 – a 997 response message will be
generated for transactions.

■ 999 – a 999 response message will be
generated for transactions.

NOTE: If you specify xr=999, make sure that
the version of X12 being used supports the
999 response message, which was introduced
in version 005010. This property is
HIPAA-aware; therefore, for version 0050x0,
it writes the 005010X231 version of 999, and
for 0060x0, it writes the 006010X290 version.

The default is 997.

zz Include ZZMOV
and/or ZZDEL in
output

For ACORD AL3 only. Affects whether moved
(ZZMOV) or deleted (ZZDEL) fields in a file are
emitted to XML.

Valid values:

■ none – no ZZ* elements are emitted.

■ delete – only ZZDEL elements are emitted.

■ move – only ZZMOV elements are emitted.

■ all – all ZZ* elements are emitted.

The default is none.

Table 5-9. Properties for the EDI XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

162 Chapter 5 DataDirect XML Converters® Properties
FINNISH Character Set Overrides

You can use the Character repertoire override property (see “chr” on
page 129) to change the meaning of certain characters for the
Finnish character set for UNOA (UNOY) and UNOB (UNOZ). The
following table shows which characters are changed based on
the character set in use.

Table 5-10. Character Encoding Overrides

Character From Character To Applicable Character Sets Unicode Name

[Ä UNOA/UNOY, UNOB/UNOZ Latin capital letter A
with diaeresis

\ Ö UNOA/UNOY, UNOB/UNOZ Latin capital letter O
with diaeresis

] Å UNOA/UNOY, UNOB/UNOZ Latin capital letter A
with ring above

^ Ü UNOA/UNOY, UNOB/UNOZ Latin capital letter U
with diaeresis

{ ä UNOB/UNOZ Latin small letter a with
diaeresis

| ö UNOB/UNOZ Latin small letter o
with diaeresis

} Å UNOB/UNOZ Latin small letter a with
ring above

~ ü UNOB/UNOZ Latin small letter u
with diaeresis
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 163
Explicit Character Overrides

In addition to the modifiers you can specify using the Character
repertoire override property (see “chr” on page 129), you can instruct
the DataDirect XML Converters to take character encodings from
the URI, instead of from the EDIFACT-style UNB or UIB 001
element. If you choose to do this, you can use the encodings
described in the following table:

Table 5-11. Character Encoding Overrides

Property Name Description

UNOA or IATA UN/ECE level A (upper case only)

UNOB or IATA UN/ECE level B (same as UNOA but including lower case)

UNOC or IATC UN/ECE level C (ISO-8859-1 or Latin-1/Western European)

UNOD or IATD UN/ECE level D (ISO-8859-2 or Latin-2/Central European)

UNOE or IATE UN/ECE level E (ISO-8859-5 or Latin/Cyrillic)

UNOF or IATF UN/ECE level F (ISO-8859-7 or Latin/Greek)

UNOG or IATG UN/ECE level G (ISO-8859-3 or Latin-3/South European)

UNOH or IATH UN/ECE level H (ISO-8859-4 or Latin-4/North European)

UNOI or IATI UN/ECE level I (ISO-8859-6 or Latin/Arabic)

UNOJ or IATJ UN/ECE level J (ISO-8859-8 or Latin/Hebrew)

UNOK or IATK UN/ECE level K (ISO-8859-9 or Latin-5/Turkish)

UNOQ or IATQ UN/ECE level Q (ISO-8859-15 or Latin-9/)

UNOW or IATW UN/ECE level W (ISO 10646-1 octet with code extension technique to
support UTF-8)

UNOX Unsupported. An external library must be used to handle the
encoding prior to supplying the data stream to the DataDirect XML
Converters.

UNOY or IATY UN/ECE level Y (ISO 10646-1 octet without code extension
technique.); also Finnish UNOA

UNOZ or IATZ Finnish UNOB
DataDirect XML Converters® for Java™ User’s Guide and Reference

164 Chapter 5 DataDirect XML Converters® Properties
These can also be combined with other chr= options. For
example, an EDI file might specify an UNOA encoding, but with
lower-case text, because the sending system sent inconsistent
data. Using chr=UNOB+REPLACE, the data could be consumed, and
any non-UNOB characters would turn into '_' characters, allowing
processing to continue.

The DataDirect XML Converters do not perform character
checking for UNOX; rather it depends on the native platform
converter or the application to ensure that the characters are
valid. This is because there are too many implementation-specific
details, subsets, and proprietary and local extensions, and it is not
possible to account for them all.

Using Special Characters for Separators

Most special characters or symbols cannot be entered directly
into a URL. For example, you cannot specify that the colon (:) is
the element separator character by entering
converter:EDI:element=::auto=both. Instead, you must escape
special characters using the appropriate decimal or hexadecimal
value. To specify a colon as an element separator character, you
would use converter:EDI:element=\u3A:auto=both.

NOTE: The special characters that are supported vary depending
on the specified EDI dialect.

See Table 5-12, “Common Separator Characters,” on page 166 for
a complete list of separator characters and their decimal and
hexadecimal values.
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 165
Which Properties Specify Separators?

The following properties can be used to specify separators for
the EDI XML Converter:

■ “component” on page 130
■ “continued” on page 131
■ “decimal” on page 132
■ “delimiter” on page 135
■ “element” on page 136
■ “following” on page 140
■ “numpad” on page 149
■ “release” on page 151
■ “repeat” on page 151
■ “segment” on page 153
■ “terminate” on page 157
■ “tertiary” on page 158

Restrictions for Separator Characters

The following restrictions apply for using separator characters.

■ The values you set for separator properties apply only when
converting XML to EDI.

■ You cannot use letters, numbers, or spaces for separator
characters.

■ You must use unique values for each separator property.
DataDirect XML Converters® for Java™ User’s Guide and Reference

166 Chapter 5 DataDirect XML Converters® Properties
Commonly Used Separator Characters

Commonly used separator characters and their escape values (in
decimal and hexadecimal) are shown in the following table.

Table 5-12. Common Separator Characters

Character Decimal Hexadecimal

~ \d126 \u007E

! \d33 \u0021

@ \d64 \u0040

\d35 \u0023

$ \d36 \u0024

% \d37 \u0025

^ \d94 \u005E

& \d38 \u0026

* \d42 \u002A

(\d40 \u0028

) \d41 \u0029

_ \d95 \u005F

+ \d43 \u002B

` \d96 \u0060

- \d45 \u002D

= \d61 \u003D

[\d91 \u005B

] \d93 \u005D

} \d123 \u007B

{ \d125 \u007D

\ \d92 \u005C

| \d124 \u007C

’ \d39 \u0027

; \d59 \u003B

" \d34 \u0022
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 167
Control Characters

You can also use the non-printable control characters shown in
the following table as separators.

: \d58 \u003A

/ \d47 \u002F

. \d46 \u002E

, \d44 \u002C

? \d63 \u003F

> \d62 \u003E

< \d60 \u003C

Table 5-13. Control Characters

Character Decimal Hexadecimal Other

NUL \d0 \u0000

SOH \d1 \u0001

STX \d2 \u0002

ETX \d3 \u0003

EOT \d4 \u0004

ENQ \d5 \u0005

ACK \d6 \u0006

BEL \d7 \u0007

BELL \d7 \u7000

BS \d8 \u0008

HT \d9 \u0009 \t

TAB \d9 \u0009 \t

Table 5-12. Common Separator Characters

Character Decimal Hexadecimal
DataDirect XML Converters® for Java™ User’s Guide and Reference

168 Chapter 5 DataDirect XML Converters® Properties
LF \d10 \u000A \n

VT \d11 \u000B

FF \d12 \u000C \f

CR \d13 \u000D \r

SO \d14 \u000E

SI \d15 \u000F

DLE \d16 \u0010

DC1 (XON) \d17 \u0011

DC2 \d18 \u0012

DC3 (XOFF) \d19 \u0013

DC4 \d\0 \u0014

NAK \d21 \u0015

SYN \d22 \u0016

ETB \d23 \u0017

CAN \d24 \u0017

EM \d25 \u0019

SUB \d26 \u001a

ESC \d27 \u001b

FS \d28 \u001c

GS \d29 \u001d

RS \d30 \u001e

US \d31 \u001f

DEL \d127 \u007F

BPH \d130 \u0082

NBH \d131 \u0083

IND \d132 \u0084

NEL \d133 \u0085

SSA \d134 \u0086

ESA \d135 \u0087

Table 5-13. Control Characters

Character Decimal Hexadecimal Other
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 169
HTS \d136 \u0088

HTJ \d137 \u0089

VTS \d138 \u008A

PLD \d139 \u008B

PLU \d140 \u008C

RI \d141 \u008D

SS2 \d142 \u008E

SS3 \d143 \u008F

DCS \d144 \u0090

PU1 \d145 \u0091

PU2 \d146 \u0092

STS \d147 \u0093

CCH \d148 \u0094

MW \d149 \u0095

SPA \d150 \u0096

EPA \d151 \u0097

SOS \d152 \u0098

SCI \d154 \u009A

CSI \d155 \u009B

ST \d156 \u009C

OSC \d157 \u009D

PM \d158 \u009E

APC \d159 \u009F

NBS (NBSP) \d160 \u00A0

SHY \d173 \u00AD

Table 5-13. Control Characters

Character Decimal Hexadecimal Other
DataDirect XML Converters® for Java™ User’s Guide and Reference

170 Chapter 5 DataDirect XML Converters® Properties
EDI Processing Instructions

You can specify EDI processing instruction (PI) values in the EDI
XML Converter URI as described in the following table.

Leave these values blank to assume the default values. DataDirect
XML Converters generates an error if a PI and URI switch have
conflicting values, or if either value conflicts with one of the
values encoded in a segment for these values.

The syntax of an EDI processing instruction is <?, followed by
processing instruction name (edi_segment, for example),
followed by a space, and then the new special character.

Table 5-14. Properties for EDI Processing Instructions

Processing
Instruction Name in URI Description Default

edi_component component Component value separator. :

edi_continued continued Line continuation character No default

edi_decimal decimal Decimal character. ,

edi_delimiter delimiter Delimiter for quoted strings Q

edi_element element Element separator. +

edi_following following Segment name/segment
content

=

edi_invalid invalid Invalid character replacement _

edi_numpad numpad Pad numbers with alternate
characters

No default

edi_release release Release (escape) separator. ?

edi_repeat repeat Repeat symbol separator. ~

edi_segment segment Segment separator. ’

edi_terminate terminate Stop processing character No default

edi_tertiary tertiary Subcomponent (tertiary)
separator.

&

DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 171
Example

Suppose an X12 document had to be written so that the
segment terminator was a carriage return, the element
separator was an asterisk, and the component separator was the
greater-than symbol. The start of the file might look like this:

<?xml version="1.0" encoding="utf-8"?>
<?edi_segment \r?>
<?edi_element *?>
<X12>
 <ISA>
 <ISA01><!--I01: Authorization Information Qualifier-->00</ISA01>
 <ISA02><!--I02: Authorization Information--></ISA02>
 <ISA03><!--I03: Security Information Qualifier-->00</ISA03>
 <ISA04><!--I04: Security Information--></ISA04>
 <ISA05><!--I05: Interchange ID Qualifier-->01</ISA05>
 <ISA06><!--I06: Interchange Sender ID-->1515151515</ISA06>
 <ISA07><!--I05: Interchange ID Qualifier-->01</ISA07>
 <ISA08><!--I07: Interchange Receiver ID-->5151515151</ISA08>
 <ISA09><!--I08: Interchange Date-->041201<!--2004-12-01--></ISA09>
 <ISA10><!--I09: Interchange Time-->1217</ISA10>
 <ISA11><!--I65: Repetition Separator-->U</ISA11>
 <ISA12><!--I11: Interchange Control Version-->00403</ISA12>
 <ISA13><!--I12: Interchange Control Number-->000032123</ISA13>
 <ISA14><!--I13: Acknowledgment Requested-->0</ISA14>
 <ISA15><!--I14: Usage Indicator-->P</ISA15>
 <ISA16><!--I15: Component Element Separator-->></ISA16>
 </ISA>
...
DataDirect XML Converters® for Java™ User’s Guide and Reference

172 Chapter 5 DataDirect XML Converters® Properties
Stopping a Conversion If the Input
Does Not Match What is Expected

You may want to terminate the input if the input contains an
incorrect message. If the auto-detection feature incorrectly
identifies the message type from the incoming data, you can use
the message= URI property to force the incoming message to act
in a different way.

To quickly terminate the input, a "detector" program can be
used. The following program reads a sufficient amount of data
from an EDI file. It determines if the file matches the given
specifications, and if the file does not, the conversion is quickly
terminated.

Example

The program uses the XML Converters library and the listener
interface. It works because the XML Converters are designed to
stream data. When the converters see input, they immediately
write the output. The program reads data and looks for the
dialect, version, and message properties, and terminates the
conversion as soon as these properties are seen. The system then
discards the output obtained from the conversion process.

import java.io.IOException;
import java.io.Writer;

import javax.xml.transform.Result;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import com.ddtek.xmlconverter.Converter;
import com.ddtek.xmlconverter.ConverterFactory;
import com.ddtek.xmlconverter.adapter.edi.EDIConverterListener;
import com.ddtek.xmlconverter.adapter.edi.EDISegmentDetails;
import com.ddtek.xmlconverter.exception.ConverterException;
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 173
/**
 * This program will accept one or more EDI files as arguments.
 * First, it processes them until it sees the first StartMessage event,
 * writing the results to null output.
 * Next, it throws a benign exception to stop processing and
 * checks the dialect, version, and message against what is expected.
 * If they match, it restarts processing and transforms the message into an
 * XML file with the same base name as the input file.
 * If they do not match, it stops processing as if an error were encountered.
 */
public class Stopper {

// public static final String DIALECT = "X12";
// public static final String VERSION = "004030";
// public static final String MESSAGE = "831";
 public static final String DIALECT = "HL7";
 public static final String VERSION = "2.1";
 public static final String MESSAGE = "ORU";

 public static void main(String[] args) {
 for (String arg : args)
 new Stopper(arg);
 }

 public Stopper(String arg) {
 ConverterFactory factory = new ConverterFactory();
 Converter toXml;
 try {
 toXml = factory.newConvertToXML("converter:EDI:tbl=no:opt=yes");
 } catch (ConverterException ce) {
 ce.printStackTrace();
 return;
 }
 EDIConverterListener listener = new MessageListener();

 String out = null;
 // yields "xml" if the input has no '.'
 try {
 out = arg.substring(0, arg.indexOf('.') 1) "xml";
DataDirect XML Converters® for Java™ User’s Guide and Reference

174 Chapter 5 DataDirect XML Converters® Properties
 Source converterSource;
 Result converterResult;

 // the first pass is to check for conformity
 try {
 toXml.getConfiguration().setConverterListener(listener);
 converterSource = new StreamSource(arg);
 converterResult = new StreamResult(new NullWriter());
 toXml.convert(converterSource, converterResult);
 throw new StopException(null);
 // make sure we handle case where EDI contains no message
 } catch (StopException exception) {
 if (!isSame(DIALECT, exception.dialect)
 || !isSame(VERSION, exception.version)
 || !isSame(MESSAGE, exception.message)) {
 System.out.println("[Stopper] error! " arg " is not a
 " DIALECT " " VERSION " " MESSAGE);
 return;
 }
 }

 // yes, it's okay to re-use the converter
 toXml.getConfiguration().setConverterListener(null);
 converterSource = new StreamSource(arg);
 converterResult = new StreamResult(out);
 toXml.convert(converterSource, converterResult);

 System.out.println("[Stopper] completed: " arg " -> " out);
 } catch (ConverterException exception) {
 System.out.println("[Stopper] failed: " arg " -> " out);
 System.out.println("[Stopper] failed with exception:
 " exception);
 }

 }

 private boolean isSame(String one, String two) {
 if (one == two)
 return true; // catches both same, or both null
 if (one == null || two == null)
 return false; // catches either null
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 175
 return one.replaceAll("[-.]", "").
 equals(two.replaceAll("[-.]", ""));
 }

 public static class StopException extends ConverterException {
 public String dialect;
 public String version;
 public String message;
 public StopException(EDISegmentDetails details) {
 super("");
 dialect = details == null ? null : details.getDialect();
 version = details == null ? null : details.getMessageVersion();
 message = details == null ? null : details.getTransactionSet();
 }
 private static final long serialVersionUID = -98684742021305872L;
 }

 public static class NullWriter extends Writer {
 public void write(char[] cbuf, int off, int len) throws IOException { }
 public void flush() throws IOException { }
 public void close() throws IOException { }
 }

 public static class MessageListener implements EDIConverterListener {
 public void error(ConverterException exception) throws
ConverterException {
 throw exception; // take this out to make recoverable errors recover
 }
 public void fatalError(ConverterException exception) throws
ConverterException {
 // no matter what we do here, an exception is thrown by the caller
 }
 public void warning(ConverterException exception) throws
ConverterException {
 System.out.println("[Stopper] warning: " exception.toString());
 }

 public void startInterchange(EDISegmentDetails details) throws
Exception { }
 public void startGroup(EDISegmentDetails details) throws Exception { }
 public void startMessage(EDISegmentDetails details) throws Exception {
DataDirect XML Converters® for Java™ User’s Guide and Reference

176 Chapter 5 DataDirect XML Converters® Properties
 throw new StopException(details); // we've seen enough, now exit
 }
 public void processSegment(EDISegmentDetails details) throws Exception
{ }
 public void endMessage(EDISegmentDetails details) throws Exception { }
 public void endGroup(EDISegmentDetails details) throws Exception { }
 public void endInterchange(EDISegmentDetails details) throws Exception
{ }
 public int invalidCharacter(char chr, String coding) {
 return -1; // let it throw!
 }
 public String unknownCodelistValue(String segment, int pos, int sub,
int tri, int rep, String element, String item) {
 return null; // let it throw!
 }
 }
}

Autofilling Segments and Elements

By default, the values of segments and elements are autofilled
during the conversion from XML to an EDI format or vice versa.
You can change the default behavior by setting the following
XML EDI Converter URI properties:

■ auto property determines whether autofilling is enabled or
disabled. You can enable autofilling for the following types of
conversions:

• From the EDI format to XML (auto=toXML)
• From the XML format to the EDI format (auto=fromXML)
• From either the EDI format or the XML format (auto=both)

To disable autofilling, use auto=never. When autofilling is
enabled, the values of elements that are autofilled depend on
the specified dialect as described in Table 5-15.

■ noautofill property excludes specific segments or elements
from being autofilled when autofilling is enabled. For
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 177
example, to autofill all segments and elements except the
UNB and UNZ segments, you could use the following
Converter URI fragment:

auto=both:noautofill=UNB*,UNZ*

Table 5-15. Autofilled Elements For Each Dialect

dialect Property Value Elements

AHM780 None.

AL3 If the group (segment) header is not
supplied, sequence numbers are autofilled.

CARGO None.

EANCOM UIB0801, UIB0802, UIT01, UIT02, UIZ0101,
UIZ0102, UIZ0103, UIZ0104, UIZ02, UIZ03,
UNB0401, UNB0402, UNG0401, UNG0402,
UNT01, UNT02, UNZ01, and UNZ02.

EDIFACT UIB0801, UIB0802, UIT01, UIT02, UIZ0101,
UIZ0102, UIZ0103, UIZ0104, UIZ02, UIZ03,
UNB0401, UNB0402, UNG0401, UNG0402,
UNT01, UNT02, UNZ01, and UNZ02.

EDIG@S UIB0801, UIB0802, UIT01, UIT02, UIZ0101,
UIZ0102, UIZ0103, UIZ0104, UIZ02, UIZ03,
UNB0401, UNB0402, UNG0401, UNG0402,
UNT01, UNT02, UNZ01, and UNZ02.

HIPAA CTT01, CTT02, G8501 (calculated CRC
value), GE01, GE02, GS04, GS05, IEA01,
IEA02, ISA01 (defaults to 00 if missing),
ISA03 (defaults to 00 if missing), ISA05
(defaults to ZZ if missing), ISA07 (defaults
to ZZ if missing), ISA09 (defaults to
YYMMDD if missing), ISA10 (defaults to
HHMM if missing), ISA11, ISA12, ISA16
(component element separator, if specified
in URI), SE01, and SE02.

HL7 All CE/CF/CNE/CWE-type elements
(controlled by cexpand= URI property),
MSH.1, and MSH.2
DataDirect XML Converters® for Java™ User’s Guide and Reference

178 Chapter 5 DataDirect XML Converters® Properties
IATA UIB0801, UIB0802, UIT01, UIT02, UIZ0101,
UIZ0102, UIZ0103, UIZ0104, UIZ02, UIZ03,
UNB0401, UNB0402, UNG0401, UNG0402,
UNT01, UNT02, UNZ01, and UNZ02.

NCPDP UIB0801, UIB0802, UIT01, UIT02, UIZ0101,
UIZ0102, UIZ0103, UIZ0104, UIZ02, UIZ03,
UNB0401, UNB0402, UNG0401, UNG0402,
UNT01, UNT02, UNZ01, and UNZ02.

TELCO Values for the COUNT and COUNTING
fields are calculated based on the number
of elements.

TRADACOMS ATR01, DNA01, END01, EOB01, MHD01,
MTR01, PAT01, RSG01, RSG02, STX0401,
and STX0402.

Also, if any of the following elements
appear, they are autofilled:

APSE, APSI, ASDA, ASDT, CONA1, CTOT1,
EVLA, EVLT, EXLV, FASE, FASI, FASU1,
FBAB1, FPSE, FPSI, FPSU1, FTAK, FTAR,
FTCO, FTDE, FTNA, FTNC, FTND, FTNE, FTNI,
FTNP, FTNS, FTOP1, FTOR, FTPC, FTSR, FTUP,
FVAT, ISTO, LACK, LCON, LDEL, LOCD,
LORD, LUPL, LVLA, LVLT, NOLR, NOPP,
NOPR, NOTX, PTOT1, SDCD, SEDT, SEQA,
SEQB, SEQC, SEQD, SLAJ, SLSN, SRAP, SRDT,
SRLC, SRVT, STLD, STLN, STPT, TBTL1, TOTL,
TOTV, TPSE, TPSI, TVAT, TVLC, TVLD, TVLP,
UCSI1, UPSI1, USDI1, UTVA1, UVAT1,
UVLA1, UVLT1, UVTT1, VATA, VPSE, VPSI,
VSDE, VSDI, VTVC1, and VVAT.

Table 5-15. Autofilled Elements For Each Dialect (cont.)

dialect Property Value Elements
DataDirect XML Converters® for Java™ User’s Guide and Reference

EDI XML Converter Properties 179
X12 CTT01, CTT02, G8501 (calculated CRC
value), GE01, GE02, GS04, GS05, IEA01,
IEA02, ISA01 (defaults to 00 if missing),
ISA03 (defaults to 00 if missing), ISA05
(defaults to ZZ if missing), ISA07 (defaults
to ZZ if missing), ISA09 (defaults to current
date in YYMMDD if missing), ISA10
(defaults to HHMM if missing), ISA11,
ISA12, ISA16, SE01, and SE02.

Table 5-15. Autofilled Elements For Each Dialect (cont.)

dialect Property Value Elements
DataDirect XML Converters® for Java™ User’s Guide and Reference

180 Chapter 5 DataDirect XML Converters® Properties
HTML Converter Properties
You can use the HTML XML Converter to convert HTML to
XHTML.

The following table lists the properties for the HTML XML
Converter.

XML Converter Name in URI

HTML

Table 5-16. Properties for the HTML XML Converter

Name in URI Property Name Description

encoding Encoding The encoding for the input file when the
input file is not XML or the encoding for the
output file when the output file is not XML.

The default is utf-8.

errors Abort on errors
found

Determines whether the converter will fail
when it encounters problems with the
HTML-to-XHTML mapping.

Valid values:

■ yes – the converter fails when it
encounters problems with the mapping.

■ no – even if the converter encounters
problems with the mapping, the
converter continues with the conversion,
making a best guess.

The default is yes.
DataDirect XML Converters® for Java™ User’s Guide and Reference

HTML Converter Properties 181
newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
only used when converting HTML to XHTML.

The default is crlf.

warnings Abort on warnings
found

Determines whether the converter will fail if
it encounters problems with the
HTML-to-XHTML mapping.

Valid values:

■ yes – the converter fails when it
encounters problems with the mapping.

■ no – even if the converter encounters
problems with the mapping, the
converter continues with the conversion,
making a best guess.

The default is no.

Table 5-16. Properties for the HTML XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

182 Chapter 5 DataDirect XML Converters® Properties
Java .properties File XML Converter Properties
You can use the JavaProps XML Converter to convert Java
.properties files to XML and vice versa.

The following table lists the properties for the JavaProps XML
Converter.

XML Converter Name in URI

JavaProps

Table 5-17. Properties for the JavaProps XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is ISO-8859-1.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting a file to XML, and vice
versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

JSON XML Converter Properties 183
JSON XML Converter Properties
The following table lists properties for JSON (JavaScript Object
Notation) XML Converter.

XML Converter Name in URI

JSON

Table 5-18. Properties for the JSON XML Converter

Name in URI Property Name Description

indent Indent Specifies the level of indent to use for the
converted XML.

The default is 4.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

184 Chapter 5 DataDirect XML Converters® Properties
OpenEdge .d Data Dump XML Converter
Properties

You can use the DotD XML Converter to convert Progress
OpenEdge .d data dump files to XML and vice versa.

The following table lists properties for the DotD XML Converter.

XML Converter Name in URI

DotD

Table 5-19. Properties for the DotD XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is utf-8.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting a file to XML, and vice
versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Pyx Format XML Converter Properties 185
Pyx Format XML Converter Properties
You can use the Pyx XML Converter to convert Pyx format files to
XML and vice versa.

The following table lists the properties for the Pyx XML
Converter.

XML Converter Name in URI

Pyx

Table 5-20. Properties for the Pyx XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is utf-8.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting a file to XML, and vice
versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

186 Chapter 5 DataDirect XML Converters® Properties
Rich Text Format XML Converter Properties
The following table lists the properties for the Rich Text Format
(RTF) XML Converter.

XML Converter Name in URI

RTF

Table 5-21. Properties for the RTF XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default is cp850.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a list
of commonly used values. This property is
used when converting a file to XML, and vice
versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

SDI XML Converter Properties 187
SDI XML Converter Properties
You can use the SDI XML Converter to convert Super Data
Interchange Format (SDI) files to XML and vice versa.

The following table lists the properties for the SDI XML
Converter.

XML Converter Name in URI

SDI

Table 5-22. Properties for the SDI XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is cp850.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting SDI files to XML, and
vice versa.

The default is crlf. S.
DataDirect XML Converters® for Java™ User’s Guide and Reference

188 Chapter 5 DataDirect XML Converters® Properties
SYLK XML Converter Properties
You can use the SYLK XML Converter to convert Symbolic Link
Format (SYLK) files to XML and vice versa.

The following table lists the properties for the SYLK XML
Converter.

XML Converter Name in URI

SYLK

Table 5-23. Properties for the SYLK XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is cp850.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting SYLK files to XML,
and vice versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Tab-Separated Values XML Converter Properties 189
Tab-Separated Values XML Converter
Properties

You can use the TAB XML Converter to convert tab-separated
values files to XML and vice versa.

The following table lists the properties for the TAB XML
Converter.

XML Converter Name in URI

TAB

Table 5-24. Properties for the Tab-Separated Values XML Converter

Name in URI Property Name Description

collapse Collapse consecutive
separators

Determines whether to collapse consecutive
separators (separators that do not contain
any data).

Valid values:

■ yes – consecutive separators are collapsed.

■ no – consecutive separators are not
collapsed.

The default is no.

double Doubling
embedded quote
escapes it

Determines whether doubling an embedded
quotation mark has the effect of escaping the
quoted string.

Valid values:

■ yes – allows doubling quotation marks to
escape a quoted string.

■ no – does not permit doubling quotation
marks to escape a quoted string.

The default is no.
DataDirect XML Converters® for Java™ User’s Guide and Reference

190 Chapter 5 DataDirect XML Converters® Properties
encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default is cp1252.

escape Escape character Specifies the escape character (escapes quotes
and separators so that they can be embedded
in values).

The backslash (\) is the default.

first First row contains
field names

Generated field names depend on the values
in the first and number fields.

If first=yes and number=no, field names are
read from the first row. Any field names after
that are named column.nnn, where nnn is the
column number, starting from 1 and including
explicitly named columns in the count. If
number=yes, extra columns (those after the
first) are named column.

multiline= Multiline Determines whether a line separator in a
quoted string is considered part of the
content of a field.

Valid values:

■ yes – a line separator in a quoted string is
considered part of the content of that
field.

■ no – a line separator in a quoted string is
not considered part of the content of a
field and terminates the row, even if it is
encountered in the middle of a quoted
string.

The default is no.

newline Line separator See “Line Separator Values” on page 115 for
a list of commonly used values.

Table 5-24. Properties for the Tab-Separated Values XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

Tab-Separated Values XML Converter Properties 191
number Number rows and
columns

Determines whether rows are numbered.

Valid values:

yes – each row has an attribute named row
that specifies the row number from the
source document, starting from 1. Also, each
column, even those explicitly named, have a
column attribute numbering the column from
1.

no – any empty columns are omitted from the
output, but the numbering of subsequent
columns reflect that a column(s) was skipped.

The default is no.

quotes Quote characters Specifies a list of characters that the converter
should interpret as quotation characters.

The default is double quotes (") and single
quotes (’).

root Root element name Specifies the root element name.

The default is table.

row Row element name Specifies the row element name.

The default is row.

sep Separator Specifies the separator value between each
value. This can be TAB, any single character (a
comma (,) is the default), or the
%XX-escaped value (%2c, for example).

Table 5-24. Properties for the Tab-Separated Values XML Converter

Name in URI Property Name Description
DataDirect XML Converters® for Java™ User’s Guide and Reference

192 Chapter 5 DataDirect XML Converters® Properties
Whole-Line Text XML Converter Properties
You can use the Line XML Converter to convert whole-line text
formatted files to XML and vice versa.

The following table lists the properties for the Line XML
Converter.

XML Converter Name in URI

Line

Table 5-25. Properties for the Whole-line Text XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file when
the input file is not XML or the encoding for
the output file when the output file is not
XML.

The default is utf-8.

line Line element name Specifies the line element name.

The default is line.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a list
of commonly used values. This property is
used when converting a whole-line text file
to XML, and vice versa.

The default is crlf.

root Root element name Specifies the root element name.

The default is root.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Windows .ini File XML Converter Properties 193
Windows .ini File XML Converter Properties
You can use the WinIni XML Converter to convert Windows .ini
files to XML and vice versa.

The following table lists the properties for the WinIni XML
Converter.

XML Converter Name in URI

WinIni

Table 5-26. Properties for the WinIni XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is cp1252.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting a file to XML, and vice
versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

194 Chapter 5 DataDirect XML Converters® Properties
Windows Write XML Converter Properties
You can use the WinWrite XML Converter to convert Windows
Write files to XML and vice versa.

The following table lists the properties for the Windows Write
XML Converter.

XML Converter Name in URI

WinWrite

Table 5-27. Properties for the WinWrite XML Converter

Name in URI Property Name Description

encoding Encoding Specifies the encoding for the input file
when the input file is not XML or the
encoding for the output file when the
output file is not XML.

The default is utf-8.

newline Line separator Specifies the line separator character. See
“Line Separator Values” on page 115 for a
list of commonly used values. This property is
used when converting a file to XML, and vice
versa.

The default is crlf.
DataDirect XML Converters® for Java™ User’s Guide and Reference

Index 195
Index

A
accessing data using Stylus Studio URL

schemes 21
API

examples 87
examples of the DataDirect XML

Converters Java API 87
autofilling segments and elements 176

B
Base-64 XML Converter properties 117
binary XML Converter properties 118
books

PDF version 14

C

Cargo-IMP files
XML Converter properties for 126

command line
analyze option 23
analyze switch 67
analyzing EDI 67
converter option 23
EDI analysis report 67
in option 24
out option 24
report option 23
report switch 67
schema option 24
specifying XML Converter properties 23

to option 24
usage 23

contacting Technical Support 15
control characters

for EDI XML Converter 167
conventions, typographical 11
conversion results

pulling 110
pushing 110

converter URI scheme
building a converter URI 56
description 53
displayed in Stylus Studio 57
parts of 53
syntax of 54
using with user-defined .conv files 58

converting EDI to XML
analyzing data streams for errors 61

CSV XML Converter properties 120
custom XML conversions, using with

converter URIs 58
customizing file conversions 20

D
data

accessing data using Stylus Studio URL
schemes 21

dBase XML Converter properties 123
demo.cs example 87
demo.java demonstration file 87
DIF XML Converter properties 125
documentation, about 12
DotD XML Converter properties 184
DataDirect XML Converters® for Java™ User’s Guide and Reference

Index 196
E
EANCOM files

XML Converter properties for 126
EDI

analysis report 63
Analyze method 61
analyze() method example 108
analyzing data streams for errors 61
analyzing EDI streams for errors 27
EDI Analyzer API example 108
transmission response messages 65

EDI XML Converter
exception handling for 29
proprietary EDI formats and 25

EDI XML Converters
SEF support 25

EDIFACT files
XML Converter properties for 126

encoding values 116
error handling

example 99
overview 27

errors
analyzing EDI data streams 61
analyzing EDI for errors 27
EDI analysis report 63
managing errors 27

examples 87
analyze() method 108
converting CSV to XML 91
converting EDI in memory 106
converting X12 to XML 97
converting XML to CSV 92
converting XML to X12 97
converting XSLT output to CSV 96
creating an XML Schema from a CSV file

102
creating an XML Schema from EDI 103
demo.cs 87
EDI Analyzer API 108
error handling 99
streaming EDI 107

streaming XML 94
using a document URI resolver 104
using custom XML conversions 93
using SEF to convert EDI 98
using the XML Converters Java API 87

exception handling 29

F
files

customizing file conversions 20
formats supported by XML Converters 17
generating XML Schema from 40

G

generating XML Schema
example 31, 51
file type summary 40
instance documents 33
overview 30
URI properties 33

H
HL7 files

XML Converter properties for 126
HTML XML Converter properties 180

I

IATA files
XML Converter properties for 126

instance documents
XML Schema generation and 33
DataDirect XML Converters® for Java™ User’s Guide and Reference

Index 197
J
Java API

examples of 87
JavaProps XML Converter properties 182
JSON XML Converter properties 183

L

Line XML Converter properties 192

N
NCPDP files

XML Converter properties for 126

O
OpenEdge DotD XML Converter properties

184

P

PADIS files
XML Converter properties for 126

PDF version of the books 14
processing instructions for EDI XML

Converter 170
pulling conversion results 110
pushing conversion results 110
Pyx XML Converter properties 185

R
RTF XML Converter properties 186

S

SDI XML Converter properties 187
SEF

support in EDI XML Converter 25
separator characters

for EDI XML Converter 164
special characters

for EDI XML Converter 164
Standard Exchange Format. See SEF
stopping a conversion 172
streaming EDI

example 107
Stylus Studio

building a converter URI using 56
SYLK XML Converter properties 188

T
TAB XML Converter properties 189
Technical Support, contacting 15
TRADACOMS files

XML Converter properties for 126

U

URI properties
XML Schema generation and 33

URI schemes
descriptions of 22
the converter URI scheme 21
DataDirect XML Converters® for Java™ User’s Guide and Reference

198 Index
W
WinIni XML Converter properties 193
WinWrite XML Converter properties 194

X

X12 files
XML Converter properties for 126

XML Converters
Base-64 XML Converter properties 117
binary XML Converter properties 118
building a converter URI using Stylus

Studio 56
Cargo-IMP file converter properties 126
command line usage 23
control characters for EDI XML Converter

167
CSV XML Converter properties 120
customizing 20
dBase XML Converter properties 123
descriptions of 17
DIF XML Converter properties 125
DotD XML Converter properties 184
EANCOM file converter properties 126
EDIFACT file converter properties 126
error handling 27
examples 87
exception handling 29
file formats supported by 17
generating XML Schema with 30, 31
HL7 file converter properties 126
HTML XML Converter properties 180
IATA file converter properties 126
Java API examples 87
JavaProps XML Converter properties 182
JSON XML Converter properties 183
line separator values used in 115
Line XML Converter properties 192
NCPDP file converter properties 126

OpenEdge DotD XML Converter
properties 184

overview 17
PADIS file converter properties 126
processing instructions for EDI XML

Converters 170
Pyx XML Converter properties 185
RTF XML Converter properties 186
SDI XML Converter properties 187
SEF support 25
separator characters for EDI XML

Converter 164
special characters for EDI XML Converter

164
SYLK XML Converter properties 188
TAB XML Converter properties 189
TRADACOMS file converter properties 126
WinIni XML Converter properties 193
WinWrite XML Converter properties 194
X12 file converter properties 126

XML Schema
generating

example 31
instance documents 33
overview 30
URI properties 33

generation
file type summary 40

XML Schema generation
example 51
instance documents and 33
URI properties and 33
DataDirect XML Converters® for Java™ User’s Guide and Reference

	Preface
	What are DataDirect XML Converters®?
	Using This Book
	Typographical Conventions
	About the Product Documentation
	HTML Version
	PDF Version
	Javadoc

	Contacting Technical Support

	1 DataDirect XML Converters® Overview
	Types of DataDirect XML Converters®
	Customizing DataDirect XML Converters®
	Data Access
	URI Schemes
	Command-Line Usage
	Usage Notes
	Example

	Handling Proprietary EDI Formats
	Creating an SEF File
	The SEF Specification
	Example: Using an SEF File

	Managing Errors
	EDI Analyzer
	ConverterListener Interface
	EDIConverterListener Interface
	EDIConverterException Interface

	XML Schema Generation
	Command-Line Usage
	Example Scenario
	Instance Documents
	Converter URI Properties
	XML Schema Generation Summary

	HTML/XHTML Documentation Generation
	Command Line Usage
	Converter URI Properties
	Example Scenario

	Sample Output Generation
	Command Line Usage
	Converter URI Properties
	Example Scenario

	Example Applications
	Converting EDI to XML
	Creating XML Schemas from EDI

	2 DataDirect XML Converters® URI Schemes
	The converter: URI Scheme
	Converter URI Syntax
	Syntax Validation
	Example

	Specifying XML Converter Properties
	Building a converter: URI
	Converter URIs in Stylus Studio®
	Invoking a Custom XML Conversion
	Invoking a Converter URI in Progress® DataDirect XQuery®
	More About Progress® DataDirect XQuery®

	3 Analyzing EDI-to-XML Conversions
	Overview
	Illustration
	Dialect Support
	Method Definition
	Command-Line Interface

	EDI Analysis Report
	Document Root
	Interchanges Element
	Response Element

	Managing Transmission Responses
	Receipt Element Example
	Acknowledgement Element Example
	Converting Response Messages to EDI
	Sending Responses to the EDI Sender

	4 XML Converters® Examples
	Overview of the demo.java Example
	Examples Summary
	Demonstration Files

	Running demo.java
	Before You Begin
	Running the Demonstration
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14

	Processing Conversion Results
	Loading SEF Files Programmatically
	Using SEF Files Created with Stylus Studio
	Using a SEF File for Multiple Conversions

	5 DataDirect XML Converters® Properties
	Line Separator Values
	Encoding Values
	Base-64 XML Converter Properties
	Binary XML Converter Properties
	Comma-Separated Values (CSV) XML Converter Properties
	dBase XML Converter Properties
	DIF XML Converter Properties
	EDI XML Converter Properties
	Using Special Characters for Separators
	EDI Processing Instructions
	Stopping a Conversion If the Input Does Not Match What is Expected
	Autofilling Segments and Elements

	HTML Converter Properties
	Java .properties File XML Converter Properties
	JSON XML Converter Properties
	OpenEdge .d Data Dump XML Converter Properties
	Pyx Format XML Converter Properties
	Rich Text Format XML Converter Properties
	SDI XML Converter Properties
	SYLK XML Converter Properties
	Tab-Separated Values XML Converter Properties
	Whole-Line Text XML Converter Properties
	Windows .ini File XML Converter Properties
	Windows Write XML Converter Properties

	Index

