ODBCTest Exercise #0

Purpose: To setup the options for ODBCTest as needed for these exercises.

· 1} Start ODBCTest.

(
2} Select Tools..Options.

· 3} Select the ODBC Menu Version tab.

(
4} Click the Both ODBC 2.x and ODBC3.x radio button.

(
5} Select the Miscellaneous tab.

(
6} Choose W2: W1 and Parameters for the Logging Level field.

(
7} Select the Buffer Lengths tab.

(
8} Set the buffer lengths as follows:

Default Buffer Length
300

Argument Display Length
400

Max Bind Col All Length
254
(
9} Click OK.

· 10} Close ODBCTest.

NOTE: You must exit and restart ODBCTest for the changes to take affect.

ODBCTest Exercise #1

Purpose: To use the shortcut buttons to connect, issue an SQL statement, retrieve data and disconnect.

· 1} Start ODBCTest.

· [image: image1.png]2} Click on the full connect button.

ODBCTest will make the ODBC API calls to allocate the environment, set the ODBC behavior, allocate the connection, connect via SQLDriverConnect, and allocate a statement handle.

· 3} Choose the ODBCClass datasource, enter requested connection information.

(
4} Type select * from customer in the upper window:

· [image: image2.png]5} Click the execute button.
ODBCTest will call SQLExecute to execute the SQL Statement.

· [image: image3.png]6} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

· 7} Click the execute button again.

· [image: image4.png]8} Click the bind col all button.

ODBCTest will call SQLNumResultCols to determine the number of columns in the result set and then make the required number of SQLBindCol calls and cal SQLFetch to return the first row of data.

[image: image5.png]
· [image: image6.png]9} Click the next button several times.

ODBCTest will call SQLFetch to fetch the next row of data.

· [image: image7.png]10} Click the free statement button.

ODBCTest will call SQLFreeStmt with the option of SQL_CLOSE. This will release the result set. No more fetching can be done on this statement handle until another SQL statement has been executed. The statement handle can now be used to execute a new statement. Note that the bound columns are still bound. To unbind the columns, call SQLFreeStmt with the option SQL_UNBIND.

· [image: image8.png]11} Click the full disconnect button.

ODBCTest will make the ODBC API calls to release(free) the statement handle, disconnect, free the connection handle, and free the environment handle.

ODBCTest Exercise #2

Purpose: To connect and disconnect using the ODBC 2.x calls. To issue SQL statement and retrieve data using the SQLFetch/SQLGetData calls.

· 1} Start ODBCTest.

· 2} Select Env..SQLAllocEnv.

SQLAllocEnv is the first call which must be made in a 2.x ODBC application.

· 3} Click OK.

· 4} Select Conn..SQLAllocConnect.

Notice the henv (environment handle) is supplied by ODBCTest. A connection handle must be allocated before connecting.

· 5} Click OK.

· 6} Select Conn..SQLConnect.

SQLConnect is the easiest connection call in ODBC. ODBC will look up the rest

of the connection parameters in the ODBC.INI (Registry).

· 7} Fill in the DSN, UID and PWD.

ServerName:

<DSN>

UserName:

<UID>

Authentication:

<PWD>

(
8} Click OK.

· 9} Select Stmt..SQLAllocStmt.

Notice the hdbc (connection handle) is supplied by ODBCTest.

A Statement Handle must be allocated before a SQL statement can be

executed.

· 10} Click OK.

· 11} Type select country, name from customer in the upper window.

This query will return the country and name columns of the customer table. All rows will be returned.

· 12} Select Stmt..SQLExecDirect.

Use the SQLExecuteDirect call when a SQL Statement will only be executed once.

· 13} Click OK.

· 14} Select Results..SQLNumResultCols.

Notice ODBCTest supplies the hstmt (statement handle) for you.

SQLNumResultCols is used to determine how many columns are in the result

set. For the SQL statement executed in this exercise, it is easily determined by looking at the statement itself how many column are in the select list. However, an SQL statement such as select * from customer would not give any indication as to the number of columns returned. It is important to know how many columns are returned in the result set, as we will need to call SQLGetData (or SQLBindCol) for each column in the result set.

· 15} How many columns are in the result set? _________

Hint: Look at the output value for SQLNumResultCols.

· 16} Select Results..SQLFetch.

Notice the hstmt is supplied for you.

SQLFetch positions the cursor (current row) on the next row of the result set. As

this is the first call to SQLFetch, the cursor will be positioned on the first row of the result set.

· 17} Click OK.

· 18} Select Results..SQLGetData.

Notice hstmt is supplied, datatype is set to SQL_CHAR and ColumnNumber is set to 1.

SQLGetData retrieves the data for one column in the row. SQLGetData must be called for each column in the row.

· 19} Click OK.

· 20} What is the value of Country for the first row of the result set?

Hint: Look at the output value of the SQLGetData call.

· 21} Select Results..SQLGetData.

· 22} Change the column number to 2.

· 23} Click OK.

· 24} What is the value of Name for the first row of the result set?

Hint: Look at the output value of the SQLGetData call.

· 25} Select Results..SQLFetch.

As SQLFetch fetches only one row at a time, it must be called for each row in the result set.

· 26} Select Results.SQLGetData.

Once a new row is fetched, SQLGetData must be called again for each column in the row.

· 27} Change the ColumnNumber to 1.

· 28} Click OK.

· 29} What is the value of Country for the second row of the result set?

· 30} Select Results..SQLGetData.

· 31} Change the ColumnNumber to 2.

· 32} Click OK.

· 33} What is the value of Name for the second row of the result set?

· 34} Select Stmt..SQLFreeStmt.

· 35} Choose SQL_DROP for the option field.

To discard a result, call SQLFreeStmt with the Option SQL_CLOSE. The statement handle can then be reused. To release the statement handle completely call SQLFreeStmt with the option SQL_DROP. Before disconnecting an application should release all allocated statement handles.

· 36} Click OK.

· 37} Select Conn..SQLDisconnect.

SQLDisconnect ends the connection to the data source. You must disconnect before you can release the connection handle.

· 38} Click OK.

· 39} Select Conn..SQLFreeConnect.

An application should release the connection handle if it will not be connecting again.

· 40} Click OK.

· 41} Select Env..SQLFreeEnv.

An application should release the environment handle before exiting.

· 42} Click OK.

ODBCTest Exercise #3

Purpose: To connect and disconnect using the ODBC 3.x calls. To issue an SQL statement and retrieve data using the SQLBindCol/SQLFetchScroll calls.

· 1} Start ODBCTest.

· 2} Select Env..SQLAllocHandle.

Notice SQL_HANDLE_ENV is the default handle type.

Notice the input handle is SQL_NULL_HANDLE.

SQLAllocHandle, in ODBC 3.x, replaces the SQLAllocEnv, SQLAllocConnect,

and SQLAllocStmt calls.

SQLAllocHandle with the handle type of SQL_HANDLE_ENV is the first ODBC

API call an application written in ODBC 3.x must call.

· 3} Click OK.

· 4} Select Attr..SQLSetEnvAttr.

A new requirement in ODBC 3.x is n application must set this environment attribute before calling any function that has an SQLHENV argument, or the call will return SQLSTATE HY010 (Function sequence error).

· 5} Click OK.

· 6} Select Env..SQLAllocHandle.

· 7} Choose SQL_Handle_DBC for the handle type.

Notice the henv is supplied by ODBCTest. A connection handle must be allocated before connecting.

· 8} Click OK.

· 9} Select Conn..SQLDriverConnect.

Notice the hdbc is supplied.

Notice the default value for DriverCompletion.

If the DriverCompletion parameter is not set to SQL_DRIVER_NOPROMPT,

then the application must support windowing, as it may be required to display a logon dialog box.

To avoid a logon dialog box, when the DriverCompletion parameter is SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED, an application must pass all of the required connection parameters in the input connection string. If a required parameter is missing the Driver will read additional information from the ODBC.INI (Registry) and display a logon dialog for the user to add additional connection information and/or confirm the connection information in the dialog box.

If the DriverCompletion parameter is set to SQL_DRIVER_NOPROMPT and there are missing connection parameters in the input connection string, then an error will be returned.

· 10} Type DSN=ODBCClass in the connection string field.

· 11} Click OK.

· 12} Fill in requested login information.

· 13} Click OK.

· 14} Select Env..SQLAllocHandle.

· 15} Choose SQL_HANDLE_STMT.

Notice the hdbc is supplied by ODBCTest.

A Statement Handle must be allocated before a SQL statement can be

executed.

· 16} Click OK.

· 17} Select Attr..SQLSetStmtAttr.

For this example, the result set columns will be bound (tied to a variable in the program). In ODBC, a column can be bound to an array and multiple rows fetched at one time. To return more than one row at a time set the SQL_ROWSET_SIZE using the SQLSetStmtAttr.

SQLSetStmtAttr is an ODBC 3.x call; the ODBC 2.x call is SQLSetStmtOption.

· 18} Choose SQL_ATTR_ROW_ARRAY_SIZE for the Attribute.

· 19} Type 5 in the ValuePtr field.

· 20} Click OK.

· 21} Type select city, discount from customer in the upper window.

· 22} Select Stmt..SQLExecDirect.

Use the SQLExecuteDirect call when a SQL Statement will only be executed once.

· 23} Click OK.

· 24} Select Results..SQLNumResultCols.

Notice ODBCTest supplies the hstmt for you.

SQLNumResultCols is used to determine how many columns are in the result

set. For the SQL statement executed in this exercise, it is easily determined by looking at the statement itself how many column are in the select list. However, an SQL statement such as select * from customer would not give any indication as to the number of columns returned. It is important to know how many columns are returned in the result set, as we will need to call SQLGetData (or SQLBindCol) for each column in the result set.

· 25} Click OK.

· 26} How many columns are in the result set? _______

· 27} Select Results..SQLDescribeCol.

Notice 1 is the default column number.

SQLDescribeCol can be used to determine the datatype of the column in the result set.

SQLDescribeCol can be useful in gather information about a column in the result set. Information provided includes the column name, the datatype, the column size, and the number of decimal digits (if the datatype has decimal digits).

· 28} Click OK.

· 29} What is the Column name for column 1? ______________________

· 30} What is the datatype of column 1? ___________________________

· 31} What is the column size of column 1? _______

· 32} How many decimal digits are there in column 1? _______

· 33} Select Results..SQLBindCol.

Notice the default values.

SQLBindCol is used to bind a column in the result set to a variable in the application, i.e., ODBC will put the value returned into the program variable to which it is bound. An application can then use that value in its program.

· 34} Click OK.

· 35} Select Results..SQLDescribeCol.

· 36} Type 2 in the ColumnNumber field.

· 37} Click OK.

· 38} What is the Column name for column 2? ______________________

· 39} What is the datatype of column 2? ___________________________

· 40} What is the column size of column 2? _______

· 41} How many decimal digits are there in column 2? _______

· 42} Select Results..SQLBindCol.

SQLBindCol must be called for each column in the result set.

· 43} Type 2 in the ColumnNumber field.

· 44} Choose SQL_C_LONG for the TargetType.

Notice ODBCTest changed the cbValueMax.

· 45} Click OK.

· 46} Select Results..SQLFetchScroll.

Notice the FetchDirection is SQL_FETCH_NEXT.

SQLFetchScroll is the ODBC 3.x call to return multiple rows at one time. It will return the number of rows specified by SQL_ATTR_ROW_ARRAY_SIZE. The default value for SQL_ATTR_ROW_ARRAY_SIZE is 1. SQLExtendedFetch is the 2.x call.

· 47} Click OK.

· 48} What are the values for column 1 and column 2 for the first five rows of the result set?

· 49} Select Results..SQLFetchScroll.

Calling SQLFetchScroll will fetch the next 5 rows (since SQL_ATTR_ROW_ARRAY_SIZE is set to 5). Bound columns remain bound, so SQLBindCol is only called once for each column prior to fetching and does not need to be repeated as the SQLGetData call does.

· 50} Click OK.

· 51} What are the values for column 1 and column 2 for the next five rows of the result set?

· 52} Select Env..SQLFreeHandle.

To discard a result, call SQLFreeStmt with the Option SQL_CLOSE. The statement handle can then be reused. To release the statement handle completely call SQLFreeStmt with the option SQL_DROP. Before disconnecting an application should release all allocated statement handles.

In ODBC 3.x, SQLFreeHandle replaces the SQLFreeStmt(SQL_DROP), SQLFreeConnect, and SQLFreeEnv calls of ODBC 2.x. ODBC3.x still uses SQLFreeStmt for the SQL_CLOSE, SQL_RESET_PARAMS, and SQL_UNBIND options.

· 53} Choose SQL_HANDLE_STMT for the HandleType.

· 54} Choose the hstmt for the Handle.

· 55} Click OK.

· 56} Select Conn..SQLDisconnect.

SQLDisconnect ends the connection to the data source. You must disconnect before you can release the connection handle.

· 57} Click OK.

· 58} Select Env..SQLFreeHandle.

An application should release the connection handle if it will not be connecting again.

· 59} Choose SQL_HANDLE_DBC for the HandleType.

· 60} Choose the hdbc for the Handle.

· 61} Click OK.

· 62} Select Env..SQLFreeHandle.

An application should release the environment handle before exiting.

· 63} Choose SQL_HANDLE_ENV.

· 64} Choose the henv for the Handle.

· 65} Click OK.

· 66} Exit ODBCTest.

ODBCTest Exercise #4

Purpose: To issue a parameterized SQL statement, bind a value to the parameter, and retrieve the results.

· 1} Start ODBCTest.

· [image: image9.png]2} Click on the full connect button.

ODBCTest will make the ODBC API calls to allocate the environment, set the ODBC behavior, allocate the connection, connect via SQLDriverConnect, and allocate a statement handle.

· 3} Choose the ODBCClass datasource, and enter requested connection information and click OK.

· 4} Type select * from customer where country = ? in the upper window.

This is a parameterized query. Parameterized queries are useful when the form of the SQL statement is know, but not the values. Or if this statement will be used over again to fetch the results for a different value in the where clause. This query will return all columns for the rows in the customer table where the country value is equal to the value specified when SQLBindParameter is called.

· 5} Select Stmt..SQLPrepare.

When an SQL statement will be executed more than once it is more efficient to call SQLPrepare/SQLExecute over call SQLExecDirect. (That way the prepare step is only done once. Since SQLExecDirect is really and prepare and execute together.) When SQLPrepare has been called for an SQL statement, SQLExecute can be call multiple times to execute the statement without having to re-prepare the statement. When using this method with a parameterized query, call SQLPrepare, then SQLBindParameter to supply the parameter values, then SQLExecute to execute the statement. Once all of the result set has been fetched or SQLFreeStmt with the SQL_CLOSE option to release the result set, call SQLBindParameter to supply new values for the parameteres and then call SQLExecute.

· 6} Click OK.

· 7} Select Stmt..SQLBindParameter.

Careful to select the SQLBindParameter call and NOT the SQLBindParam call.

Notice the default values. (SQL_NTS means Null Terminated String.)

SQLBindParameter is used to bind a value to a parameter in a query.

· 8} Type 30 in the ColumnSize field.

· 9} Type 31 in the BufferLength field.

For character data, BufferLength must include space for the null terminator, i.e., BufferLength should be greater than ColumnSize by one.

· 10} Type USA in the ParameterValuePtr field.

In this example, we are looking for all records where the country is USA.

· 11} Click OK.

· 12} Select Stmt..SQLExecute.

· 13} Click OK.

· [image: image10.png]14} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

· 15} How many records are returned (i.e., how many rows have USA for the country)? _____________

· 16} Select Stmt..SQLBindParameter.

To execute the SQL statement with a different value for the parameter, call SQLBindParameter to supply a new value.

· 17} Type England in the ParameterValuePtr field.

Now, let’s find all of the rows with England as the country.

· 18} Click OK.

· 19} Select Stmt..SQLExecute.

· Call SQLExecute to execute the SQL statement with the new parameter value.

· [image: image11.png]20} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

.

· 21} How many records are returned (i.e., how many rows have England for the country)? _____________

· [image: image12.png]22} Click the full disconnect button.

ODBCTest will make the ODBC API calls to release(free) the statement handle, disconnect, free the connection handle, and free the environment handle.

ODBCTest Exercise #5

Purpose: To use the catalog functions to find out the Metadata (Catalog) information.

(
1} Start ODBCTest.

([image: image13.png]
2} Click on the full connect button.

ODBCTest will make the ODBC API calls to allocate the environment, set the ODBC behavior, allocate the connection, connect via SQLDriverConnect, and allocate a statement handle.

· 3} Choose the ODBCClass datasource, enter requested connection information, and click OK.

· 4} Select Catalog..SQLGetTypeInfo.

Not all databases have the same datatypes or names for datatypes. The SQLGetTypeInfo returns a result set listing the datatypes supported by the datasource.

· 5} Click OK.

· [image: image14.png]6} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

· 7} What datatypes are supported by this datasource?

· 8} Select Catalog..SQLTables.

SQLTables returns a result set listing the tables in the database.

· 9} Click OK.

· [image: image15.png]10} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

· 11} What tables are in this database?

· 12} Select Catalog..SQLColumns.

SQLColumns returns a result set listing the columns in the specified table. If you do not specify a table, then all columns in all tables are returned.

· 13} Type customer in the TableName field.

· 14} Click OK.

· 15[image: image16.png]} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

· 16} What are the column names and dataypes of the columns in the customer table?

 Column Name

Datatype

· 16} Select Catalog..SQLStatistics.

SQLStatistics can be used to determine is a table has any indexes (SQL_INDEX_ALL) or any unique indexes (SQL_INDEX_UNIQUE).

· 17} Type customer in the TableName field.

· 18} Click OK.

· [image: image17.png]19} Click the get data all button.
ODBCTest will call SQLNumResultCols to determine how many columns are in the result set, and then call the required number of SQLFetch/SQLGetData calls required to display the data.

· 20} What are the unique indexes on the customer table?

· [image: image18.png]21} Click the full disconnect button.

ODBCTest will make the ODBC API calls to release(free) the statement handle, disconnect, free the connection handle, and free the environment handle.

ODBCTest Exercise #6

Purpose: To use ODBCTest and the ODBC API functions to gather information about the driver and the datasource.

· 1} Start ODBCTest.

· [image: image19.png]2} Click on the full connect button.

ODBCTest will make the ODBC API calls to allocate the environment, set the ODBC behavior, allocate the connection, connect via SQLDriverConnect, and allocate a statement handle.

· 3} Choose the ODBCClass datasource, and enter requested connection information and click OK.

· 4} Select Conn..SQLGetFunctions.

SQLGetFunctons returns True if the specified function is supported, false if the specified function is not supported.

· 5} Choose SQL_API_SQLALLOCCONNECT for the FunctionId.

· 6} Click OK.

· 7} Does this data source support the SQLAllocConnect ODBC API function call? Yes No

· 8} Repeat steps 4, 5, and 6 for each of the values of FunctionId listed below:

SQL_API_SQLBindCol

yes

no

SQL_API_SQLBROWSECONNECT

yes

no

SQL_API_SQLPREPARE

yes

no

SQL_API_SQLDESCRIBEPARAM

yes

no

· 9} Select Conn..SQLGetInfo.

SQLGetInfo returns general information about the driver and the data source associated with the connection.

· 10} Choose SQL_COLUMN_ALIAS for the InfoType field.

SQLGetInfo can tell an application whether or not the data source supports column aliasing.

· 11} Click OK.

· 12} Does this data source support column aliases? Yes no

· 13} Select Conn..SQLGetInfo.

· 14} Choose SQL_CURSOR_COMMIT_BEHAVIOR for the InfoType field.

SQLGetInfo can tell how a COMMIT operation affects cursors and prepared statements on the data source.

SQL_CB_DELETE => Close cursors and delete prepared statements. An application must reprepare and reexecute the statement.

SQL_CB_CLOSE => Close cursors. For prepared statements, the application can call SQLExecute on the statement without calling SQLPrepare again.

SQL_CB_PRESERVE => Preserve cursors in the same position as before the COMMIT operation. The application can continue to fetch data or it can close the cursor and reexecute the statement without repreparing it.

· 15} Click OK.

· 16} What is the cursor commit behavior of this data source? ____________________

· 17} Select Conn..SQLGetInfo.

· 18} Choose SQL_DBMS_VER for the InfoType field.

SQLGetInfo can tell an application what version of the DMBS is connected.

· 19} Click OK.

· 20} What version of the database are you connected to? ____________

· 21} Select Conn..SQLGetInfo.

· 22} Choose SQL_DRIVER_NAME for the InfoType field.

SQLGetInfo call tell an application the name of the driver used for this connection.

· 23} Click OK.

· 24} What is the name of the driver for this connection? ______________

· 25} Select Conn..SQLGetInfo.

· 26} Choose SQL_IDENTIFIER_CASE for the InfoType field.

Some databases will store identifiers (column and table names) in the case used when the object was created, others will store identifiers in all upper or all lower case (unless the case is forced with the quoting character). SQLGetInfo can tell how the data source handles the case of identifiers.

SQL_IC_UPPER => Identifiers in SQL are not case-sensitive and are stored in uppercase in system catalog.

SQL_IC_LOWER => Identifiers in SQL are not case-sensitive and are stored in lowercase in system catalog.

SQL_IC_SENSITIVE => Identifiers in SQL are case-sensitive and are stored in mixed case in system catalog.

SQL_IC_MIXED => Identifiers in SQL are not case-sensitive and are stored in mixed case in system catalog.

· 27} Click OK.

· 28} In what case are column names stored on this database? ________

· 29} Select Conn..SQLGetInfo.

· 30} Choose SQL_IDENTIFIER_QUOTE_CHAR for the InfoType.

The case of an identifier can be forced in ODBC by enclosing the identifier in the quoting character, typically the double quote (“) or the grave (`). Some databases do not support a quoting character.

The character string used as the starting and ending delimiter of a quoted (delimited) identifiers in SQL statements. (Identifiers passed as arguments to ODBC functions do not need to be quoted.) If the data source does not support quoted identifiers, a blank is returned.

· 31} Click OK.

· 32} What is the quoting character for this data source? _____________

· 33} Select Conn..SQLGetInfo.

· 34} Choose SQL_MAX_TABLE_NAME_LEN for the InfoType field.

SQLGetInfo can tell the maximum length allow for table names for the database.

· 35} Click OK.

· 36} What is the maximum length for a table name in this database? ____

· 37} Select Conn..SQLGetInfo.

· 38} Choose SQL_SCROLL_OPTIONS for the InfoType field.

SQLGetInfo can tell an application which cursor scroll types the driver suuports.

SQL_SO_FORWARD_ONLY => The cursor only scrolls forward.

SQL_SO_STATIC => The data in the result set is static.

SQL_SO_KEYSET_DRIVEN => The driver saves and uses the keys for every row in the result set.

SQL_SO_DYNAMIC => The driver keeps the keys for every row in the rowset (the keyset size is the same as the rowset size).

SQL_SO_MIXED = The driver keeps the keys for every row in the keyset, and the keyset size is greater than the rowset size. The cursor is keyset-driven inside the keyset and dynamic outside the keyset.

· 39} Click OK.

· 40} Which scrolling options are supported by this data source?

Forward Only
Static

Keyset Driven
Dynamic

· 41} Select Conn..SQLGetInfo.

· 42} Choose SQL_NUMERIC_FUNCTIONS for the InfoType field.

SQLGetInfo can tell an application which numeric functions the driver supports.

· 43} Click OK.

· 44} Which numeric functions does this data source support?

ABS

ACOS

ASIN

ATAN

ATAN2

CEILING
COS

COT

DEGREES
EXP

FLOOR
LOG

LOG10
MOD

PI

POWER
RADIANS
RAND

ROUND
SIGN

SIN

SQRT

TAN

TRUNCATE

· [image: image20.png]45} Click the full disconnect button.

ODBCTest will make the ODBC API calls to release(free) the statement handle, disconnect, free the connection handle, and free the environment handle.

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

1
3

[image: image21.png][image: image22.png][image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.png][image: image28.png]_989486146

_989486442

_989486616

_989486696

_989922113

_989486538

_989486299

_989485806

